Problem 1. (a) Find n events so that any $n-1$ are independent but all together are not.
(b) Show that if these events are in some probability space Ω then Ω has at least 2^{n-1} points.

Problem 2. (a) Let $\left(A_{i}\right)_{i \leq n}$ be independent events with probability $1 / n$ each. Find the probability that exactly k of them occur, and the limit as $n \rightarrow \infty$.
(b) Consider a random uniform permutation $\sigma \in S_{n}$. What is the probability that it has exactly k fixed points? What is the limit as $n \rightarrow \infty$?
(c) Is there a direct connection between parts a and b?

Problem 3. Let A_{n} be independent events with $\mathbb{P}\left(A_{n}\right) \neq 1$ for every n. Prove that $\mathbb{P}\left(\cup A_{n}\right)=1$ if and only if $\mathbb{P}\left(A_{n}\right.$ i.o. $)=1$.

Definition 1. The m-ary tree is a graph with a single vertex on level 0 . Each vertex on level k has m edges to vertices on level $k+1$, all distinct (so there are m^{k} vertices on level k).

Problem 4. Consider percolation on the m-ary tree, where each edge is open independently with probability p. Let C_{0} be the cluster of the root vertex. Prove that if $p<1 / m$ then $\mathbb{P}\left(\left|C_{0}\right|=\infty\right)=0$.
$\left.{ }^{*}\right)$ Prove the same also for $p=1 / m$.
*Problem 5. Construct a graph with $0<p_{c}<1$ where $\theta\left(p_{c}\right)>0$. Prove your claims. (There are many different solutions.)

Problem 6. If X_{n} are independent random variables on some probability space, show that $\mathbb{P}\left(\sum X_{n}\right.$ converges $) \in$ $\{0,1\}$.

Problem 7. Let X_{1}, X_{2}, \ldots be i.i.d. (independent and identically distributed) random variables with standard exponential distribution:

$$
\mathbb{P}\left(X_{i}>t\right)=e^{-t} \quad \text { for } t>0
$$

For any $a>0$ compute $\mathbb{P}\left(X_{n}>a \log n\right.$ i.o. $)$. Deduce that $\lim \sup \frac{X_{n}}{\log n}=1$ a.s.
Problem 8. Show that for any sequence of random variables X_{n} there is a sequence of constants $a_{n}>0$ so that $a_{n} X_{n} \rightarrow 0$ a.s.

