- **Problem 1.** (a) If X is an integer valued random variable, show that the characteristic function of X has period 2π .
 - (b) Prove the converse: if $\phi(t) = \phi(t + 2\pi)$ for every t, then show that X takes only integer values. (Hint: If a random variable Y satisfies $Y \ge 0$ and E[Y] = 0 then P(Y = 0) = 1. Use this for a carefully chosen function of X. Hint: consider $\phi(2\pi)$.)

Problem 2. Let U, V be two independent random variables, with E[U] = E[V] = 0, and let X = U + V. Assume also that U and V have finite moments. Find an expression for $E[X^3]$ and for $E[X^4]$, in terms of moments of U, V.

Problem 3. Let A be an $n \times n$ matrix, and let $X = (X_1, \ldots, X_n)^T$ be a vector of i.i.d. N(0, 1) random variables. Let Y = AX, and Y_i its coordinates.

- (a) What is the distribution of Y_i ?
- (b) Find $Cov(Y_i, Y_j)$.
- (c) If n = 2 and A is invertible, show that Y_1, Y_2 have joint probability density function

$$\frac{1}{(2\pi)^{n/2}|\det A|}e^{-(y^TA^{T-1}A^{-1}y)/2}$$

on \mathbb{R}^2 , where $y = (y_1, y_2)^T$ is a vector.) (Hint: What is the Jacobian of the mapping from X to Y?) bonus For any n, if A is invertible, show that Y has probability density function with the same formula.

Problem 4. Cosider the random walk in one dimension \mathbb{Z} with bias. We will consider p = 0.5, p = 0.51, and p = 0.502. Let $X_i = \pm 1$ with $P(X_i = 1) = p$ and $P(X_i = -1) = 1 - p$ be independent. Let $S_n = X_1 + X_2 + \cdots + X_n$. For each of these, do the following.

- (a) Simulate and plot a random walk with 10^6 steps. Submit your code and a plot of S_0, \ldots, S_n .
- (b) Simulate 1000 independent random walks, each for up to 10^6 steps. For each walk, let T > 0 be the first time the walk returns to 0. If a walk does not return to 0, let $T = 10^6$. For each of the *p*'s, how many of the 1000 walks did not return to 0? Submit histograms of the values of *T* observed.
- (c) Make a log-log plot of the fraction of times T > k for $k = 0, ..., 10^6$.
- (d) Based on the previous plot, guess the asymptotics of P(T > n) as $n \to \infty$. What do you think is the mean of T if there was no limit of 10^6 ?

Problem 5. This problem investigates the recurrence of 2-dimensional random walk. Let (X_n, Y_n) be a two dimensional random walk. At each step pick either X or Y and either increase or decrease it by 1, all with equal probabilities, and independent of other steps.

- (a) Simulate this process for 10^6 steps. Submit code and a plot of the walk in the X Y plane (there is no coordinate for time, though you could use colour to indicate the time a point is visited.
- (b) Simulate 1000 random walks for up to 10^6 steps, and for each keep track of the number of steps before it returns to 0 for the first time. How many of the walks failed to return to 0? Is this consistent with the theorem that the random walk is recurrent?
- (c) Make a histogram of the resulting return times for the walks that did return, on a logarithmic scale. Can you guess how fast P(T > n) decays from this?

Note. it is much faster to only generate each random walk until it returns to 0, and stop there. Otherwise this make take a long time to run.

Extra practice problems

(a) Chapter 4: 23,24,30,35

- (b) The Polya urn: An urn has initially one red and one green ball. At each step we draw uniformly a ball from the urn, return it, and add oe more ball of the same colour. Let (G_n, R_n) be thenumber of green/red balls when the total is n, so that initially $G_2 = R_2 = 1$.
 - (i) Prove that G_n is uniformly distributed on $\{1, \ldots, n-1\}$.
 - (ii) Find the probability that the balls n + 1 and n + 2 are the same colour.
 - (iii) Let X_n be the fraction of red balls when there are *n* balls in the urn. Prove that $E(X_{n+1}|X_n) = X_n$. (Such a process is called a martingale.
 - (iv) Simulate this several times and plot the fraction of red balls over time. Note: The martingale convergence theorem states that a bounded martingale converges.