Math 318 - homework 5 - due 2023-03-03

Problem 1. Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent random variables, each with uniform distribution on $[0,1]$. Let M be the minimum of these random variables.
(a) Find the cumulative distribution function F_{M} of the random variable M. (Hint: It might be easier to find $1-F_{M}$.)
(b) Find the probability density function of M.
(c) Determine the mean and variance of M.
(d) Let $Y=n \cdot M$. Find the probability density function of Y.
(e) Find the limit as $n \rightarrow \infty$ of the pdf of Y.

Problem 2. Let X be uniform on $[0,1]$ and Y be uniform on $[-1,0]$. Compute $\operatorname{Cov}\left(X, X^{2}\right)$ and $\operatorname{Cov}\left(Y, Y^{2}\right)$. (The first is positive and the second is negative, consistent with the fact that X^{2} increases when X whereas the opposite is true for Y.)

Problem 3. Let X and Y be independent $N(0,1)$ random variables. Let $U=X+Y$ and $V=X-Y$.
(a) Find the joint probability density function of U and V.
(b) Show that U and V are independent.
(c) What is the marginal distribution of U ?

Problem 4. Let X, Y be the length of time a machine works before breaking and the length of time it takes to fix it, and let $Z=X+Y$. Suppose X, Z have the joint pdf

$$
f_{X, Z}(x, z)=\lambda^{2} e^{-\lambda z} 1_{0 \leq x \leq z}
$$

(a) Find the density of X.
(b) Find the density of Z.
(c) Find the joint density of X, Y. (Hint: The joint density of X, Y is $\frac{d}{d x} \frac{d}{d y} \mathbb{P}(X \leq x, Y \leq y)$.)
(d) Find the density of Y.

Problem 5. Consider a random variable $X \sim \operatorname{Bin}(100,0.6)$. We are interested in the event $A=\{X \leq 50\}$.
(a) Calculate in python $P(A)$ exactly.
(b) Use the CLT (writing X is a sum of 100 Bernoulli variables) to argue that $Z=\frac{X-a}{b}$ is approximately $N(0,1)$ for some a, b.
(c) Use this to estimate $P(A)=P(Z \leq t)=\Phi(t)$ for some t, and calculate this numerically.
(d) The event A is the same as $\{X<51\}$. Write this as $\left\{Z<t^{\prime}\right\}$ and calculate $\Phi\left(t^{\prime}\right)$.
(e) We may get a better approximation by taking the median of these two. Convert $A=\{X \leq 50.5\}$ to a statement on Z and the normal approximation for that.

Problem 6. Suppose that X, Y are independent discrete random variables taking values in \mathbb{N}, with p.m.f.'s p_{X} and p_{Y}, respectively. We have seen in class that the random variable $X+Y$ has p.m.f. $p_{X} * p_{Y}$, the convolution of p_{X} and p_{Y}, i.e.,

$$
p_{X+Y}(k)=\left(p_{X} * p_{Y}\right)(k)=\sum_{j \geq 0}^{k} p_{X}(j) p_{Y}(k-j)
$$

(a) Let X_{1}, X_{2}, \ldots be i.i.d. (independent and identically distributed) random variables that are uniform over the set $\{0,1,2\}$, and let $S_{n}=X_{1}+\cdots+X_{n}$. Calculate (in python) and graph the p.m.f.'s of S_{n} for $n=1,2,3,4,5,10,50$. Superimpose each of these with the pdf of a normal random variable with the same mean and variance as S_{n}.
(b) Let Y_{1}, Y_{2}, \ldots be i.i.d. random variables such that

$$
\begin{aligned}
P\left(Y_{i}=-1\right)= & P\left(Y_{i}=0\right)=1 / 15 \\
& P\left(Y_{i}=1\right)=11 / 15 \\
P\left(Y_{i}=2\right)= & P\left(Y_{i}=4\right)=1 / 15
\end{aligned}
$$

Let $T_{n}=Y_{1}+\cdots+Y_{n}$. Calculate and graph the p.m.f.'s of T_{n} for the same n 's. Superimpose each of these with the pdf of a normal random variable with the same mean and variance as T_{n}.

Extra practice problems

Ross, chapter 2: 53,58,63,71,72,76

