Problem 1. A bus is getting slowly filled with groups of 1,2,3 people, until it is full. To model this, let X_n be independent random variables, uniform on $\{1, 2, 3\}$, and let $S_n = \sum_{i \leq nX_i}$ be the total number of people in the first *n* groups. The bus has capacity *N*. Once a group shows up for which there is no space, the bus leaves. Therefore, let *k* be the minimal such that $S_k > N$. We are interested in the size of the lat group: X_k .

- (a) Let a_N be the probability that $S_k = N$ (the bus is exactly full). Write a recursion giving a_N in terms of other a_m . (hint: consider X_1).
- (b) Find expressions for $P(S_k = N + i)$ in terms of a_m for i = 1, 2, 3.
- (c) Explain why $a_N \to 1/2$, and conclude that $P(X_k = i) \to i/6$ for i = 1, 2, 3.

Problem 2. Consider the graph where every vertex on level k has two children at level k + 1, with no other edges. At level 0 there is one vertex, so at level k there are 2^k . Prove that the random walk on this graph is transient, and find the probability that the walk returns to level 0 if it start there. (Hint: conside what level the walk is on.)

Problem 3. Consider the following Markov chain with state space $\{0, 1, \ldots, 2^n - 1\}$. From state k it jumps to either $2k \mod 2^n$ or $2k + 1 \mod 2^n$ with probability 1/2 each. Find the stationary distribution for the chain, and show that the n state transition probabilities are $P_{ij}^n = \pi_j$ for every i, j.

Problem 4. Let P be a doubly stochastic matrix: row and column sums are all 1. Show that the Markov chain with transition matrix P has stationary distribution uniform over the states.

Problem 5. Consider a version of the bus problem, with groups that have distribution Geom(.1). Run a simulation of this with N=1000, and estimate the distribution of X_k based on the simulation. Compare the resulting distribution to the Geom(.1), and to a distribution with $p(k) = c0.9^k$ for some c.

Problem 6. This problem involves the Bienayme-Galton-Watson branching process. Let each individual have a random number of children which is $Poi(\lambda)$ for some λ .

- (a) For each $\lambda \in \{0.9, 1, 1.1, 2\}$, simulate the process starting with one individual in generation 0, for 100 generations. Repeat this 1000 times for each λ . How many of the processes died out for ech λ ?
- (b) For each λ , plot the average over the experiments of the size of each generation for each λ .
- (c) For each λ , plot the average over the experiments of the size of each generation for each λ , when taking into the average for generation k only those that survived to generation k at least.