Math 318 - homework 0 - solutions

Problem 1. Create a two page typeset PDF file with your name and student number near the top of page 1.

Problem 2. Consider arrangements of the letters ABRACADABRA?
(a) How many different arrangements are there?
(b) How many of these have the five As at the start?
(c) How many of these have the five As all together?
(d) How many of these have no two consecutive As? (Hint: if the positions of the As are $i<j<k<\ell<m$, then $i, j-1, k-2, \ell-3, m-4$ are distinct numebrs if and only if there are no consecutive As.)

Solution.

(a) The number of repetitions of letters are $5,2,2,1,1$, so the number of arrangements is $\binom{11}{5,2,2,1,1}=$ $\frac{11!}{5!2!2!1!1!}$.
(b) If all the As are at the start, there are $(\underset{2,2,1,1}{6})=180$ arrangements of the remaining letters.
(c) There are 7 options for the location of the block of As, and 180 arrangements of the remaining letters in each of these, so the total is $7 \cdot 180$.
(d) The positions of the As must be 5 numbers from $\{1, \ldots, 11\}$ with no two consecutive numbers. As the hint implies, this is equivalent to $i, j-1, k-2, \ell-3, m-4$ having no repetitions, so $i, j-1, k-2, \ell-3, m-4$ are any five numbers from $\{1, \ldots, 7\}$. Therefore there are $\binom{7}{5}=21$ possible sets of locations for the As. For each of these, there are 180 arrangements of the remaining letters, as above, so the overall answer is $21 \cdot 180$.

Problem 3. Write a python function that takes a string and returns the number of distinct arrangements of its letters. You may assume the string only includes lowercase letters. (numpy.math.factorial(n) can be used to calculate factorials.)

Solution. Sample code:

```
import numpy as np
from math import factorial
### assuming only lowercase letters are used:
def arrangements(word):
    N = factorial(len(word))
    for x in 'abcdefghijklmnopqrstuvwxyz':
        N /= factorial(word.count(x))
        return(N)
### for general strings:
def arrangements(word):
    S = set(word) # the set of characters appearing
    N = factorial(len(word))
    for }x\mathrm{ in S:
        N /= factorial(word.count(x))
        return(N)
```

