MATH 318 midterm

February 2023

1. 12 marks A random variable X is uniform in $\{1,2,3,4,10\}$.
(a) What is the expectation $E[X]$?
(b) What is the variance $\operatorname{Var}(X)$?
(c) What is the characteristic function of X ?

Solution:

(a) $E[X]=\frac{1}{5}+\frac{2}{5}+\frac{3}{5}+\frac{4}{5}+\frac{10}{5}=4$.
(b) $E\left[X^{2}\right]=\frac{1}{5}\left(1^{2}+2^{2}+3^{2}+4^{2}+10^{2}\right)=26$ so $\operatorname{Var}(X)=\mathbb{E}\left[X^{2}\right]-(E X)^{2}=26-4^{2}=10$.
(c) $\phi(t)=E e^{i t X}=\frac{1}{5}\left(e^{i t}+e^{2 i t}++e^{3 i t}+e^{4 i t}+e^{10 i t}\right)$.

Problem 1.

2. 12 marks We toss five dice (all 6 -sided).
(a) What is the probability of getting exactly three 1 s?
(b) What is the probability of getting five different numbers?

Next, we take four cards from a standard deck (13 cards in each of 4 suits).
(c) What is the probability of getting exactly three hearts?
(d) What is the probability of getting one card from each suit?

Solution:

(a) Binomial distribution gives $P=\binom{5}{3}(1 / 6)^{3}(5 / 6)^{2}$.
(b) $P=\frac{6 \cdot 5 \cdot 4 \cdot 3 \cdot 2}{6^{5}}$.
(c) $P=\frac{\binom{13}{3}\binom{39}{1}}{\binom{52}{4}}$.
(d) $P=\frac{13^{4}}{\binom{52}{4}}$.
3. 8 marks Let $X \sim N(0,1)$ be a standard normal random variable, and let $Y=X^{2}$.
(a) Write the cdf of Y in terms of Φ, where $\Phi(t)=P(X \leq t)$ is the normal cdf.
(b) Find a formula for the pdf of Y.

Solution:

(a) $F(t)=P(Y \leq t)=P(|X| \leq \sqrt{t})=\Phi(\sqrt{t})-\Phi(-\sqrt{t})$.
(b) Using $\Phi^{\prime}(t)=\frac{1}{\sqrt{2 \pi}} e^{-t^{2} / 2}$ and the chain rule:

$$
f(t)=\frac{\Phi^{\prime}(\sqrt{t})}{2 \sqrt{t}}+\frac{\Phi^{\prime}(-\sqrt{t})}{2 \sqrt{t}}=\frac{e^{-t / 2}}{\sqrt{2 \pi} \cdot 2 \sqrt{t}}+\frac{e^{-t / 2}}{\sqrt{2 \pi} \cdot 2 \sqrt{t}}=\frac{e^{-t / 2}}{\sqrt{2 \pi t}}
$$

for $t>0$.
4. 8 marks The king has three urns, each with some balls. The first (A) contains 1 white and 1 black ball. The second (B) contains 2 white and 3 black balls. The third (C) contains 4 white and 1 black balls. Each prisoner picks a random urn, and takes out a ball at random without looking. If they pick a black ball, they will be hanged. If they pick a white ball, they will be drowned.
(a) What is the probability that a prisoner is hanged?
(b) A prisoner ends up with a black ball. What is the conditional probability that they picked urn A?

Solution:

(a) Let A, B, C be the event of picking that urn, and H the event of hanging.

$$
P(H)=P(H \mid A) P(A)+P(H \mid B) P(B)+P(H \mid C) P(C)=\frac{1}{2} \frac{1}{3}+\frac{3}{5} \frac{1}{3}+\frac{1}{5} \frac{1}{3}=\frac{13}{30} .
$$

(b) Using Bayes:

$$
P(A \mid H)=\frac{P(A) P(H \mid A)}{P(H \mid A) P(A)+P(H \mid B) P(B)+P(H \mid C) P(C)}=\frac{\frac{1}{2} \frac{1}{3}}{\frac{13}{30}}=\frac{5}{13} .
$$

5. 14 marks Random variables X, Y have joint $\operatorname{pdf} f(x, y)=x+2 y^{3}$ on $[0,1] \times[0,1]$ and 0 outside that square.
(a) What is the marginal distribution of X ?
(b) What is the marginal distribution of Y ?
(c) Are they independent? (justify!)
(d) What is $\operatorname{Cov}(X, Y)$? (Write the needed integrals; compute them if you have time.)

Solution:

(a) $f_{X}(x)=\int_{0}^{1} x+2 y^{3} d y=x+\frac{1}{2}$.
(b) $f_{Y}(x)=\int_{0}^{1} x+2 y^{3} d x=2 y^{3}+\frac{1}{2}$.
(c) No. $f(x, y) f_{X}(x) f_{Y}(y)$.
(d) $\operatorname{Cov}(X, Y)=E[X Y]-E[X] E[Y]$. Integral below are is on the square:

$$
E[X Y]=\iint x y\left(x+2 y^{3}\right) d x d y=\frac{1}{6}+\frac{1}{5}
$$

Also $E[X]=\int_{0}^{1} x\left(x+\frac{1}{2}\right) d x=\frac{1}{3}+\frac{1}{4}=\frac{7}{12}$ and $E[Y]=\int_{0}^{1} y\left(2 y^{3}+\frac{1}{2}\right) d y=\frac{2}{5}+\frac{1}{4}=\frac{13}{20}$. Combined,

$$
\operatorname{Cov}(X, Y)=\frac{1}{6}+\frac{1}{5}-\frac{7}{12} \frac{13}{20}=-\frac{1}{80} .
$$

