Problem 1. A σ-algebra \mathcal{F} is said to be generated by a partition if there is some partition $\mathcal{B}=\left\{B_{i}\right\}$ of Ω so that every set $A \in \mathcal{F}$ is a union of some parts in the partition, and every such union is in \mathcal{F}.
(a) If $\mathcal{A} \subset 2^{\Omega}$ is finite, show that the generated σ-algebra has $|\sigma(\mathcal{A})| \leq 2^{2^{|\mathcal{A}|}}$.
(b) Show that any σ-algebra on a countable set Ω is generated by a partition of Ω.

Solution.

(a) Let $\mathcal{A}=\left\{A_{1}, \ldots, A_{n}\right\}$ and let each B_{i} be either A_{i} or A_{i}^{c}. There are 2^{n} choices for the B_{i} 's. For each such sequence of $B \mathrm{~s}$, let S be their intersection, so there are 2^{n} possible sets S. (Some of them may be empty.) Moreover, the sets S are a partition of Ω. There are $2^{2^{n}}$ sets that can be written as unions of sets S_{i}, and these are a σ-algebra containing each A_{i}.
(b) For a countable set Ω, define an equivalence relation $x \sim y$ if there is no set including one but not the other. This is an equivalence relation, so the equivalence classes are a partition of Ω. Moreover, there are at most countably many equivalence classes. We need to show that each equivalence class S is in the σ-algebra. To see this, for each $x \in \Omega \backslash S$ take a set A_{x} such that $S \subset A_{x}$ but $x \notin A_{x}$. Such a set exists since otherwise x is in the equivalence class. The countable intersection of the sets A_{x} is S.

Problem 2. Give an example of a measure space (Ω, \mathcal{F}) and function μ on \mathcal{F} that is additive but not σ-additive, i.e. $\mu\left(\cup A_{i}\right)=\sum \mu\left(A_{i}\right)$ for a finite collection of disjoint A_{i}, but not for some infinite collections.

Solution. There are many constructions based on the axiom of choice. One is to take a non-principle ultra-filter on \mathbb{N} : a collection of subsets closed to finite intersection, that contains exactly one of A, A^{c} and not any finite set. Then let $\mathbb{P}(A)=1$ if A is in the ultra-filter.

Another is bsaed on the Banach limit: a linear extension of lim to all bounded sequences. For a set in \mathbb{N}, take $\mathbb{P}(A)=\lim 1_{n \in A}$. For any finite set this is 0 , but for the countable union \mathbb{N} it is 1 .

A similar example on \mathbb{R} is $\lim n^{-1} \mu(A \cap[0, n])$, where μ is Lebesgue measure.

Problem 3. What is the σ-algebra generated by all singletons $\{x\}$ for $\Omega=\mathbb{R}$?

Solution. Any countable set must be in \mathcal{F}. Therefore let \mathcal{F} be the σ-algebra of sets that are countable or co-countable (with A^{c} countable). This is easily a σ-algebra which contains all singletons, so it is the solution.

Problem 4. Show that the following collections generate the same σ-algebra (Borel) on \mathbb{R} :

- Open intervals: $\{(a, b): a<b\}$.
- Closed intervals: $\{[a, b]: a<b\}$.
- Half open intervals: $\{(a, b]: a<b\}$.
- Half-lines: $\{[a, \infty): a \in \mathbb{R}\}$.

Solution. Let \mathcal{F}_{i} for $i=a, b, c, d$ be the resulting σ algebra. The closed interval is $[a, b]=\cap_{n}(a-1 / n, b+$ $1 / n)$, so $[a, b] \in \mathcal{F}_{a}$. Therefore $\mathcal{F}_{b} \subset \mathcal{F}_{a}$.

Similarly, $(a, b]=\cup[a+1 / n, b]$ so $(a, b] \in \mathcal{F}_{b}$ and so $\mathcal{F}_{c} \subset \mathcal{F}_{b}$.
The other inclusions are similar. We can write $[a, \infty)$ as a union of closed intervals. To go from half lines to finite intervals, take the difference $[a, \infty) \backslash[b, \infty)=[a, b)$.

Problem 5. For a function $f:[0,1] \rightarrow \mathbb{R}$, let C be the set of points where f is continuous. Prove that C is in the Borel σ-algebra.

Solution. Let $A_{i, n, m}$ be the event that on the interval $I_{i, n}=\left(\frac{i}{n}, \frac{i+1}{n}\right)$, the minimal and maximal values of f differ by at most $1 / m$.

