
Math 318 – homework 3 solutions

Problem 1. Two hockey teams, A and B play a series of games, until one of the teams wins 4 games.
Suppose team A has probability p of winning each game, and games are independent. Let X be the total
number of games that are played.
(a) Find the probability mass function of X.
(b) What is the probability that team A wins the series conditioned on X = 4?
(c) What is the probability that team A wins the series conditioned on X = 7? (Simplify your expressions

as much as possible.)

Solution.
(a) Denote q = 1− p to simplify some formulas.

p(4) = p4 + q4 p(6) = 10p4q2 + 10p2q4

p(5) = 4p4q + 4pq4 p(7) = 20p4q3 + 20p3q4 = 20p3q3.

In each case the first term is the probability that A wins and the second that B wins in that many
games. For example, to find p(6), in order for team A to win in 6 games, they must lead 3-2 after
5 games (

(
5
2

)
= 10 ways for this to happen) and then win the last game. Each such sequence has

probability p4q2.

(b) This is p4

p4+q4 .

(c) This is 20p4q3

20p3q3 = p. We can also see this directly, since if the series lasts 7 games, then after 6 games
the score is 3-3, and the last game determines the winner.

Problem 2. A fair (6-sided) die is rolled four times.
(a) Let Y denote the number of distinct results. Find the probability mass function and expectation of Y .
(b) Let Z denote the minimal result out of the 4 throws. Find the probability mass function and expectation

of Z.

Solution.
(a) We have

p(1) =
6

64
p(2) =

14 ·
(
6
2

)
64

p(3) =

(
6
3

)
· 3 · 12
64

p(4) =
6 · 5 · 4 · 3

64
.

The cases 1 and 4 are easier. For k = 2, there are
(
6
2

)
ways to choose which two values appear, and

there are 14 sequences where the two specific values appear and no others (24 where no others appear,
minus the two where only one of them appears). (The sequences are aaab,aaba,aabb,. . . .) Similarly, if
3 values appear, there are

(
6
3

)
ways to pick which three values appear, 3 ways to specify which of them

appears twice, and 12 ways to arrange the throws with given outcomes {a, a, b, c}.
(b) We have p(k) = (7−k)4−(6−k)4

64 for k = 1, 2, . . . , 6. This is since there are (7− k)4 sequences where the
minimum is at least k, and we subtract (6− k)4 where the minimum is at least k + 1.

Problem 3. This problem investigates the similarity between the geometric and exponential random vari-
ables observed last week. Let Y be a geometric random variable with parameter p, so that Y represents the
trial number of the first success in a sequence of independent Bernoulli trials. Suppose the trials occur at
times δ, 2δ, . . . , and that δ and p are both very small. Let λ = p/δ. At time t, about t/δ trials have taken
place.
(a) Compute P (Y > m), which represents the probability that no success has been observed by time

t = mδ.
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(b) Show that the probability that no success has been observed by time t converges to e−λt as p, δ → 0
with λ = p/δ fixed.

(c) Conclude that the time of the first success is approximately an exponential random variable with
parameter λ.

Solution.
(a) For integer m, P (Y > m) = (1− p)m, since this is the probability of the first m experiments failing..
(b) by time t, the number of attempts is [t/δ], (here [x] is the largest integer less than x). Therefore

P (Y > t) = (1− p)[t/δ] = e[t/δ] log(1−p). As p → 0 we have log(1− p) = −p+O(p2), and therefore

logP (Y > t) = −p[t/δ] +O(p2[t/δ]).

The first term tends to −λt and the second to 0. Therefore P (Y > t) → e−λt as p, δ → 0.
(c) Since the CDF of Y is 1− P (Y > t) and tends to 1− e−λt, which is the CDF of the exponential, Y is

approximately exponential. We will discuss convergence of distributions in detail later this term.

Problem 4. A binary message either 0 or 1 is transmitted by wire. However, data sent over the wire is
subject to channel noise disturbance. If x is the value sent (either 0 or 1), then the value received at the
other end is R = x + N , where N represents the noise. Assume that N is a normal random variable with
mean µ = 0 and variance σ2 = 0.04. Assume that a message sent is equally likely to be 0 or 1. When
the message is received the receiver decodes it according to the following rule: If R ≤ 1

2 she concludes the
message is 0, and otherwise concludes it is 1. What is the probability that the message is received correctly?

Solution. If the message is 0 we need N < 1/2. If the message is 1 we need N > −0.5. The probability
is the same in both cases, and is F (0.5), where F is the CDF Φ of the N(0, 0.22) variable. Since N(0, σ2) =
σN(0, 1), we can write F (x) = Φ(x/0.2), where Φ is the standard normal CDF. The answer is therefore

Φ(0.5/0.2) = Φ(2.5) = 0.993 . . . . Note: Φ(x) = 1+erf(x/
√
2)

2 . This can be calculated in python as follows.

>>> import scipy.stats

>>> scipy.stats.norm.cdf(2.5)

0.99379033467422384

>>> from math import erf

>>> (1 + erf(2.5/sqrt(2)))/2

0.9937903346742238

Problem 5. The number of murders in Gotham on any given week is assumed to be Poisson with unknown
mean λ, with different weeks independent.
(a) We observe there were 2 murders one week. What is the value of λ for which this is most likely?
(b) We observe for a second week, and there is 1 murder. What is the value of λ for which this pair of

observations is most likely?
(c) Generalize the above to observations a1, . . . , ak over k weeks.

Solution.
(a) The likelihood of observing 2 murders in a week is e−λ λ2

2 . This tends to 0 at 0,∞, and is maximized
when λ = 2.

(b) The likelihood of the two observations is

L(λ) = e−λλ
2

2
· e−λλ

1
= e−2λλ

3

2
.

This is maximized at λ = 3
2 .
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(c) If the observations are a1, . . . , ak, then the likelyhood is

L(λ) =
∏
i

e−λλ
ai

ai!
= e−kλ λS∏

i ai!
,

where S =
∑

ai. This is maximized at λ = 1
k

∑
ai, which is the average observation.

Note that this is consistent with the idea of λ being the average rate of murders.

Problem 6. An airline books passengers for a flight on an airplane with 420 seats. From experience, the
airline knows that each passenger has probability p = 1

50 of missing the flight. Assume these events are
independent. As such, the airline takes a risk and sells 430 tickets for the flight.
(a) Using python, compute the probability that more than 420 passenger show up.
(b) Use the Poisson approximation to compute an approximation to this probability.
(c) Simulate the number of no-shows for an overbooked flight 50000 times. (You can use a function that

returns a binomial random variable.) Plot a histogram of the fraction of times there were k no-shows,
and the Poisson p.m.f. on the same graph.

(d) Simulated the number of no-shows 50000 times, and define Xn = number of overfull flights in the first
n simulated bookings. Then Xn/n is the running proportion of overbooked flights. Plot Xn/n. What
happens to it as n gets large?
Note: When calculating Xn, do not simulate n new bookings for every n. Simulate 50000 flights, and
then for every n, calculate Xn based on the first n of these.
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