Today: sums of games

Idea: play several games at Once

e.g. SUBTRACTION and CHOMP

- one option a move is a move in each of the games
- move in one of the games of your choice
- move in a pre-determined game
Winning condition:

- win all games
- win most games
- first to win a game wins

Disjunctive sum of games move in one of the games

If there is no available move – you lose.
Given several Impartial P.B. games, what are the \(p \)-positions in their sum?

E.g. \(\text{SUBTR. } \{1, 2\} \)

\(p \)-pos. are \(\{3n\} \)

Play 2 copies at once:

\[
\begin{array}{c}
14 \\
18
\end{array}
\]

Idea: move to 12, 18
Games G_1, G_2, \ldots

$G_1 + G_2 + \ldots + G_k$ is the disj. sum.

Positions are (x_1, \ldots, x_k) with x_i a pos. in G_i.

Claim: If for every i

x_i is P-pos. in G_i

then (x_1, x_2, \ldots, x_k) is a P-pos.
Proof: If next player move $x_i \rightarrow y_i$, then y_i is N-pos.

Then y_i has follower z_i which is a P-pos.

You move $y_i \rightarrow z_i$

$(x_i - x_{i-1}, z_i, x_{i+1}, ..., x_k)$

You make the last move in every game.
14, 18 move to 12, 18
15, 18 is p-pos.
(hope opp makes an error)

\((14, 17)\) has type \((N,N)\)
\((P,P) \implies P\)-pos,
\((P,N) \text{ or } (N,P) \implies N\)-pos
\((1, 1)\) is P-pos.
\((1, 2)\) is N-pos.

If \(xy\) are N-pos,
\((x,y)\) can be either N or P.
NIM with k piles is the sum of k games with a single pile. Each game is 1-pile NIM (SUBTRACTION \{1,2,3,\ldots\})

Sprague-Grundy theory:

Let G be a game, P.B. Impartial, in normal form. Define a func. g on states by
$g(x) =$ smallest integer i s.t. no follower y of x has $g(y) = i$.

\[\text{follower} = \text{direct follower i.e.} \]
\[x \rightarrow y \text{ is valid move} \]

def $\text{mex}(A) =$ minimal excluded integer ≥ 0 from a set A

$\text{mex}(A) = \min(\mathbb{N} \setminus A)$

e.g. $\text{mex}(\{0, 1, 3, 4\}) = 2$

$\text{mex}(\{1, 3, 5\}) = 0$
\[g(a) = \text{mex} \left(\{ g(c), g(b), g(d) \} \right) \]
\[g(b) = \text{mex} \left(\{ g(f) \} \right) \]

e has no followers, so \[g(e) = \text{mex} \left(\emptyset \right) = 0. \]
\[g(f) = \text{mex}\{g(e)\} = \text{mex}\{0\} = 1 \]
\[g(d) = \text{mex}\{g(f)\} = \text{mex}\{1\} = 0 \]
\[g(c) = \text{mex}\{g(d), g(e), g(c)\} = \text{mex}\{0, 1, 0\} = 2 \]

\textbf{Thm} x is a P-position if and only if \(g(x) = 0 \)
Example Subtraction \(\{1, 2, 3\} \)

<table>
<thead>
<tr>
<th>(n)</th>
<th>(g(n))</th>
<th>followers</th>
<th>(g(follens))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0, 1</td>
<td>0, 1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>0, 1, 2</td>
<td>0, 1, 2</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>1, 2, 3</td>
<td>1, 2, 3</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>2, 3, 4</td>
<td>2, 3, 0</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>3, 4, 5</td>
<td>3, 0, 1</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>4, 5, 6</td>
<td>0, 1, 2</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[g(n) = n \pmod{4} \]

\[n \pmod{4} \]
can prove by induction.

