
MATH 418/544, Assignment 0 solutions

Problem 1. A σ-algebra F is said to be generated by a partition if there is some partition B = {Bi} of Ω
so that every set A ∈ F is a union of some parts in the partition, and every such union is in F .

(a) If A ⊂ 2Ω is finite, show that the generated σ-algebra has |σ(A)| ≤ 22
|A|

.
(b) Show that any σ-algebra on a countable set Ω is generated by a partition of Ω.

Solution.
(a) Let A = {A1, . . . , An} and let each Bi be either Ai or A

c
i . There are 2n choices for the Bi’s. For each

such sequence of Bs, let S be their intersection, so there are 2n possible sets S. (Some of them may
be empty.) Moreover, the sets S are a partition of Ω. There are 22

n

sets that can be written as unions
of sets Si, and these are a σ-algebra containing each Ai.

(b) For a countable set Ω, define an equivalence relation x ∼ y if there is no set including one but not the
other. This is an equivalence relation, so the equivalence classes are a partition of Ω. Moreover, there
are at most countably many equivalence classes. We need to show that each equivalence class S is in
the σ-algebra. To see this, for each x ∈ Ω \ S take a set Ax such that S ⊂ Ax but x ̸∈ Ax. Such a set
exists since otherwise x is in the equivalence class. The countable intersection of the sets Ax is S.

Problem 2. Give an example of a measure space (Ω,F) and function µ on F that is additive but not
σ-additive, i.e. µ(∪Ai) =

∑
µ(Ai) for a finite collection of disjoint Ai, but not for some infinite collections.

Solution. There are many constructions based on the axiom of choice. One is to take a non-principle
ultra-filter on N: a collection of subsets closed to finite intersection, that contains exactly one of A,Ac and
not any finite set. Then let P(A) = 1 if A is in the ultra-filter.

Another is bsaed on the Banach limit: a linear extension of lim to all bounded sequences. For a set in
N, take P(A) = lim 1n∈A. For any finite set this is 0, but for the countable union N it is 1.

A similar example on R is limn−1µ(A ∩ [0, n]), where µ is Lebesgue measure.

Problem 3. What is the σ-algebra generated by all singletons {x} for Ω = R?

Solution. Any countable set must be in F . Therefore let F be the σ-algebra of sets that are countable
or co-countable (with Ac countable). This is easily a σ-algebra which contains all singletons, so it is the
solution.

Problem 4. Show that the following collections generate the same σ-algebra (Borel) on R:
• Open intervals: {(a, b) : a < b}.
• Closed intervals: {[a, b] : a < b}.
• Half open intervals: {(a, b] : a < b}.
• Half-lines: {[a,∞) : a ∈ R}.

Solution. Let Fi for i = a, b, c, d be the resulting σ algebra. The closed interval is [a, b] = ∩n(a− 1/n, b+
1/n), so [a, b] ∈ Fa. Therefore Fb ⊂ Fa.

Similarly, (a, b] = ∪[a+ 1/n, b] so (a, b] ∈ Fb and so Fc ⊂ Fb.
The other inclusions are similar. We can write [a,∞) as a union of closed intervals. To go from half lines

to finite intervals, take the difference [a,∞) \ [b,∞) = [a, b).

Problem 5. For a function f : [0, 1] → R, let C be the set of points where f is continuous. Prove that C is
in the Borel σ-algebra.
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Solution. Let Ai,n,m be the event that on the interval Ii,n = ( i
n ,

i+1
n ), the minimal and maximal values of

f differ by at most 1/m.
The function f is continuous at x ∈ (0, 1), if and only if for every m there is some n and i so that x ∈ Ii,n

and Ai,n holds. Therefore

C ∩ (0, 1) =
⋂
m

⋃
{Ii,n s.t. Ai,n,m} .

This is an intersection of unions of open intervals, so is a Borel set.
Adding 0 or 1 if f is continuous there keeps the set C measurable.

Problem 6. A permutation σ is called a derangement if ∀i, σ(i) ̸= i. Consider a uniform random permu-
tation σ of {1, . . . , n}, and let Dn be the event that σ is a derangement. Use the inclusion-exclusion principle
to find a formula for the number of derangements, and show that P(Dn) −−−−→

n→∞
e−1.

Solution. Let Ai be the event that σ(i) = i, so that P(Ai) = 1/n. For any set of k indices, we have

P(Ai1 ∩ · · · ∩Aik) =
(n− k)!

n!
,

since there are (n − k)! permutations keeing these k indices fixed. There are
(
n
k

)
possible such sets. By

inclusion-exclusion we have

P(∪iAi) =

n∑
k=1

(−1)k+1

(
n

k

)
(n− k)!

n!
=

n∑
k=1

(−1)k+1

1!
=

1

−
1

2!
+

1

3!
· · · ± 1

n!
.

This converges to 1− 1/e.

Problem 7. Consider the space Ω = {0, 1}N of binary sequences (ωi), with the product probability measure
P where P(ωi = 1) = 1/2. Let Rn be the longest consecutive run of 1s in the first n terms. For example, if
ω = (1, 0, 1, 1, 1, 0, 1, 1, . . . ) then R4 = 2 and R8 = 3.

Prove that almost surely limn→∞
Rn

log2 n = 1.

Solution. Fix some ε > 0. We first bound the probability that Rn ≥ k = [(1 + ε) log2 n]. There are n
positions where a long run of 1s may start. (Actually n− k + 1, which is slightly less.) Each is the start of
a k-run with probability 2−k. We have 2−k ≤ 2n−(1+ε) (the factor of 2 comes from the rounding down). By
the union bound,

P(Rn ≥ k) ≤ n2−k ≤ n · 2n−(1+ε) = 2n−ε.

If ε > 1 then Borel-cantelly shows that Rn > k only happens finitely many times. To get this for any
ε > 0, consider first just the sequence ni = [(1 + δ)i]. Along this subsequence, P(Rn ≥ k) is summable,
so eventually Rn ≤ k for n = [(1 + δ)i]. To get the remaining n’s we use monotonicity of Rn in n. For
n ∈ [ni, ni+1] we have Rn ≤ Rni+1 , which implies

Rn ≤ (1 + ε) log2 ni+1 ≤ (1 + ε)[log2(1 + δ) + log2 n].

By taking δ small, this is less than (1 + 2ε) log2 n.
Therefore eventually Rn ≤ (1 + 2ε) log2 n. Since ε was arbitrary, this gives the upper bound.

The lower bound is easier: Let ε > 0 and k = (1 − ε) log2 n. Split 1 . . . n into n/k segments of length
k. Each is all ones with probability 2−k independently, so the probability that none of them are all ones is
(1− 2−k)n/k. Therefore

P(Rn ≤ k) ≤ (1− 2−k)n/k ≤ (1− nε−1)n/k.

This is summable, so by Borel-Cantelli eventually Rn ≥ (1− ε) log2 n.
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