The function f is continuous at $x \in(0,1)$, if and only if for every m there is some n and i so that $x \in I_{i, n}$ and $A_{i, n}$ holds. Therefore

$$
C \cap(0,1)=\bigcap_{m} \bigcup\left\{I_{i, n} \text { s.t. } A_{i, n, m}\right\} .
$$

This is an intersection of unions of open intervals, so is a Borel set.
Adding 0 or 1 if f is continuous there keeps the set C measurable.
Problem 6. A permutation σ is called a derangement if $\forall i, \sigma(i) \neq i$. Consider a uniform random permutation σ of $\{1, \ldots, n\}$, and let D_{n} be the event that σ is a derangement. Use the inclusion-exclusion principle to find a formula for the number of derangements, and show that $\mathbb{P}\left(D_{n}\right) \underset{n \rightarrow \infty}{ } e^{-1}$.

Solution. Let A_{i} be the event that $\sigma(i)=i$, so that $\mathbb{P}\left(A_{i}\right)=1 / n$. For any set of k indices, we have

$$
\mathbb{P}\left(A_{i 1} \cap \cdots \cap A_{i_{k}}\right)=\frac{(n-k)!}{n!}
$$

since there are $(n-k)$! permutations keeing these k indices fixed. There are $\binom{n}{k}$ possible such sets. By inclusion-exclusion we have

$$
\mathbb{P}\left(\cup_{i} A_{i}\right)=\sum_{k=1}^{n}(-1)^{k+1}\binom{n}{k} \frac{(n-k)!}{n!}=\sum_{k=1}^{n} \frac{(-1)^{k+1}}{1!}=\frac{1}{-} \frac{1}{2!}+\frac{1}{3!} \cdots \pm \frac{1}{n!}
$$

This converges to $1-1 / e$.
Problem 7. Consider the space $\Omega=\{0,1\}^{\mathbb{N}}$ of binary sequences $\left(\omega_{i}\right)$, with the product probability measure \mathbb{P} where $\mathbb{P}\left(\omega_{i}=1\right)=1 / 2$. Let R_{n} be the longest consecutive run of 1 s in the first n terms. For example, if $\omega=(1,0,1,1,1,0,1,1, \ldots)$ then $R_{4}=2$ and $R_{8}=3$.

Prove that almost surely $\lim _{n \rightarrow \infty} \frac{R_{n}}{\log _{2} n}=1$.

Solution. Fix some $\varepsilon>0$. We first bound the probability that $R_{n} \geq k=\left[(1+\varepsilon) \log _{2} n\right]$. There are n positions where a long run of 1 s may start. (Actually $n-k+1$, which is slightly less.) Each is the start of a k-run with probability 2^{-k}. We have $2^{-k} \leq 2 n^{-(1+\varepsilon)}$ (the factor of 2 comes from the rounding down). By the union bound,

$$
\mathbb{P}\left(R_{n} \geq k\right) \leq n 2^{-k} \leq n \cdot 2 n^{-(1+\varepsilon)}=2 n^{-\varepsilon}
$$

If $\varepsilon>1$ then Borel-cantelly shows that $R_{n}>k$ only happens finitely many times. To get this for any $\varepsilon>0$, consider first just the sequence $n_{i}=\left[(1+\delta)^{i}\right]$. Along this subsequence, $\mathbb{P}\left(R_{n} \geq k\right)$ is summable, so eventually $R_{n} \leq k$ for $n=\left[(1+\delta)^{i}\right]$. To get the remaining n 's we use monotonicity of R_{n} in n. For $n \in\left[n_{i}, n_{i+1}\right]$ we have $R_{n} \leq R_{n_{i+1}}$, which implies

$$
R_{n} \leq(1+\varepsilon) \log _{2} n_{i+1} \leq(1+\varepsilon)\left[\log _{2}(1+\delta)+\log _{2} n\right]
$$

By taking δ small, this is less than $(1+2 \varepsilon) \log _{2} n$.
Therefore eventually $R_{n} \leq(1+2 \varepsilon) \log _{2} n$. Since ε was arbitrary, this gives the upper bound.
The lower bound is easier: Let $\varepsilon>0$ and $k=(1-\varepsilon) \log _{2} n$. Split $1 \ldots n$ into n / k segments of length k. Each is all ones with probability 2^{-k} independently, so the probability that none of them are all ones is $\left(1-2^{-k}\right)^{n / k}$. Therefore

$$
\mathbb{P}\left(R_{n} \leq k\right) \leq\left(1-2^{-k}\right)^{n / k} \leq\left(1-n^{\varepsilon-1}\right)^{n / k}
$$

This is summable, so by Borel-Cantelli eventually $R_{n} \geq(1-\varepsilon) \log _{2} n$.

