Problem 1. (a) Find *n* events so that any n-1 are independent but all together are not.

- (b) Show that if these events are in some probability space Ω then Ω has at least 2^{n-1} points.
- **Problem 2.** (a) Let $(A_i)_{i \leq n}$ be independent events with probability 1/n each. Find the probability that exactly k of them occur, and the limit as $n \to \infty$.
 - (b) Consider a random uniform permutation $\sigma \in S_n$. What is the probability that it has exactly k fixed points? What is the limit as $n \to \infty$?
 - (c) Is there a direct connection between parts a and b?

Problem 3. Let A_n be independent events with $\mathbb{P}(A_n) \neq 1$ for every n. Prove that $\mathbb{P}(\cup A_n) = 1$ if and only if $\mathbb{P}(A_n \text{ i.o.}) = 1$.

Definition 1. The *m*-ary tree is a graph with a single vertex on level 0. Each vertex on level k has m edges to vertices on level k + 1, all distinct (so there are m^k vertices on level k).

Problem 4. Consider percolation on the *m*-ary tree, where each edge is open independently with probability *p*. Let C_0 be the cluster of the root vertex. Prove that if p < 1/m then $\mathbb{P}(|C_0| = \infty) = 0$. (*) Prove the same also for p = 1/m.

***Problem 5.** Construct a graph with $0 < p_c < 1$ where $\theta(p_c) > 0$. Prove your claims. (There are many different solutions.)

Problem 6. If X_n are independent random variables on some probability space, show that $\mathbb{P}(\sum X_n \text{ converges}) \in \{0,1\}$.

Problem 7. Let X_1, X_2, \ldots be i.i.d. (independent and identically distributed) random variables with standard exponential distribution:

$$\mathbb{P}(X_i > t) = e^{-t} \qquad \text{for } t > 0.$$

For any a > 0 compute $\mathbb{P}(X_n > a \log n \text{ i.o.})$. Deduce that $\limsup \frac{X_n}{\log n} = 1$ a.s.

Problem 8. Show that for any sequence of random variables X_n there is a sequence of constants $a_n > 0$ so that $a_n X_n \to 0$ a.s.