Problem 1. A σ -algebra \mathcal{F} is said to be generated by a partition if there is some partition $\mathcal{B} = \{B_i\}$ of Ω so that every set $A \in \mathcal{F}$ is a union of some parts in the partition, and every such union is in \mathcal{F} . - (a) If $\mathcal{A} \subset 2^{\Omega}$ is finite, show that the generated σ -algebra has $|\sigma(\mathcal{A})| < 2^{2^{|\mathcal{A}|}}$. - (b) Show that any σ -algebra on a countable set Ω is generated by a partition of Ω . ## Solution. - (a) Let $\mathcal{A} = \{A_1, \dots, A_n\}$ and let each B_i be either A_i or A_i^c . There are 2^n choices for the B_i 's. For each such sequence of B_i , let S_i be their intersection, so there are S_i possible sets S_i . (Some of them may be empty.) Moreover, the sets S_i are a partition of S_i . There are S_i sets that can be written as unions of sets S_i , and these are a S_i -algebra containing each S_i . - (b) For a countable set Ω , define an equivalence relation $x \sim y$ if there is no set including one but not the other. This is an equivalence relation, so the equivalence classes are a partition of Ω . Moreover, there are at most countably many equivalence classes. We need to show that each equivalence class S is in the σ -algebra. To see this, for each $x \in \Omega \setminus S$ take a set A_x such that $S \subset A_x$ but $x \notin A_x$. Such a set exists since otherwise x is in the equivalence class. The countable intersection of the sets A_x is S. **Problem 2.** Give an example of a measure space (Ω, \mathcal{F}) and function μ on \mathcal{F} that is additive but not σ -additive, i.e. $\mu(\cup A_i) = \sum \mu(A_i)$ for a finite collection of disjoint A_i , but not for some infinite collections. **Solution.** There are many constructions based on the axiom of choice. One is to take a non-principle ultra-filter on \mathbb{N} : a collection of subsets closed to finite intersection, that contains exactly one of A, A^c and not any finite set. Then let $\mathbb{P}(A) = 1$ if A is in the ultra-filter. Another is based on the Banach limit: a linear extension of lim to all bounded sequences. For a set in \mathbb{N} , take $\mathbb{P}(A) = \lim_{n \in A}$. For any finite set this is 0, but for the countable union \mathbb{N} it is 1. A similar example on \mathbb{R} is $\lim n^{-1}\mu(A\cap[0,n])$, where μ is Lebesgue measure. **Problem 3.** What is the σ -algebra generated by all singletons $\{x\}$ for $\Omega = \mathbb{R}$? **Solution.** Any countable set must be in \mathcal{F} . Therefore let \mathcal{F} be the σ -algebra of sets that are countable or co-countable (with A^c countable). This is easily a σ -algebra which contains all singletons, so it is the solution. **Problem 4.** Show that the following collections generate the same σ -algebra (Borel) on \mathbb{R} : - Open intervals: $\{(a,b): a < b\}$. - Closed intervals: $\{[a,b]: a < b\}$. - Half open intervals: $\{(a, b] : a < b\}$. - Half-lines: $\{[a, \infty) : a \in \mathbb{R}\}.$ **Solution.** Let \mathcal{F}_i for i=a,b,c,d be the resulting σ algebra. The closed interval is $[a,b] = \bigcap_n (a-1/n,b+1/n)$, so $[a,b] \in \mathcal{F}_a$. Therefore $\mathcal{F}_b \subset \mathcal{F}_a$. Similarly, $(a, b] = \bigcup [a + 1/n, b]$ so $(a, b] \in \mathcal{F}_b$ and so $\mathcal{F}_c \subset \mathcal{F}_b$. The other inclusions are similar. We can write $[a, \infty)$ as a union of closed intervals. To go from half lines to finite intervals, take the difference $[a, \infty) \setminus [b, \infty) = [a, b)$. **Problem 5.