Problem 1. Consider a game played on the following graph. An arrow from \(x \) to \(y \) means it is allowed to move from \(y \) to \(x \). (The same graph is shown twice.)
(a) Find the P and N positions.
(b) If the game starts at position \(a \), who wins (first or second player)?
(c) Find the Sprague-Grundy value of each state.

![Graph](image)

Problem 2. A chess queen is placed on a chess board, but is allowed to move only left, down, or diagonally left-down. (There is no move from the bottom left corner.) Find the Sprague-Grundy value of each position in a \(5 \times 5 \) board.

Problem 3. Consider the subtraction game with subtraction set \(\{2, 3, 4, 5\} \).
(a) Find the Sprague-Grundy value for piles of size up to 13.
(b) If there are piles of sizes \(\{6, 7, 8, 9\} \), (and we are allowed to remove 2,3,4, or 5 chips from one of the piles), find a winning move.
(c) For the same position, find all winning moves.
(d) What is \(g(344) \)?

Problem 4. (a) Find all optimal strategies for each player in the zero-sum game with matrix \(A \) below.
(b) Find some optimal strategy for each player in the zero-sum game with matrix \(B \) below.

\[
A = \begin{pmatrix} 0 & 2 & 3 & 5 & 8 \\ 8 & 5 & 3 & 2 & 0 \end{pmatrix} \quad B = \begin{pmatrix} 6 & 5 & 2 & 1 \\ 5 & 4 & 3 & 0 \\ 1 & 0 & 5 & 4 \\ 2 & 0 & 2 & 3 \end{pmatrix}
\]

Problem 5. Find the value and an optimal strategy for the game \(A = \begin{pmatrix} 0 & 6 \\ 4 & s \end{pmatrix} \) for an arbitrary value \(s \). Draw a graph of the value as a function of \(s \) (from \(-\infty\) to \(\infty\)).

Problem 6. Find a hyperplane which separates 0 from the set \(K \in \mathbb{R}^3 \) given by \(K = \{xyz \geq 1, x, y, z \geq 0\} \).