Math 318 - homework 7 - due 2023-03-17

Problem 1. (a) If X is an integer valued random variable, show that the characteristic function of X has period 2π.
(b) Prove the converse: if $\phi(t)=\phi(t+2 \pi)$ for every t, then show that X takes only integer values. (Hint: If a random variable Y satisfies $Y \geq 0$ and $E[Y]=0$ then $P(Y=0)=1$. Use this for a carefully chosen function of X. Hint: consider $\phi(2 \pi)$.)

Problem 2. Let U, V be two independent random variables, with $E[U]=E[V]=0$, and let $X=U+V$. Assume also that U and V have finite moments. Find an expression for $E\left[X^{3}\right]$ and for $E\left[X^{4}\right]$, in terms of moments of U, V.

Problem 3. Let A be an $n \times n$ matrix, and let $X=\left(X_{1}, \ldots, X_{n}\right)^{T}$ be a vector of i.i.d. $N(0,1)$ random variables. Let $Y=A X$, and Y_{i} its coordinates.
(a) What is the distribution of Y_{i} ?
(b) Find $\operatorname{Cov}\left(Y_{i}, Y_{j}\right)$.
(c) If $n=2$ and A is invertible, show that Y_{1}, Y_{2} have joint probability density function

$$
\frac{1}{(2 \pi)^{n / 2}|\operatorname{det} A|} e^{-\left(y^{T} A^{T-1} A^{-1} y\right) / 2}
$$

on \mathbb{R}^{2}, where $y=\left(y_{1}, y_{2}\right)^{T}$ is a vector.) (Hint: What is the Jacobian of the mapping from X to Y ?) bonus For any n, if A is invertible, show that Y has probability density function with the same formula.

Problem 4. Cosider the random walk in one dimension \mathbb{Z} with bias. We will consider $p=0.5, p=0.51$, and $p=0.502$. Let $X_{i}= \pm 1$ with $P\left(X_{i}=1\right)=p$ and $P\left(X_{i}=-1\right)=1-p$ be independent. Let $S_{n}=X_{1}+X_{2}+\cdots+X_{n}$. For each of these, do the following.
(a) Simulate and plot a random walk with 10^{6} steps. Submit your code and a plot of S_{0}, \ldots, S_{n}.
(b) Simulate 1000 independent random walks, each for up to 10^{6} steps. For each walk, let $T>0$ be the first time the walk returns to 0 . If a walk does not return to 0 , let $T=10^{6}$. For each of the p 's, how many of the 1000 walks did not return to 0 ? Submit histograms of the values of T observed.
(c) Make a log-log plot of the fraction of times $T>k$ for $k=0, \ldots, 10^{6}$.
(d) Based on the previous plot, guess the asymptotics of $P(T>n)$ as $n \rightarrow \infty$. What do you think is the mean of T if there was no limit of 10^{6} ?

Problem 5. This problem investigates the recurrence of 2-dimensional random walk. Let $\left(X_{n}, Y_{n}\right)$ be a two dimensional random walk. At each step pick either X or Y and either increase or decrease it by 1 , all with equal probabilities, and independeent of other steps.
(a) Simulate this process for 10^{6} steps. Submit code and a plot of the walk in the $X-Y$ plane (there is no coordinate for time, though you could use colour to indicate the time a point is visited.
(b) Simulate 1000 random walks for up to 10^{6} steps, and for each keep track of the number of steps before it returns to 0 for the first time. How many of the walks failed to return to 0 ? Is this consistent with the theorem that the random walk is recurrent?
(c) Make a histogram of the resulting return times for the walks that did return, on a logarithmic scale. Can you guess how fast $P(T>n)$ decays from this?

Note. it is much faster to only generate each random walk until it returns to 0 , and stop there. Otherwise this make take a long time to run.

Extra practice problems

(a) Chapter 4: $23,24,30,35$
(b) The Polya urn: An urn has initially one red and one green ball. At each step we draw uniformly a ball from the urn, return it, and add oe more ball of the same colour. Let $\left(G_{n}, R_{n}\right)$ be thenumber of green/red balls when the total is n, so that initally $G_{2}=R_{2}=1$.
(i) Prove that G_{n} is uniformly distributed on $\{1, \ldots, n-1\}$.
(ii) Find the probability that the balls $n+1$ and $n+2$ are the same colour.
(iii) Let X_{n} be the fraction of red balls when there are n balls in the urn. Prove that $E\left(X_{n+1} \mid X_{n}\right)=$ X_{n}. (Such a process is called a martingale.
(iv) Simulate this several times and plot the fraction of red balls over time. Note: The martingale convergence theorem states that a bounded martingale converges.

