Problem 1. A σ-algebra \mathcal{F} is said to be generated by a partition if there is some partition $\mathcal{B}=\left\{B_{i}\right\}$ of Ω so that every set $A \in \mathcal{F}$ is a union of some parts in the partition, and every such union is in \mathcal{F}.
(a) If $\mathcal{A} \subset 2^{\Omega}$ is finite, show that the generated σ-algebra has $|\sigma(\mathcal{A})| \leq 2^{2^{|\mathcal{A}|}}$.
(b) Show that any σ-algebra on a countable set Ω is generated by a partition of Ω.

Problem 2. Give an example of a measure $\operatorname{space}(\Omega, \mathcal{F})$ and function μ on \mathcal{F} that is additive but not σ-additive, i.e. $\mu\left(\cup A_{i}\right)=\sum \mu\left(A_{i}\right)$ for a finite collection of disjoint A_{i}, but not for some infinite collections.

Problem 3. What is the σ-algebra generated by all singletons $\{x\}$ for $\Omega=\mathbb{R}$?
Problem 4. Show that the following collections generate the same σ-algebra (Borel) on \mathbb{R} :

- Open intervals: $\{(a, b): a<b\}$.
- Closed intervals: $\{[a, b]: a<b\}$.
- Half open intervals: $\{(a, b]: a<b\}$.
- Half-lines: $\{[a, \infty): a \in \mathbb{R}\}$.

Problem 5. For a function $f:[0,1] \rightarrow \mathbb{R}$, let C be the set of points where f is continuous. Prove that C is in the Borel σ-algebra.

Problem 6. A permutation σ is called a derangement if $\forall i, \sigma(i) \neq i$. Consider a uniform random permutation σ of $\{1, \ldots, n\}$, and let D_{n} be the event that σ is a derangement. Use the inclusion-exclusion principle to find a formula for the number of derangements, and show that $\mathbb{P}\left(D_{n}\right) \underset{n \rightarrow \infty}{ } e^{-1}$.

Problem 7. Consider the space $\Omega=\{0,1\}^{\mathbb{N}}$ of binary sequences $\left(\omega_{i}\right)$, with the product probability measure \mathbb{P} where $\mathbb{P}\left(\omega_{i}=1\right)=1 / 2$. Let R_{n} be the longest consecutive run of 1 s in the first n terms. For example, if $\omega=(1,0,1,1,1,0,1,1, \ldots)$ then $R_{4}=2$ and $R_{8}=3$.

Prove that almost surely $\lim _{n \rightarrow \infty} \frac{R_{n}}{\log _{2} n}=1$.

