ABC : 100
AB : 80
AC : 75
BC : 70

35 35 30
45 45 10
--- 35 35

[Alocation games]

utility
Combinatorial games

- Outcome: win/lose
- 2 players
- Full information
- No randomness

e.g. CHOMP.
remove all R/Ab.
a sq.
lose if forced to pick X.
def: A game is progressively bounded if for any state x of the game, there is a bound M(x) on the number of moves before game ends. (no matter how players move)

Def: Game: Set of states / positions
 - Valid moves from each state.

[Diagram of game states and moves]
Outcome: At some states game ends. One player is winner.
Theorem: In any pos. 2td game, with no draw at any pos. x, either player 1 or player 2 has a strategy that guarantees, combinatorial game, players alternate moves.
Combinatorial games

\(S \): set of game states

- game state = everything that can affect the game

\(F \): followees; for each state \(x \in S \)

\[F(x) = \text{set of states allowed after } x \]

- e.g. in CHOMP \(F(\square) = \{ \text{\square, \square, \square, \emptyset} \} \)

Impartial: both players have same moves

Partisan: each player has different set of moves

\(F_1, F_2 \) for player 1, 2

Ending: some states specify a winner / looser
Normal play: If you cannot move, you lose.

Misère play: If you have no move, you win.

Game graph: $x \rightarrow y \iff y \in F(x)$

E.g., 2×3 Chomp:

Can always reach \emptyset
Reduce Misere to normal play:
If a move ends the game and the mover loses, forbid this move.

In Chomp: Play on

Recall: a game is progressively bounded (P.B.) if
\(\forall x \in M(x) \) s.t. the game started at \(x \), lasts at most \(M(x) \) moves.

e.g. ARCS
Claim: ARCS is P.B.

Proof: Consider total # of open connections.

- 3
- 2
- 1
- 0

A move reduces 1 conn. at 2 pts adds one pt with one conn. left

Total decreases by 1 in each move.

E.g., start with N pts then M ≤ 3N - 1

Exercise: 3N - 1 is possible.
Def: A strategy is a rule to pick a move at every state of the game.

Given strategies for p_1, p_2 can determine the outcome by following the moves prescribed.

Def: A winning strategy is one that wins no matter what opponent does.

Claim: Impossible for both players to have winning strategies.

Proof: Play the 2 winning strats against each other, one must lose.
Theorem: In a prog. I&D game, one of the players must have a winning strategy. [Assuming outcome is only win/lose, combinatorial game]
Can we have a game where each player has 2 strat.

P1: AB
P2: CP

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>B</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

← who wins given choice of strat.

(matrix form of a game)

In this game, neither has a winning strat.

This is not a comb. game!

Thm: In any combinatorial game, prog. bdd, for any x one of the players has a winning strat.

Def: x is a N-pos. if starting at x P₁ has a winning strat. (next player)

P-pos. if x is P₂ can win. (prev. player)
\[\rightarrow = \text{good move}. \]
\[\text{- bad move}. \]

\(x \) is a p-pos. if and only if
\(\forall y \in F(x) \) is an N-pos.

\(x \) is an N-pos. if and only if some (exists) \(y \in F(x) \) is a p-pos.

Let \(N_i \) = positions where next player can win in \(\leq i \) moves.

\(P_i \) = same for 2nd player.
Claim: If from x the game lasts $\leq i$ moves then $x \in P_i$ or $x \in N_i$.

Proof: Induction on i.

$i = 0$: trivial.

If true for all $i \leq n$, let's prove for $i = n$.

By induction hypothesis, all $y \in F(x)$ are in $P_{n-1} \cup N_{n-1}$.

If all are N_{n-1}, then $x \in P_n$.

If not, some $y \in F(x)$ is $y \in P_{n-1}$.

First player wins in $\leq n$ moves, starting by moving to y. ∎
Normal play.

P₀ c P₁ c P₂ ...
2x3 CHOMP
Thm: \(n \times m \) chomp board is an \(N \)-pos \(\forall n,m \neq (1,1) \)

Proof: Assume not, and get contradiction.

\[x \xrightarrow{P} y \xrightarrow{N} z \]

(remove one sq.)

\[\text{exists } f(\square) \in P \]

contradiction since \(z \in F(x) \), so \(z \) must be \(N \)-pos.

\[y = x \text{ minus single square} \]
SUBTRACTION

Legal move: remove between 1 and 4 beads from a pile.

