Mathematics 318 - Sample midterm hints

1. Let X have c.d.f. $F(t)= \begin{cases}0 & t<0, \\ \sin (t / 2) & t \in[0, \pi], \\ 1 & t>\pi .\end{cases}$
(a) What is $E[X]$?
(b) What are the CDF and PDF of $Y=\sqrt{X}$?

Solution:

(a) the pdf i F^{\prime}, so $E[X]=\int_{0}^{\pi} x F^{\prime}(x) d x$. Calculate the integral. (Or use $E[X]=$ $\left.\int_{0}^{\infty} 1-F(x) d x.\right)$
(b) $P(Y \leq t)=P\left(X \leq t^{2}\right)=F\left(t^{2}\right)$ gives the cdf of Y. differentiate for the pdf.
2. Let X, Y be random variables with joint p.d.f. $f(x, y)=x+y$ on the square $[0,1] \times[0,1]$ and 0 outside.
(a) Are X and Y independent?
(b) What is the marginal distribution of X ?
(c) What is the Covariance $\operatorname{Cov}(X, Y)$?

Solution:

(a) $x+y$ is not a product of $f_{X}(x) f_{Y}(y)$.
(b) Integrate $\int_{0}^{1} f(x, y) d y$.
(c) Calculate $E[X Y]=\iint x y f(x, y) d x d y$ and similarly $E[X]$ and $E[y]$ to find the covariance.
3. Let X, Y be uniform on the square $[0,2] \times[0,2]$. Find the distribution of the ratio $Z=X / Y$.

Solution: $P(Z \leq t)$ is the probability that (X, Y) is in the square and above the line $x=t y$. This is the ratio of the area of the domain and the whole square. This comes to $t / 2$ for $t \in[0,1]$ and $1-1 / 2 t$ for $t \in[1, \infty)$.
4. Let (X, Y) be the result of rolling two (6 -sided) dice.
(a) What is the characteristic function of X ?
(b) What is the characteristic function of $X+Y$?
(c) Are the events A, B, C independent, where

$$
A=\{X \text { is even }\}, \quad B=\{y \text { is even }\}, \quad C=\{X+Y=5\} .
$$

(d) Which pairs out of A, B, C are independent?

Solution:

(a) $\phi(t)=\sum_{k=1}^{6} e^{i k t}$.
(b) $\phi_{X+Y}(t)=\phi_{X}(t) \phi_{Y}(t)=\phi_{X}(t)^{2}$.
(c) No. $P(A)=P(B)=1 / 2$ and $P(C)>0$ but $P(A \cap B \cap C)=0$.
(d) Any two are independent. (justify!)
5. An urn contains 4 red, 6 green, and 10 blue balls.
(a) If three balls are drawn with replacement, what is the probability that the balls have three different colours?
(b) If three balls are drawn without replacement, what is the probability that they are all the same colour?
(c) If three balls are drawn without replacement, what is the probability that they are all blue conditioned on the event that they all have the same colour?

Solution: Explain these:
(a)

$$
P=3!\frac{4}{20} \frac{6}{20} \frac{10}{20}
$$

(b)

$$
P=\frac{\binom{4}{3}+\binom{6}{3}+\binom{10}{3}}{\binom{20}{3}}
$$

(c)

$$
P=\frac{\binom{10}{3}}{\binom{4}{3}+\binom{6}{3}+\binom{10}{3}}
$$

