O-som games

- 2 player games
- Fully adversarial: One player's gain is the other's loss.

Strategy is a rule giving all your decisions in a game (in every possible situation).

E.g., SUBTRACTION {1, 2} start with 4.

Player 2 has 4 strategies: If P1 took 1: take 1 or 2
If P1 took 2: take 1 or 2

Player 1 has more, e.g.

Take 1, then if P2 takes 1 take 2
if P2 takes 2 take 1

(can also allow random strategies)

20210929
Matrix form of a game.

Rows = strat. of P1
Cals. = strat. of P2.

\[
\begin{pmatrix}
1 & 2 & 3 & 4 \\
1 & -1 & 1 & 1 \\
-1 & -1 & -1 & -1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
\end{pmatrix}
\]

If P1 chooses strat. \(i \) and P2 strategy \(j \), then P2 pays \(A_{ij} \) to P1 (\(A_{ij} \) can be negative).

e.g. \(A_{ij} = 1 \) if P1 wins
\(A_{ij} = -1 \) if P2 wins.
In this case, winning strat. for P1 is a row with all +1.

\[
\begin{pmatrix}
1 & 1 & 1 & 1 & 1
\end{pmatrix}
\]

Winn. strat for P2: column of -1's

In a combinatorial game one of these must exist.

\(O\)-sum. games might not have this.

e.g. \[
\begin{pmatrix}
-1 & +1 \\
+1 & -1
\end{pmatrix}
\] matching pennies
odd/even
0-sum game is given by a matrix $A_{n \times m}$

P_1 picks one of n rows \{ simultaneous \}
P_2 picks one of m cols

P_1 gains A_{ij}, P_2 pays A_{ij}.

Total gain is always 0.

$$\begin{pmatrix} 2 & 3 & 7 \\ 4 & -9 & 11 \end{pmatrix}$$

Pure strategy: pick one row.
Mixed strategy: pick randomly.

∞ game: bigger number:

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & \cdots \\ 1 & 0 & -1 & -1 & -1 & -1 \\ 2 & 1 & 0 & -1 & -1 & -1 \\ 3 & 1 & 1 & 0 & -1 & -1 \\ 4 & 1 & 1 & 1 & 0 & -1 \\ 5 & 1 & 1 & 1 & 1 & 0 \end{pmatrix}$$
e.g. Rock - Paper - Scissors

\[
\begin{pmatrix}
R & P & S \\
R & 0 & -1 & 1 \\
P & 1 & 0 & -1 \\
S & -1 & 1 & 0 \\
\end{pmatrix}
\]

No way row avoids risk of losing.

Loonie - Twonie game:

\[
\begin{pmatrix}
1 & 0 \\
0 & 2 \\
\end{pmatrix}
\]

P1 can be sure to get \(\geq 0 \) (either row)
P2 can be sure to pay \(\leq 1 \) (col. 1)

Can play randomly!

Let P1 use a coin toss to pick.

P1's expected gain is \(\frac{1}{2}(1) + \frac{1}{2}(0) \) in col. 1
\(\frac{1}{2}(0) + \frac{1}{2}(2) \) in col. 2

\(\left(\frac{1}{2}, 1 \right) \)
For \(p_1 \): Each row might get 0

Pick \(\frac{1}{2} - \frac{1}{2} \) then get \(\geq \frac{1}{2} \) no matter what \(p_2 \) chooses.