e.g. sub. set \(\{1,3,4\} \)

\[
\begin{array}{cccc}
0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
2 & 0 & 1 & 1 \\
3 & 1 & 0.2 & 0.0 \\
4 & 2 & 0.1,3 & 0.1,1 \\
5 & 3 & 1.2,4 & 1.0,2 \\
6 & 2 & 2.3,5 & 0.1,3 \\
7 & 0 & 3.4,6 & 1.2,2 \\
8 & 1 & 4.5,7 & 2.3,0 \\
9 & 0 & 5.6,8 & 3.2,1 \\
10 & 1 & 6.7,9 & 2.0,0 \\
\end{array}
\]
Claim: pattern is 0101232 repeating.

\[g(n) = \begin{cases}
0 & n \equiv 0 \text{ or } 2 \mod 7 \\
1 & n \equiv 1 \text{ or } 3 \\
2 & n \equiv 4 \text{ or } 6 \\
3 & n \equiv 5
\end{cases} \]

Proof: By induction. Checked for \(n \leq 10 \).

Assume true for all \(m < n \).

Case: \(n \equiv 0 \mod 7 \) then followers are \(n-1, n-3, n-4 \) are \(\equiv 6, 4, 3 \mod 7 \).
by ind. hyp. \(g(n-1) = 2 \)
\(g(n-3) = 2 \) and \(g(n-4) = 1 \)
so \(g(n) = \text{mex}\{2, 2, 1\} = 0 \)

Case \(n \equiv 1 \mod 7 \)
\[
\begin{align*}
\text{if} & \quad n \equiv 6 \mod 7 \\
\text{then once} & \quad k \text{ consecutive values repeat, pattern is found.}
\end{align*}
\]
e.g. \(A = \{1, 3, 4\} \), \(K = 4 \)

<table>
<thead>
<tr>
<th>(n)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>(g(n))</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

If 4 values repeat:

\[
\begin{align*}
abcde & \quad \cdots \quad abcde \\
\uparrow & \quad \uparrow & \quad \uparrow & \quad \uparrow \\
n-4 & \quad n-3 & \quad n-1 & \quad n
\end{align*}
\]

Then keep repeating.

\(g(n) \leq K \) so \(K \) consecutive values have \(\leq (K+1)^K \) options.
Thm. x is a P-position if and only if $g(x)=0$

pf. Let $M(x) = \text{max number of moves starting at } x$.
Prove claim by induction on $M(x)$.
$M(x) = 0$ normal play so x is p-pos. and $g(x) = 0$.
If true for $M(y) < n$ and $M(x) = n$.
Followers of x have $M(y) < n$ so ind. hyp. applies to them.

so x is N-pos. \iff

some follower is P-pos.

\iff some follower has $g(y) = 0$

\iff $g(x) \neq 0$

Alternatively: x is P-pos.

\iff all foll. are N-pos.

\iff all foll. have $g(y) \neq 0$

\iff $g(x) = 0$.
from a: ≤ 4 moves to end.
Grundy's Game

States: several piles of coins
Moves: split one pile into two unequal piles
Normal play: last move wins

E.g. start: 17

1, 16
1, 6, 10
11, 5, 10
11, 23, 10
11, 2, 12, 10
11, 22, 12, 10
11, 22, 12, 11, 12
Qn: How to win?

Note: the game with several piles is a disjunctive sum of games with 1 pile.

Thm: For position \((x, y)\) in \(G_1 + G_2\),

\[g(x, y) = g(x) \oplus g(y) \]

here,

\[g(x, y) = \text{value of pos } (x, y) \]

in the sum \(G_1 + G_2\),
e.g.

\[g(a) = 1 \quad g(b) = 0 \]

so \[g(a, b) = 1 \oplus 0 = 1 \]

winning moves \((a, b) \rightarrow (b, b) \rightarrow (a, f)\)

Qn: what moves win from \((b, c)\)?