** For a function $f:[0,1] \to \mathbb{R}$, let C be the set of points where f is continuous. Prove that C is in the Borel σ -algebra. **Solution.** Let $A_{i,n,m}$ be the event that on the interval $I_{i,n} = (\frac{i}{n}, \frac{i+1}{n})$, the minimal and maximal values of f differ by at most 1/m. The function f is continuous at $x \in (0,1)$, if and only if for every m there is some n and i so that $x \in I_{i,n}$ and $A_{i,n}$ holds. Therefore $$C \cap (0,1) = \bigcap_{m} \bigcup \{I_{i,n} \text{ s.t. } A_{i,n,m}\}.$$ This is an intersection of unions of open intervals, so is a Borel set. Adding 0 or 1 if f is continuous there keeps the set C measurable. **Problem 6.** A permutation σ is called a **derangement** if $\forall i, \sigma(i) \neq i$. Consider a uniform random permutation σ of $\{1, \ldots, n\}$, and let D_n be the event that σ is a derangement. Use the inclusion-exclusion principle to find a formula for the number of derangements, and show that $\mathbb{P}(D_n) \xrightarrow[n \to \infty]{} e^{-1}$. **Solution.** Let A_i be the event that $\sigma(i) = i$, so that $\mathbb{P}(A_i) = 1/n$. For any set of k indices, we have $$\mathbb{P}(A_{i1} \cap \dots \cap A_{i_k}) = \frac{(n-k)!}{n!},$$ since there are (n-k)! permutations keeing these k indices fixed. There are $\binom{n}{k}$ possible such sets. By inclusion-exclusion we have $$\mathbb{P}(\cup_i A_i) = \sum_{k=1}^n (-1)^{k+1} \binom{n}{k} \frac{(n-k)!}{n!} = \sum_{k=1}^n \frac{(-1)^{k+1}}{1!} = \frac{1}{-2!} + \frac{1}{3!} \cdots \pm \frac{1}{n!}.$$ This converges to 1 - 1/e. **Problem 7.** Consider the space $\Omega = \{0,1\}^{\mathbb{N}}$ of binary sequences (ω_i) , with the product probability measure \mathbb{P} where $\mathbb{P}(\omega_i = 1) = 1/2$. Let R_n be the longest consecutive run of 1s in the first n terms. For example, if $\omega = (1,0,1,1,1,0,1,1,\ldots)$ then $R_4 = 2$ and $R_8 = 3$. Prove that almost surely $\lim_{n\to\infty} \frac{R_n}{\log_2 n} = 1$. **Solution.** Fix some $\varepsilon > 0$. We first bound the probability that $R_n \ge k = [(1+\varepsilon)\log_2 n]$. There are n positions where a long run of 1s may start. (Actually n-k+1, which is slightly less.) Each is the start of a k-run with probability 2^{-k} . We have $2^{-k} \le 2n^{-(1+\varepsilon)}$ (the factor of 2 comes from the rounding down). By the union bound, $$\mathbb{P}(R_n \ge k) \le n2^{-k} \le n \cdot 2n^{-(1+\varepsilon)} = 2n^{-\varepsilon}.$$ If $\varepsilon > 1$ then Borel-cantelly shows that $R_n > k$ only happens finitely many times. To get this for any $\varepsilon > 0$, consider first just the sequence $n_i = [(1+\delta)^i]$. Along this subsequence, $\mathbb{P}(R_n \geq k)$ is summable, so eventually $R_n \leq k$ for $n = [(1+\delta)^i]$. To get the remaining n's we use monotonicity of R_n in n. For $n \in [n_i, n_{i+1}]$ we have $R_n \leq R_{n_{i+1}}$, which implies $$R_n \le (1+\varepsilon)\log_2 n_{i+1} \le (1+\varepsilon)[\log_2(1+\delta) + \log_2 n].$$ By taking δ small, this is less than $(1+2\varepsilon)\log_2 n$. Therefore eventually $R_n \leq (1+2\varepsilon)\log_2 n$. Since ε was arbitrary, this gives the upper bound. The lower bound is easier: Let $\varepsilon > 0$ and $k = (1 - \varepsilon) \log_2 n$. Split $1 \dots n$ into n/k segments of length k. Each is all ones with probability 2^{-k} independently, so the probability that none of them are all ones is $(1 - 2^{-k})^{n/k}$. Therefore $$\mathbb{P}(R_n \le k) \le (1 - 2^{-k})^{n/k} \le (1 - n^{\varepsilon - 1})^{n/k}.$$ This is summable, so by Borel-Cantelli eventually $R_n \ge (1 - \varepsilon) \log_2 n$.