Pick row 1 w.p. \(\frac{2}{3} \)

2 w.p. \(\frac{1}{3} \).

\[
\begin{pmatrix}
\frac{2}{3} & \frac{1}{3}
\end{pmatrix}
\begin{pmatrix}
1 & 0 \\
0 & 2
\end{pmatrix}
= \begin{pmatrix}
\frac{2}{3} & \frac{2}{3}
\end{pmatrix}
\]

Guarantees \(\geq \frac{2}{3} \)

Player 2 can limit avg. loss to \(2/3 \) by picking

Col. 1 w.p. \(\frac{2}{3} \)

Col. 2 w.p. \(\frac{1}{3} \)

\[
\begin{pmatrix}
1 & 0 \\
0 & 2
\end{pmatrix}
\begin{pmatrix}
\frac{2}{3} \\
\frac{1}{3}
\end{pmatrix}
= \begin{pmatrix}
\frac{2}{3} \\
\frac{2}{3}
\end{pmatrix}
\]

safety strat.
Safety strategy and value

For Pl: maximize the worst outcome.

For each row consider the min. value, take max of these.

Same for each distribution for random row.

\[X = (x_1, \ldots, x_n) : \text{pick row } i \text{ w.p. } x_i \]

Consider the min \((xA)\) and pick \(x\) which maximizes that.
Recall: Safety value: what a player can guarantee getting

Safety strat.: any strat. that achieves the safety value

If restricted to pure strat:

P.1. can achieve $\geq \max_i \min_j A_{ij}$ \hspace{1cm} (at least)

P.2. can achieve $\min_i \max_j A_{ij}$ \hspace{1cm} (at most)

Thm: For any A, $\max_i \min_j A_{ij} \leq \min_i \max_j A_{ij}$

Proof: Let i^* be any i that gives $\max_j A_{i^*j}$ on LHS

Let j^* be any j that gives $\min_i A_{ij}$ on RHS

$\max_i \min_j A_{ij} = \min_i A_{i^*j^*} \leq A_{i^*j^*} \leq \max_i A_{i^*j^*} = \min_i \max_j A_{ij}$
safest pure strat. is row 4

P.I safety value \(\geq 0 \)

Can do better e.g. \((0, 0, 0, \frac{1}{2}, \frac{1}{2})\) gives \(\frac{113}{2} > 0\)

If LHS = RHS : \(A_{i,j,k}\) is minimal in its row \} saddle
and maximal in its col. \} point.

Thm (von Neumann’s minimax): For any \(A\),

\[
\max_{x \in \Delta^n} \min_{y \in \Delta^m} x^T A y = \min_{y \in \Delta^m} \max_{x \in \Delta^n} x^T A y
\]

i.e. the safety valves are equal. This is the value of \(A\) as a 0-sum game.
\(\Delta^n \) : space of mixed strategies on \(n \) rows.

\(\Delta^n = \{ x \in \mathbb{R}^n : x_i \geq 0 \text{ for all } i, \quad \sum x_i = 1 \} \)

\(n=2 \):

\(n=3 \):

\((0,0,1) \rightarrow x_3 \)

\((1,0,0) \rightarrow x_2 \)

\((0,1,0) \rightarrow x_1 \)
E.g. \[A = \begin{pmatrix} 0 & 3 & -2 & 4 \\ 4 & 1 & 2 & 0 \end{pmatrix} \]

Find P.I. safety strat.

Given \[x^T = (x_1, x_2) \] what is \[\min_y x^T A y \] ?

\[x^T A = (4x_2, 3x_1 + x_2, -2x_1 + 2x_2, 4x_1) \]
\[= (4x_2, 1 + 2x_1, 2 - 4x_1, 4x_1) \]

\[\min_{y \in \Delta_m} x^T A y = \min_y x^T A y \text{ pure} \]

\[\min_y x^T A y = \min \{ 4 - 4x_1, 1 + 2x_1, 2 - 4x_1, 4x_1 \} \]

Using \[x_2 = 1 - x_1 \]
optimal \(x: 4x_1 = 2 - 4x_1 \implies x_1 = \frac{1}{4} \)

\[x^T A = \begin{pmatrix} 3 & 0.5 & 1 & 1 \end{pmatrix} \]

Safety value is 1.

