MATH 418/544, Assignment 0 solutions

Problem 1. A c-algebra F is said to be generated by a partition if there is some partition B = {B;} of Q2
so that every set A € F is a union of some parts in the partition, and every such union is in F.

(a) If A C 2% is finite, show that the generated o-algebra has |o(A)| < 92!,

(b) Show that any o-algebra on a countable set ) is generated by a partition of .

Solution.

(a) Let A= {A;,...,A,} and let each B; be either A; or A¢. There are 2" choices for the B;’s. For each
such sequence of Bs, let S be their intersection, so there are 2" possible sets S. (Some of them may
be empty.) Moreover, the sets S are a partition of Q. There are 22" sets that can be written as unions
of sets .S;, and these are a g-algebra containing each A;.

(b) For a countable set 2, define an equivalence relation x ~ y if there is no set including one but not the
other. This is an equivalence relation, so the equivalence classes are a partition of 2. Moreover, there
are at most countably many equivalence classes. We need to show that each equivalence class S is in
the o-algebra. To see this, for each = € Q\ S take a set A, such that S C A, but x ¢ A,. Such a set
exists since otherwise z is in the equivalence class. The countable intersection of the sets A, is .S.

Problem 2. Give an example of a measure space (2, F) and function p on F that is additive but not
o-additive, i.e. u(UA;) = > pu(A;) for a finite collection of disjoint A;, but not for some infinite collections.

Solution. There are many constructions based on the axiom of choice. One is to take a non-principle
ultra-filter on N: a collection of subsets closed to finite intersection, that contains exactly one of A, A¢ and
not any finite set. Then let P(A) =1 if A is in the ultra-filter.

Another is bsaed on the Banach limit: a linear extension of lim to all bounded sequences. For a set in
N, take P(A) = lim 1,,c 4. For any finite set this is 0, but for the countable union N it is 1.

A similar example on R is limn~1xu(A N [0,7]), where p is Lebesgue measure.

Problem 3. What is the o-algebra generated by all singletons {z} for = R?

Solution. Any countable set must be in F. Therefore let F be the o-algebra of sets that are countable
or co-countable (with A€ countable). This is easily a o-algebra which contains all singletons, so it is the
solution.

Problem 4. Show that the following collections generate the same o-algebra (Borel) on R:
Open intervals: {(a,b) : a < b}.

Closed intervals: {[a,b] : a < b}.

Half open intervals: {(a,b] : a < b}.

Half-lines: {[a,00) : a € R}.

Solution. Let F; for i = a,b, c,d be the resulting o algebra. The closed interval is [a,b] = N, (a —1/n,b+
1/n), so [a,b] € Fy. Therefore F, C Fy.

Similarly, (a,b] = Ula + 1/n,b] so (a,b] € F and so F, C Fp.

The other inclusions are similar. We can write [a, 00) as a union of closed intervals. To go from half lines
to finite intervals, take the difference [a, 00) \ [b, 00) = [a, b).

Problem 5. For a function f : [0,1] — R, let C be the set of points where f is continuous. Prove that C is
in the Borel o-algebra.



Solution. Let A; ., be the event that on the interval I, ,, = (
f differ by at most 1/m.

The function f is continuous at = € (0, 1), if and only if for every m there is some n and i so that z € I, ,,
and A;, holds. Therefore

1) " the minimal and maximal values of

K
n’ n

Cn(0,1)=J{Lin st Ainm}.

This is an intersection of unions of open intervals, so is a Borel set.
Adding 0 or 1 if f is continuous there keeps the set C' measurable.

Problem 6. A permutation o is called a derangement if Vi, o (i) # i. Consider a uniform random permu-
tation o of {1,...,n}, and let D,, be the event that o is a derangement. Use the inclusion-exclusion principle

to find a formula for the number of derangements, and show that P(D,,) —— e~ 1.
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Solution. Let A; be the event that o(i) = ¢, so that P(A4;) = 1/n. For any set of k indices, we have
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since there are (n — k)! permutations keeing these k indices fixed. There are (Z) possible such sets. By
inclusion-exclusion we have
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This converges to 1 — 1/e.

Problem 7. Consider the space = {0, 1}V of binary sequences (w;), with the product probability measure
P where P(w; = 1) = 1/2. Let R,, be the longest consecutive run of 1s in the first n terms. For example, if
w=(1,0,1,1,1,0,1,1,...) then Ry =2 and Rg = 3.

Prove that almost surely lim,, hfgﬁ =1.

Solution. Fix some ¢ > 0. We first bound the probability that R, > k = [(1 + ¢)logy n]. There are n
positions where a long run of 1s may start. (Actually n — k 4 1, which is slightly less.) Each is the start of
a k-run with probability 27%. We have 27% < 2n~ (1) (the factor of 2 comes from the rounding down). By
the union bound,

P(R, > k) < n2~F <n.2op~ (e = op—c,

If € > 1 then Borel-cantelly shows that R,, > k only happens finitely many times. To get this for any
e > 0, consider first just the sequence n; = [(1 + 6)!]. Along this subsequence, P(R,, > k) is summable,
so eventually R, < k for n = [(1 4+ 6)!]. To get the remaining n’s we use monotonicity of R, in n. For
n € [ni,nit1] we have R, < R, ,, which implies

Ry < (14¢)logynivr < (1 +¢)[logy(1 + ) + log, n].

By taking ¢ small, this is less than (1 + 2¢) log, n.
Therefore eventually R, < (1 + 2¢)log, n. Since € was arbitrary, this gives the upper bound.

The lower bound is easier: Let € > 0 and k = (1 — €)logy, n. Split 1...n into n/k segments of length
k. Each is all ones with probability 2=* independently, so the probability that none of them are all ones is
(1 —27F)"/k. Therefore
P(R, < k)< (1—27F)"* < (1 —ns"t)yn/k,

This is summable, so by Borel-Cantelli eventually R,, > (1 — ¢) log, n.