Claim: P-positions are \(\{0, 5, 10, 15, \ldots \} = 5N \)
N-positions are the rest: \(5N \setminus (5N) \)

To prove this need to show 2 things:
- if \(n \in 5N \) then \(F(n) \) are all in \(5N \setminus (5N) \)
- if \(n \not\in 5N \) then \(\exists y \in F(n) \) with \(y \in 5N \)

1st: easy.

2nd: if \(5 \nmid n \) then \(n = 5x + r \) with \(r \in \{1, 2, 3, 4\} \)
\(y = 5x \) is the follower.
Consider subtraction with allowed move set $S = \{1, 2, 4\}$

<table>
<thead>
<tr>
<th>type</th>
<th>follow</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>P</td>
</tr>
<tr>
<td>1</td>
<td>N</td>
</tr>
<tr>
<td>2</td>
<td>N</td>
</tr>
<tr>
<td>3</td>
<td>P</td>
</tr>
<tr>
<td>4</td>
<td>N</td>
</tr>
<tr>
<td>5</td>
<td>N</td>
</tr>
<tr>
<td>6</td>
<td>P</td>
</tr>
</tbody>
</table>

Guess: $P = 3IN$

Proof: If $n = 3x$ then $F(n) = \{3x-1, 3x-2, 3x-4\}$

None is divisible by 3.

If $n \neq$ not a multiple of 3 then $n = 3x+1$ or $3x+2$

$3x$ is a follower of n.
e.g. \(S = \{2, 3, 5\} \)

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>P</td>
<td>P</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>P</td>
<td>P</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
</tbody>
</table>

repeats.

Claim: \(p \)-pos. are \((7N) \cup (7N+1) \)

Proof: 7 cases.

- e.g. If \(n = 7x+1 \) followers are \(7x-1, 7x-2, 7x-4 \) are all \(N \)-pos.

- If \(n = 7x+5 \) then \(7x \) is a \(p \)-pos and follower.
Theorem: For any finite set S, the types are eventually periodic.

$$S = \{4, 5, 7\}$$

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
PPPPPNNNNNNNNNNNNPPPPPP

Note: Can have initial types that do not fit the pattern.

Proof: Suppose $\max(S) = M$.

Type (n) is determined by types of $(n-M, \ldots, n-1)$.

Given the vector of types of $(n+1, \ldots, n+m)$ can find the vector for $(n+2, \ldots, n+m+1)$.
This vector has 2^m possibilities. So it must repeat.

\[n \quad p \quad t \quad p \quad \]

\[
\text{PNNPNP}_1 \times 0 \quad \text{PNNPNP}_1 \times 1 \quad \text{PNNPNP}_1
\]

\[= \text{ then } x = y \]
\[u = v \]
\[\vdotss \]

If types of \(n+1 \ldots n+m \) are same as types of \(t+1 \ldots t+m \), then type of \(n+m+1 = \text{type of } t+m+1 \)
\[n+m+2 \quad t+m+2 \]
\[\vdots \]

for all \(i > 0 \):
\[n+m+i \quad t+m+i \]

If \(p = t - n \) then get period \(p \) from \(n \) onward
note: cannot determine type (n) from types (n+1...ntm)

For example, S = {2, 4, 7}:

0 0 1 2 3 4 5 6 7 8 9 10

Type: P P N N N N P N P N N

[2, 7, 8], [3, 7, 8], [1, 6, 9] are other examples where period starts later.
NIM: can take any number of chips, at least 1 from a single pile.

Claim: 1 pile is N pos.
2 piles are p-pos if they are equal, N-pos. if not.
Recall NIM:
Several piles of chips.
Valid move: take any number of chips from a single pile.
Normal play: Take last chip to win.