For \(p_2 \): given \(y \in \Delta^4 \), get

\[\max \left(3y_2 - 2y_3 + 4y_4, 4y_1 + y_2 + 2y_3 \right) \]

Using minimax thm: know this is \(= 1 \) for the safety strat.

i.e. need \(y \) s.t.

\[3y_2 - 2y_3 + 4y_4 \leq 1 \]

\[4y_1 + y_2 + 2y_3 \leq 1 \]

If \(p_1 \) uses \((\frac{1}{4}, \frac{3}{4}) \) safety strat, then \(p_2 \) should only use col. 3 and 4.
-2y_3 + 4y_4 \leq 1 \quad \Rightarrow \quad y_3 = \frac{1}{2}
\quad 2y_3 \leq 1 \quad \quad \quad \quad \quad y_4 = \frac{1}{2}
\quad y_3 + y_4 = 1

Safety strat for P-2 is \(y^* = (0, 0, \frac{1}{2}, \frac{1}{2}) \)

\[Ay = \begin{pmatrix} 0 & 3 & -2 & 4 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ y_3 \\ y_4 \end{pmatrix} = (1) \]

Often the optimal strat. equalize payoff

not always, e.g. S.P.

\[\begin{pmatrix} 0 & 0 & 2 & 0 \\ 4 & 5 & 3 & 6 \end{pmatrix} \]

In 2x2 game, either \{ S.P. equalized payoff \} pure optimal strat. is optimal
Recall: **Optimal reply**: A player's best response to a known strategy by opponent. (Any such reply if several are equally good)

\[A = \begin{pmatrix} 1 & 4 & 3 \\ 2 & 5 & 1 \\ 6 & 0 & 4 \end{pmatrix} \]

Q. If \(y = \left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3} \right) \), optimal reply for P.1. is?

A. P.1's payoff vector is \(Ay = \begin{pmatrix} 8/3 \\ 8/3 \\ 10/3 \end{pmatrix}\). Optimal reply is row 3, \(x^T = (0, 0, 1) \).

Q. Same for \(A = \begin{pmatrix} 1 & 4 & 3 \\ 2 & 5 & 1 \\ 1 & 2 & 3 \end{pmatrix} \) same \(y \).

A. \(Ay = \begin{pmatrix} 8/3 \\ 8/3 \\ 10/3 \end{pmatrix} \) so optimal reply is \((p, 1-p, 0)^T\) for any \(p \).
Similarly, payoff vector for p_2 is $x^\top A$

optimal reply chooses among minimizing entries of $x^\top A$.

Nash Equilibrium

A N.E. is a pair of strategies (x^*, y^*) such that x^* is an optimal reply to y^* and y^* is optimal reply to x^*.

In a 0-sum game, x^* is optimal against y^* if there is some V s.t. entries of Ay^* all $\leq V$ and if $x_i^* \neq 0$ then $(Ay^*)_i = V$.

Similarly, y^* optimal against x^* if $\forall V$ s.t. $(x^\top A)_j \geq V$ and if $y_j^* \neq 0$ then $(x^\top A)_j = V$.
For any \(A \) there is a \(v = \text{Val}(A) \) and some \(x^*, y^* \) s.t. entries of \(x^T A \) are \(\geq v \) \(\Rightarrow \{ \frac{x^T A y^*}{y^*} \leq v \) entries of \(A y^* \) are \(\leq v \) so \(x^T A y^* = v \).

This implies \((y^*)_i \neq 0 \) only where \(x^T A = v \) and \((x^*)_i \neq 0 \) only where \(A y^* = v \).

So \((x^*, y^*) \) are a Nash Equilibrium.

