Math 318 - homework 5 - due 2023-03-03

Problem 1. Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent random variables, each with uniform distribution on $[0,1]$. Let M be the minimum of these random variables.
(a) Find the cumulative distribution function F_{M} of the random variable M. (Hint: It might be easier to find $1-F_{M}$.)
(b) Find the probability density function of M.
(c) Determine the mean and variance of M.
(d) Let $Y=n \cdot M$. Find the probability density function of Y.
(e) Find the limit as $n \rightarrow \infty$ of the pdf of Y.

Solution.

(a) We have

$$
P(M>t)=P\left(X_{i}>t \text { for all } i\right)=P\left(X_{1}>t\right)^{n}=(1-t)^{n}
$$

for $t \in[0,1]$. Therefore the CDF of M is $F(t)=1-(1-t)^{n}$.
(b) The PDF of M is $F^{\prime}(t)=n(1-t)^{n-1}$ for $t \in[0,1]$.
(c) By integration:

$$
E[M]=\int_{0}^{1} x \cdot n(1-x)^{n-1} d x=\frac{1}{n+1}
$$

(This is calculated using integration by parts.) The second moment is

$$
E\left[M^{2}\right]=\int_{0}^{1} x^{2} \cdot n(1-x)^{n-1} d x=\frac{2}{(n+1)(n+2)}
$$

E.g. this can be found by integrating by parts twice. Therefore

$$
\operatorname{Var}[M]=E\left[M^{2}\right]-E[M]^{2}=\frac{n}{(n+1)^{2}(n+2)}
$$

(d) Since $P(Y \leq t)=P(M \leq t / n)=1-(1-t / n)^{n}$, the PDF of Y is

$$
f_{Y}(t)=\left(1-\frac{t}{n}\right)^{n-1}
$$

for $t \in[0, n]$.
(e) The limit as $n \rightarrow \infty$ is e^{-t}. Asymptotically Y is a standard exponential.

Problem 2. Let X be uniform on $[0,1]$ and Y be uniform on $[-1,0]$. Compute $\operatorname{Cov}\left(X, X^{2}\right)$ and $\operatorname{Cov}\left(Y, Y^{2}\right)$. (The first is positive and the second is negative, consistent with the fact that X^{2} increases when X whereas the opposite is true for Y.)

Solution. We have $E\left[X^{k}\right]=\int_{0}^{1} x^{k} d x=\frac{1}{k+1}$, and similarly $E\left[Y^{k}\right]=\frac{(-1)^{k}}{k+1}$. Therefore

$$
\operatorname{Cov}\left(X, X^{2}\right)=E\left[X^{3}\right]-E[X] E\left[X^{2}\right]=\frac{1}{4}-\frac{1}{2} \frac{1}{3}=\frac{1}{12}
$$

and

$$
\operatorname{Cov}\left(Y, Y^{2}\right)=E\left[Y^{3}\right]-E[Y] E\left[Y^{2}\right]=\frac{-1}{4}-\frac{-1}{2} \frac{1}{3}=-\frac{1}{12}
$$

Problem 3. Let X and Y be independent $N(0,1)$ random variables. Let $U=X+Y$ and $V=X-Y$.
(a) Find the joint probability density function of U and V.
(b) Show that U and V are independent.
(c) What is the marginal distribution of U ?

Solution.

(a) Since X, Y are independent, the joint pdf of X, Y is $\frac{1}{2 \pi} e^{-\left(x^{2}+y^{2}\right) / 2}$. Using the change of variable $x=(u+v) / 2$ and $y=(u-v) / 2$ and remembering the Jacobian which is just $\frac{1}{2}$ gives the pdf of U and V to be

$$
g(u, v)=\frac{1}{2} \cdot \frac{1}{2 \pi} \exp \left(-\left(\frac{(u+v)^{2}}{4}+\frac{(u-v)^{2}}{4}\right) / 2\right)=\frac{1}{4 \pi} e^{-\left(u^{2}+v^{2}\right) / 4} .
$$

(b) U and V are independent since $g(u, v)$ factors as $\frac{1}{\sqrt{4 \pi}} e^{-u^{2} / 4} \frac{1}{\sqrt{4 \pi}} e^{-v^{2} / 4}$.
(c) From the above we see that each of U and V is $N(0,2)$. Note that each of these is known to be $N(0,2)$ from the start since that is the distribution of a sum of two standard normal variables.

Problem 4. Let X, Y be the length of time a machine works before breaking and the length of time it takes to fix it, and let $Z=X+Y$. Suppose X, Z have the joint pdf

$$
f_{X, Z}(x, z)=\lambda^{2} e^{-\lambda z} 1_{0 \leq x \leq z} .
$$

(a) Find the density of X.
(b) Find the density of Z.
(c) Find the joint density of X, Y. (Hint: The joint density of X, Y is $\frac{d}{d x} \frac{d}{d y} \mathbb{P}(X \leq x, Y \leq y)$.)
(d) Find the density of Y.

