
MATH 418/544, Assignment 1 solutions

Problem 1. (a) Find n events so that any n− 1 are independent but all together are not.
(b) Show that if these events are in some probability space Ω then Ω has at least 2n−1 points.

Solution.
(a) Consider n − 1 independent fair coins. Let n − 1 of the events be that coin i is heads. Let the last

event be that the total number of heads is odd. It is easy to verify that any n − 1 are independent,
but all are not.
This is equivalent to the probability space where P is the uniform distribution on the 2n−1 vectors in
{0, 1}n with even sum, and the indicator of Ai is coordinate i.

(b) Intersections of Ai or Ac
i for i = 1, . . . , n − 1 gives 2n−1 disjoint events. If none of the events has

probability {0, 1}, then these events have non-zero probability, and so |Ω| ≥ 2n−1.
If some Ai has probability 0 or 1, then the other n − 1 events are independent, but then Ai is also
independent of all of them. (Exercise: a trivial event is independent of everything), so all n events are
independent, which we know is not the case.

Problem 2. (a) Let (Ai)i≤n be independent events with probability 1/n each. Find the probability that
exactly k of them occur, and the limit as n → ∞.

(b) Consider a random uniform permutation σ ∈ Sn. What is the probability that it has exactly k fixed
points? What is the limit as n → ∞?

(c) Is there a direct connection between parts a and b?

(a) The probability is
(
n
k

)
(1/n)k(1− 1/n)n−k. For k fixed, as n → ∞ this tends to e−1/k!.

(b) By inclusion exclusion, the probability a permutation has no fixed point is pn = (1− 1+ 1/2!− 1/3! +

· · ·±1/n!) ∼ 1/e. The probability that k specific points are the fixed points is (n−k)!
n! pn−k. Multiplying

by
(
n
k

)
possibilities gives pn−k

k! , which also tends to e−1/k!.
(c) In both cases there are independent or almost independent events with total probability 1. The number

of such events that occur converges in many such cases to Poisson, and is part of a general theme of
Poisson approximations. This is an analogue of the CLT for rare events.

Problem 3. Let An be independent events with P(An) ̸= 1 for every n. Prove that P(∪An) = 1 if and only
if P(An i.o.) = 1.

Solution. Clearly An i.o. implies that some of the events occur.
To prove the converse, assume P(An i.o.) = 0 (it must be 0 or 1 as a tail event). By Borel-Cantelli, this

implies
∑

P(An) < ∞. We can find some N so that
∑

n>N P(An) < 1/2. By independence,

P (∩Ac
n) =

∏
n≤N

P(Ac
n) · P (∩n>NAc

n) > 0.

The product is positive since P(An) < 1. The last term is at least 1/2 by a union bound:

P (∪n>NAn) ≤
∑
n>N

P(An) < 1/2.

Definition 1. The m-ary tree is a graph with a single vertex on level 0. Each vertex on level k has m edges
to vertices on level k + 1, all distinct (so there are mk vertices on level k).

Problem 4. Consider percolation on the m-ary tree, where each edge is open independently with probability
p. Let C0 be the cluster of the root vertex. Prove that if p < 1/m then P(|C0| = ∞) = 0.
(*) Prove the same also for p = 1/m.

1



Solution. Each vertex on level n is connected to 0 with probability pn. Thus the expected number of such
vertices connected is (pm)n. If p < 1/m then by a union bound, P(0 → ∞) < (pm)n for every n so must be
0.

For the bonus: Let θ = θ(p) = P(0 → ∞). Then (1 − θ) = (1 − pθ)m, since the probability of being
connected through each child is pθ and these are independent. If p ≤ 1/m the only solution to this in [0, 1]
is θ = 0, since (1− x)m ≥ 1−mx with equality only for x = 0.

*Problem 5. Construct a graph with 0 < pc < 1 where θ(pc) > 0. Prove your claims. (There are many
different solutions.)

Solution. See some problems in the next assignment.

Problem 6. IfXn are independent random variables on some probability space, show that P(
∑

Xn converges) ∈
{0, 1}.

Solution. Convergence does not depend on the first n variables, so is a tail event. The claim follows from
the Kolmogorov 0-1 law.

Problem 7. Let X1, X2, . . . be i.i.d. (independent and identically distributed) random variables with stan-
dard exponential distribution:

P(Xi > t) = e−t for t > 0.

For any a > 0 compute P(Xn > a log n i.o.). Deduce that lim sup Xn

logn = 1 a.s.

Solution. Fix a > 1, and note that P(Xn > a log n) = e−a logn is summable. Therefore eventually
Xn ≤ a log n. This implies lim sup Xn

logn ≤ a a.s., and since a > 1 was arbitrary, the lim sup is at most 1.

For the lower bound, fix a < 1, and note that P(Xn > a log n) = e−a logn is not summable. Therefore
Xn ≥ a log n infinitely often. This implies lim sup Xn

logn ≥ a a.s., and since a < 1 was arbitrary, the lim sup is
exactly 1.

Problem 8. Show that for any sequence of random variables Xn there is a sequence of constants an > 0 so
that anXn → 0 a.s.

Solution. For a random variable X and any ε > 0 we can find M so that P(X ≥ M) ≤ ε. This is since
P(X ≤ t) = F (t) → 1 as t → ∞.

For Xn, take some Mn so that P(Xn ≤ Mn) ≤ e−n (or any summable sequence of probabilities). By
Borel-Cantelli, a.s. eventually Xn ≤ Mn, and therefore Xn/(nMn) → 0 a.s.
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