E.g. \(A = \begin{pmatrix} 0 & 2 & 0 \\ 2 & 1 & 3 \\ 0 & 3 & 3 \end{pmatrix} \) \(x^T = \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix} \) \(y = \begin{pmatrix} \frac{3}{2} \\ \frac{3}{2} \\ \frac{3}{2} \end{pmatrix} \) \(x^T A = (\frac{3}{2}, \frac{3}{2}, \frac{3}{2}) \) y optimal against \(x \). \(A y = \begin{pmatrix} \frac{3}{2} \\ \frac{3}{2} \\ \frac{3}{2} \end{pmatrix} \) x optimal against y. \((x, y) \) is a N.E. \(\text{Val}(A) = \frac{3}{2} \).
If \(y = \left(\frac{1}{2}, 0 \right) \) \(y \) is optimal against \(x = \left(\frac{1}{4}, \frac{3}{4} \right) \).

\(A y = \left(\frac{1}{2} \right) \) \(x \) not optimal against \(y \).

Domination strategy \(i \) dominates strategy \(k \) for \(P1 \)

if for all \(j \), \(A_{ij} \geq A_{kj} \).

strict domination: \(A_{ij} > A_{kj} \quad \forall j \)

For \(P2 \): \(j \) dominates \(k \) if \(\forall i \) \(A_{ij} \leq A_{ik} \)

Claim: If strat. \(i \) dominates strat. \(k \) for \(P1 \), then replacing \(k \) by \(i \) cannot harm \(P1 \).
Lemma: removing dominated strategies does not change the value of a game.

e.g. \[A = \begin{pmatrix} 1 & 2 & 4 & 6 \\ 0 & 1 & 4 & -1 \\ 0 & 0 & 2 & 0 \\ 4 & 1 & 0 & 5 \end{pmatrix} \] rows 2, 3 dominated by row 1

reduces to \[A' = \begin{pmatrix} 1 & 2 & 4 & 6 \end{pmatrix} \] col. 4 dominated by col. 1.

\[A'' = \begin{pmatrix} 1 & 2 & 4 \\ 4 & 1 & 0 \end{pmatrix} \]

note: if end up with 1x1 matrix, that's a saddle point in original game.

\[Ay = (v, v) \] since optimal \(x \) uses both rows

optimal \(x \) has \(x^T A = (v, v, > v) \)

optimal \(y \) is \((y_1, y_2, 0)^T \).
Proof: Let $v = \text{Val}(A)$. Assume row i dominates row k. Optimal x has x^TA has entries $\geq v$.

Let \hat{x} be x with weight transferred from k to i.

E.g. $x^T = (\frac{1}{4}, \frac{1}{2}, \frac{1}{4})$, $i = 2$, $k = 3$, $\hat{x}^T = (\frac{1}{4}, \frac{1}{4}, 0)$

$\hat{x} = x + x_k(0 \ 0 \ x_0 - x_0)$

so $\hat{x}^T A = x^T A + x_k(\text{row } i - \text{row } k)$

≥ 0 entries

so entries of $\hat{x}^T A$ are $\geq v$.

1. p_1 can achieve $\geq v$ without using row k.

2. p_2 can achieve $\leq v$.

so $\text{Val}(A') = v$. \square
Methods for solving 0-sum games

Solve: find the value and an optimal strategy for each player.

Optimal x for P.1 is any x s.t. entries of $x^t A \geq v$

" $y $ " for P.2 y $A y \leq v$

e.g. \[A = \begin{pmatrix} 4 & 0 & 3 \\ 0 & 4 & 3 \end{pmatrix} \] \[x = \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix} \] for P.1 guarantees ≥ 2

\[x^t A = (2, 2, 3) \]

\[y = \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \\ 0 \end{pmatrix} \] for P.2 \[A y = \begin{pmatrix} 2 \\ 2 \end{pmatrix} \]

There might be other optimal x or y.