One pile: any \(n \neq 0 \) is an N-pos.
Two piles: \((n,m)\) is P-pos if and only if \(n=m \)

Proof: To show that P-positions are A and N-pos.
are \(B = A^c \) need to show:
\(\forall x \in A \) all followers in B and
\(\forall x \in B \) has \(\geq 1 \) follower in A.
Base 2: write \(n \) as sum of powers of 2:

\[n = 2^a + 2^b + 2^c + \ldots \]

\[1011011 = 2^6 + 2^4 + 2^3 + 2^1 + 2^0 = 64 + 16 + 8 + 2 + 1 = 91 \]
NIM-sum (exclusive or)

write in base 2,
add without carries.

e.g. $6 \oplus 23 :$

\[
\begin{array}{c}
110 \\
10111 \\
10001 \\
\hline
16 + 1 = 17
\end{array}
\]

$6 \oplus 23 = 17$

\[
\begin{array}{c}
6 = 4 + 2 = 110 \text{ base 2} \\
23 = 16 + 4 + 2 + 1 = 10110 \text{ base 2}
\end{array}
\]

\[
\begin{array}{c}
21 \oplus 28 = 2^3 + 2^2 = 9 \\
21 = 16 + 4 + 1 \\
28 = 16 + 8 + 4
\end{array}
\]

\[
\begin{array}{c}
10101 \\
\hline
01001
\end{array}
\]

\[
21 \oplus 28 \oplus 5 = 12
\]

\[
\begin{array}{c}
10101 \\
11100 \\
\hline
101
\end{array}
\]

\[
\begin{array}{c}
01100 \\
\hline
2^3 + 2^2 = 12
\end{array}
\]
Facts: NIM sum is commutative and associative:

\[a \oplus b = b \oplus a \]

\[(a \oplus b) \oplus c = a \oplus (b \oplus c) \] written as \(a \oplus b \oplus c \)

\[1 \oplus 2 \oplus 3 = 0 \]

\[\begin{array}{c}
1 \\
10 \\
11 \\
00 \\
\end{array} \]

\[n \oplus n = 0 \]

Theorem: \((n_1, \ldots, n_k)\) is a P-pos. in NIM if and only if \(n_1 \oplus n_2 \oplus \cdots \oplus n_k = 0\).

E.g. \((6, 9, 10, 11, 12)\):

\[\begin{array}{c}
110 \\
1001 \\
1010 \\
1011 \\
1100 \\
0010 \\
\end{array} \]

NIM-sum is 2.

Winning moves: take 2 from 6 or 10 or 11.
Proof: 1) if \(n, \theta, \ldots, \theta n_k = 0 \) then followers have non-zero NIM-sum.

Changing a single \(n_i \) to \(x \neq n_i \) changes at least one digit in base 2, so that column no longer has an even sum.

2) If \(n, \theta, \ldots, \theta n_k = 0 \) need a follower with NIM-sum 0.

e.g.

\[
\begin{array}{ccccccc}
10111101 & \vdots & n_i \\
10110100 & \vdots & n_i \\
1000101 & \vdots & n_i \\
11011110 & \vdots & n_i \\
101000101 & \vdots & n_k \\
\hline
010011011 & \vdots & S
\end{array}
\]
Note: $\mathbf{n}_1 \oplus \cdots \oplus \mathbf{n}_k \oplus \mathbf{s} = 0$

$\mathbf{n}_1 \oplus \cdots \oplus (\mathbf{n}_i \oplus \mathbf{s}) \oplus \cdots \oplus \mathbf{n}_k = 0$

so winning moves are $\mathbf{n}_i \rightarrow \mathbf{n}_i \oplus \mathbf{s}$ for any i.

Legal iff $\mathbf{n}_i \oplus \mathbf{s} < \mathbf{n}_i$.

If largest 1 in \mathbf{s} in position k, then some \mathbf{n}_i has 1 in that position.

Can move from those piles.

\[
\begin{array}{cccc}
10001011 & & n_i & \\
10011011 & & s & \\
\hline
00010000 & & \mathbf{n}_i \oplus \mathbf{s} & \\
\end{array}
\]

$n_i \oplus \mathbf{s}$ has 0 in pos k so $\mathbf{n}_i \oplus \mathbf{s} < \mathbf{n}_i$.