Solution.

(a) Density of X is

$$
f_{X}(x)=\int_{-\infty}^{\infty} f_{X, Z}(x, z) d z=\int_{x}^{\infty} \lambda^{2} e^{-\lambda z} d z=\lambda e^{-\lambda x}
$$

for $x \geq 0$, so that X is $\operatorname{Exp}(\lambda)$.
(b) Density of Z is

$$
f_{Z}(z)=\int_{-\infty}^{\infty} f_{X, Z}(x, z) d x=\int_{0}^{z} \lambda^{2} e^{-\lambda z} d x=\lambda^{2} z e^{-\lambda z},
$$

for $z \geq 0$, so that Z is $\operatorname{Gamma}(2, \lambda)$.
(c) Since the Jacobian of $(X, Z)=(X, X+Y)$ is 1 , we have by a change of variable $Z=X+Y$,

$$
f_{X, Y}(x, y)=\lambda^{2} e^{-\lambda(x+y)},
$$

for $x, y \geq 0$. Therefore X, Y are independent $\operatorname{Exp}(1)$.
Problem 5. Consider a random variable $X \sim \operatorname{Bin}(100,0.6)$. We are interested in the event $A=\{X \leq 50\}$.
(a) Calculate in python $P(A)$ exactly.
(b) Use the CLT (writing X is a sum of 100 Bernoulli variables) to argue that $Z=\frac{X-a}{b}$ is approximately $N(0,1)$ for some a, b.
(c) Use this to estimate $P(A)=P(Z \leq t)=\Phi(t)$ for some t, and calculate this numerically.
(d) The event A is the same as $\{X<51\}$. Write this as $\left\{Z<t^{\prime}\right\}$ and calculate $\Phi\left(t^{\prime}\right)$.
(e) We may get a better approximation by taking the median of these two. Convert $A=\{X \leq 50.5\}$ to a statement on Z and the normal approximation for that.

Solution.

(a) This is 0.0271 (see notebook).
(b) Since the binomial is a sum of 100 Bernoulli variables, we can use the CLT to get $Z \approx N(0,1)$ where $Z=\frac{X-n p}{\sqrt{n p(1-p)}}$. In our case $Z=\frac{X-60}{\sqrt{24}}$.
(c) $P(X \leq 50) \approx P\left(Z \leq \frac{50-60}{\sqrt{24}}\right)=\Phi\left(\frac{-10}{\sqrt{24}}\right)=0.02061$. (See notebook.)
(d) $P(X<51) \approx P\left(Z<\frac{51-60}{\sqrt{24}}\right)=\Phi\left(\frac{-9}{\sqrt{24}}\right)=0.0331$.
(e) $P(X \leq 50.5) \approx P\left(Z \leq \frac{50.5-60}{\sqrt{24}}\right)=\Phi\left(\frac{-9.5}{\sqrt{24}}\right)=0.0262$.

Note: Since X can must be an integer, but cannot be between 50 and 51 . We see that using the middle threshold 50.5 when convering to the normal variable gives a better approximation than either endpoint.

Problem 6. Suppose that X, Y are independent discrete random variables taking values in \mathbb{N}, with p.m.f.'s p_{X} and p_{Y}, respectively. We have seen in class that the random variable $X+Y$ has p.m.f. $p_{X} * p_{Y}$, the convolution of p_{X} and p_{Y}, i.e.,

$$
p_{X+Y}(k)=\left(p_{X} * p_{Y}\right)(k)=\sum_{j \geq 0}^{k} p_{X}(j) p_{Y}(k-j) .
$$

(a) Let X_{1}, X_{2}, \ldots be i.i.d. (independent and identically distributed) random variables that are uniform over the set $\{0,1,2\}$, and let $S_{n}=X_{1}+\cdots+X_{n}$. Calculate (in python) and graph the p.m.f.'s of S_{n} for $n=1,2,3,4,5,10,50$. Superimpose each of these with the pdf of a normal random variable with the same mean and variance as S_{n}.
(b) Let Y_{1}, Y_{2}, \ldots be i.i.d. random variables such that

$$
\begin{aligned}
P\left(Y_{i}=-1\right)= & P\left(Y_{i}=0\right)=1 / 15 \\
& P\left(Y_{i}=1\right)=11 / 15 \\
P\left(Y_{i}=2\right)= & P\left(Y_{i}=4\right)=1 / 15
\end{aligned}
$$

Let $T_{n}=Y_{1}+\cdots+Y_{n}$. Calculate and graph the p.m.f.'s of T_{n} for the same n 's. Superimpose each of these with the pdf of a normal random variable with the same mean and variance as T_{n}.

Note: See notebook. Note that X,Y have the same mean and variance, so even though they differ, the sum of n copies of X or of Y look about the same, as the CLT implies.

Extra practice problems

Ross, chapter 2: 53,58,63,71,72,76