$A \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix} = \begin{pmatrix} 4 \\ 4 \end{pmatrix}$ so $\begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix}$ not optimal.
Methods
- Saddle point: pure strategies are optimal.
- Simplify by
do:
- Dominated strategies
- $2 \times m$ or $n \times 2$ games:
- Symmetries.
- General algorithms: Assume x, y are optimal = N.E.
 If we know which $x_i \neq 0$ and which $y_j \neq 0$ can find x, y by solving lin. eqns.
e.g. \(A = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} \) if \(x = (x, 1-x) \) \(\min (x^T A) = \)

\(\min x^T A \) is maximized for any \(x \in [\frac{1}{4}, \frac{3}{4}] \)

so value is 1, multiple opt. strategies for p1.

Symmetries: between strategies or players.

e.g. \(A_{ij} = |i - j| \quad i, j \in \{0, 1, 2, \ldots, n\} \)

e.g. (Book):

\[
\begin{array}{ccc}
\square & \square & \square \\
\end{array}
\]

submarine + bomber

Symmetry: sub has 2 strat:

\[
\begin{array}{ccc}
\square & \square & \square \\
\end{array}
\]

reduced 9x2 to 3x2.
Symmetry of players:

\[
\begin{pmatrix}
0 & 1 & -1 \\
-1 & 0 & 1 \\
1 & -1 & 0
\end{pmatrix}
\]

Swapping p₁ and p₂ means replacing A by \(-A^T\).

If \(A = -A^T \) then swapping player roles makes no diff.

Then Val must be 0.
\((A y)_i\) must have same value \(v\) when \(x_i \neq 0\) \(\leq \) \(k\) eqn.

\((x^TA)_j\) \(\leq \) \(v\) \(\leq \) \(y_j = 0\) \(\leq \) \(l\) eqn.

1+K+l variable for \(x, y, v\)

K+l+2 eqns: \(\sum x_i = 1\) \(\sum y_j = 1\) (one is redundant)

Sol. is a N.E. iff
other rows of \(Ay\) are \(\leq v\)

\[+ x_i \in \Delta^x \quad y_j \in \Delta^y \]
other cols of \(x^TA\) are \(\geq v\).

Algor.: "Guess" which rows and cols are used in optimal \(x, y\). \((2^n-1)(2^m-1)\) possibilities.

For each option solve lin. eqn. and check \((x)\)
Special case: all rows + cols are used. Equalizing payoffs

\[A y \text{ must be } \begin{pmatrix} v \\ v \\ \vdots \\ v \end{pmatrix} \]

\[x^T A = (v, -v) \]

E.g. \[A = \begin{pmatrix} 4 & 0 & 3 \\ 0 & 4 & 3 \end{pmatrix} \]

\[\begin{pmatrix} 4x_1 + 4x_2 + 3(x_1 + x_2) \end{pmatrix} \]

\[4x_1 = 4x_2 = 3(x_1 + x_2) \]

\[x_1 + x_2 = 1 \]

So no sol.

E.g. \[A = \begin{pmatrix} 4 & 0 \\ 0 & -4 \end{pmatrix} \]

Suppose for some A get \[x = \left(\frac{1}{2}, \frac{1}{3}, \frac{1}{6} \right) \]

\[y = \begin{pmatrix} \frac{3}{2} \\ 0 \end{pmatrix} \]

Not a N.E since \[y_i \geq 0 \] and \[x_i \geq 0 \]

If \(x \in \Delta^m \) \[y \in \Delta^m \] and \(x^T A, A y \) are const. vectors

Then \(x, y \) is a solution.
Simplex algorithm

Solves linear optimization

Variables \((x_i)\)

\[\text{find } \max \sum u_i x_i\]

\[\text{given } \sum c_{ij} x_i \leq b_j \text{ for all } j\]

\[C x \leq B \text{ for matrix } C, \text{ vector } B\]

Finding N.E in O sum game can be written as

lin. optimization problem.

Variables are \((x_i) (y_j) v\).

Constraints: \(x_i \geq 0, y_j \geq 0, \sum x_i = 1, \sum y_j = 1\)

for all \(i \sum A_{ij} y_j \leq v, \sum x_i A_{ij} \geq v \text{ for all } j\)
If $A = A^T$ e.g. $A = \begin{pmatrix} 0 & 0 \\ 0 & 2 \end{pmatrix}$, then Value $= 0$ and use same strat.