Sol.: \((b, d)\) or \((b, e)\).
<table>
<thead>
<tr>
<th>(n)</th>
<th>(g(n))</th>
<th>(\text{foll.})</th>
<th>(g(\text{foll.}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>(1,2)</td>
<td>(g(1) \oplus g(2) = 0 \oplus 0 = 0)</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>(1,3)</td>
<td>(g(1,3) = g(1) \oplus g(3) = 1)</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>(1,4)</td>
<td>(g(1,4) = 0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2,3)</td>
<td>(g(2,3) = 1)</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>(1,5)</td>
<td>0 \oplus 2 = 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2,4)</td>
<td>0 \oplus 0 = 0</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>(1,6)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3,5)</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3,4)</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>(1,7)</td>
<td>(0, 1, 3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2,6)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3,5)</td>
<td></td>
</tr>
</tbody>
</table>
e.g. $g(8) = \text{mex} \{g(1, 7), g(2, 6), g(3, 5)\}$

$= \text{mex} \{g(1) \oplus g(7), g(2) \oplus g(6), g(3) \oplus g(5)\}$

$= \text{mex} \{0 \oplus 0, 0 \oplus 1, 1 \oplus 2\} = 2$

No formula is known.

Plot of first 2^{14} values, and \sqrt{n}.
Thm In a sum of games \(G_1 + \ldots + G_k \), the Sprague-Grundy value of \((x_1, \ldots, x_k)\) is the NIM-sum of the values in the separate games:

\[
g(x_1, \ldots, x_k) = g(x_1) \oplus \cdots \oplus g(x_k)
\]

e.g. NIM with 1 pile has

\[
g(n) = n \quad \text{[induction]}
\]

so \(g(n_1, \ldots, n_k) = n_1 \oplus \cdots \oplus n_k \)

and \(p\text{-pos.} \iff \text{NIM-sum is 0} \).
e.g. In Grundy's game,
\[g(3,4,9) = g(3) \oplus g(4) \oplus g(9) = 0 \oplus 0 \oplus 0 = 0 \]
so \((3,4,9)\) is a \(p\)-position.

Proof By induction on
\[M(x_1, \ldots, x_k) = M(x_1) + \ldots + M(x_k). \]

If no moves: \(g_i(x_i) = 0 \)
and also \(g(x_1, \ldots, x_k) = 0 \).

Claim 1: If \((y_1, \ldots, y_k)\)
is a follower of \((x_1, \ldots, x_k)\)
then \(g_1(y_1) \oplus \ldots \oplus g_k(y_k) \)
\[
\neq g_k(x_1) \oplus \ldots \oplus g_k(x_k).
\]

Claim 2: If \(m < g_1(x_1) \oplus \ldots \oplus g_k(x_k) \)
then some follower has
\(g(y_1) \oplus \ldots \oplus g(y_k) = m. \)

Given Claims 1, 2 the theorem follows.

Proof of Claim 1:
A follower has \(y_i = x_i \).
except for a single j

where $x_j \rightarrow y_j$

$g_j(y_j) \neq g_j(x_j)$ so adding

$g_i(x_i) = g_i(y_i)$ for $i \neq j$

proves the claim.

Proof of claim 2: Let

$n_i = g_i(x_i)$ and $m < n$

$n = n_1 \oplus n_2 \oplus \ldots \oplus n_k$

we show that can replace
a single \(n_j \) by \(n'_j < n_j \)

s.t. \(n_0 - \cdots - n_j = m \)

\(X_j \) has \(g_j(x_j) = n_j \).

Some follower \(X_j \rightarrow Y_j \) has \(g_j(y_j) = n_j \).

need \(n'_j = n_j \oplus m \oplus n \)

For some \(j \) \(n'_j < n \) as in \(\text{NIM} \).
\[
\begin{array}{cccc}
1 & 0 & 0 & 1 \\
1 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 \\
\end{array}
\]
\[
\begin{array}{c}
\text{n}_i \\
\text{n} \\
\text{m} \\
\end{array}
\]
\[
\uparrow
\]
\[
\text{n} \text{ has } 1, \quad \text{m} \oplus \text{n} \text{ has a } 1
\]
\[
\text{m} \text{ has } 0
\]
some \(n_j \) has a 1 in that coordinate,
so \(n_j \oplus m\oplus n < n_j \)
as needed \(\square \)
Corollary: In a game G,
$g(x) = n$ if and only if (x, n) is a P-position in $G + \text{NIM}$.

Misere games are hard.

Partizan games are fascinating.

References:

[On Numbers and Games]

[Winning Ways]