Note: Convex combination of v_1, \ldots, v_k is $\sum a_i v_i$ where $a \in \Delta^k$ $\left[a_i \geq 0 \right.$ $\sum a_i = 1 \right.$.

For $x \leq \Delta^m$ and A a $m \times n$ matrix, $x^T A$ is a convex combination of rows of A.

Claim: adding $x^T A$ as a row to A does not change the value.
If a row is dominated by a combination of other rows, it can also be removed.

\[
\begin{pmatrix}
2 & 0 \\
0 & 4 \\
1 & 1 \\
\end{pmatrix}
\]

Row 3 \leq \frac{1}{2}(\text{row 1}) + \frac{1}{2}(\text{row 2})

\[
\begin{pmatrix}
2 & 0 & 1.5 \\
0 & 4 & 2 \\
1 & 1 & 2 \\
\end{pmatrix}
\]

Col 3 \geq \frac{1}{2}(\text{col 1}) + \frac{1}{2}(\text{col 2})

\text{domination}
Def: A convex set is a set K s.t. $\forall x, y \in K$ the segment $\overline{xy} \subset K$

i.e. $z = tx + (1-t)y \in K$ for all $t \in [0,1]$

e.g. \mathbb{R}^n
Hyperplane separation Lemma

Def: A set $K \subset \mathbb{R}^n$ is closed if it includes its boundary.

Lemma: Assume $K \subset \mathbb{R}^n$ closed and convex, and $0 \notin K$, then there are $c > 0$ and $z \in \mathbb{R}^n$ such that $z \cdot v > c$ for all $v \in K$.

Note: $z \cdot v = \langle z, v \rangle = z^T v$
Proof: Let \(z \) be the point in \(K \) closest to \(0 \).

Such \(z \) exists (\(K \) closed)
\(z \) is unique (\(K \) convex)
If two candidates have the same distance,
then \(\frac{z + z'}{2} \in K \) is closer to \(0 \).

Claim: \(z \cdot v \geq z \cdot z = ||z||^2 \)
So result holds with \(c = \frac{1}{2} ||z||^2 \)
the segment \(z \) has points
\(v \cdot t + z(1-t) = z + t(v-z) \) for \(t \in [0,1] \)
\(z + t(v-z) \in K \)
\(z \) nearest to 0 so \(z + t(v - z) \) farther.

For \(t \in [0, 1] \) get

\[
(z + t(v - z))(z + t(v - z)) \geq z \cdot z
\]

\[
z \cdot z + 2z \cdot t(v - z) + t^2(v - z)(v - z) \geq z \cdot z
\]

\[
2z \cdot t(v - z) + t^2(v - z)(v - z) \geq 0 \quad \text{for} \quad t \in [0, 1]
\]

so \(\geq 0 \)

\[
z \cdot v - z \cdot z \geq 0 \quad \text{so} \quad z \cdot v \geq z \cdot z
\]

\[
\text{Let } r, \text{ is}
\]

\[
2z(v - z)
\]

\[
0
\]

\[
t
\]
Thm! A is mxn matrix then

\[
\max_{x \in \Delta^m} \min_{y \in \Delta^n} x^T A y = \min_{y \in \Delta^n} \max_{x \in \Delta^m} x^T A y.
\]

Lemma! If A, B are convex, closed, bounded sets in \(\mathbb{R}^m, \mathbb{R}^n \)

\[f : A \times B \rightarrow \mathbb{R} \text{ is contin. then} \]

\[
\max_{x \in A} \min_{y \in B} f(x, y) \leq \min_{y \in B} \max_{x \in A} f(x, y)
\]

[use this for \(f(x, y) = x^T A y \) \(f \) is cont. on \(\Delta^m \times \Delta^n \).]
\[\min_{y \in B} f(x, y) \leq f(x, y_0) \leq \max_{x \in A} f(x, y_0) \]

for all \(x, y_0 \) so also

\[\max_{x \in A} \min_{y \in B} f(x_0, y) \leq \min_{y \in B} \max_{x \in A} f(x, y_0) \]

So

\[\max_{x \in A} \min_{y \in B} f(x_0, y) \leq \min_{y \in B} \max_{x \in A} f(x, y_0) \]

This gives one direction in minimax thm: \(\text{LHS} \leq \text{RHS} \)

Note! need \(f \) cont. and \(A, B \) closed + bounded to guarantee that the min and max are attained.
Idea for \geq: Assume RHS is $\geq \lambda$ for some λ.

Deduce that LHS $\geq \lambda$.

This implies LHS \geq RHS.
Midterm next week:

Everything up to (incl.) 0-sum games.

Sample later today.

Recall: Goal: A matrix A

\[
\max_{x \in \Delta^m} \min_{y \in \Delta^n} x^T A y = \min_{y \in \Delta^n} \max_{x \in \Delta^m} x^T A y
\]

Seen: \(\max \min \leq \min \max \)

Proof od \(\geq \) show that cannot have

\[
\max_{x} \min_{y} x^T A y < \lambda < \min_{y} \max_{x} x^T A y
\]

for any \(\lambda \).
If $\hat{A}_{ij} = A_{ij} + c$ for all ij then

$x^T\hat{A}y = x^TAy + c$ for mixed x,y.

If (x) holds then $\hat{A}_{ij} = A_{ij} - \lambda$ has

$$\max \min x^T\hat{A}y < 0 < \min \max y^T\hat{A}x$$

So enough to rule out (x)

Build a convex closed set K from A:

$$K = \{ Ay + v : y \in \Delta^n, v_i \geq 0 \text{ for all } i \} \subset \mathbb{R}^m$$
e.g. $A = \begin{pmatrix} 3 & 4 & 2 & 0 \\ 1 & 0 & 3 & 6 \end{pmatrix}$

Claim: If $0 < \min \max_y x^T Ay$ then 0 not in K.

call $\alpha = \min \max_y x^T Ay$

then for all y, some coord. of Ay is $\geq \alpha$.

so some coord. of $Ay + v \geq \alpha$.

so $Ay + v = 0$ impossible.

$K = \{ Ay + v : y \in \Delta^n \}$
Hyperplane sep.: \(\exists z \text{ s.t. } \forall u \in K \quad z \cdot u > c > 0 \)

Claim: coord. \(z_i > 0 \).

Proof: if \(z_i < 0 \) then take any \(u \in K \), add \(L \) to \(u \). This is still in \(K \).

\[z \cdot \hat{u} = z \cdot u + L \cdot z_i \quad \text{if } z_i < 0 \quad \text{then } z \cdot \hat{u} < 0 \]

for \(L \) large enough.

Can replace \(z \) by \(z/\varepsilon z_i \) to get \(z \in \Delta^m \).

\(z \) is strat. for \(p_1 \) s.t. \(\forall y \in \Delta^m \) and \(v \geq 0 \),

\[z \cdot (Ay + v) \geq c > 0 \]

If \(v = 0 \) get \(z^TAy > 0 \)
So \(\min_y z^T Ay \geq 0 \).

So also \(\max_x \min_y x^T Ay \geq \min_y z^T Ay \geq 0 \).

\[
\text{Seen: } \min_y \max_x x^T Ay > 0 \text{ then } \max_x \min_y x^T Ay \geq 0
\]

Note: In \(\infty \) dim. Hyperplane sep only gives \(> 0 \).

The thm still holds if \(A \) is contin. on compact space.

E.g. players pick \(u, v \in [0, 1] \) payoff is \(A(u, v) \).