Problem 1. Consider percolation on a graph with vertex set \mathbb{N} with m_{n} parallel edges between n and $n+1$.
(a) Determine a necessary and sufficient condition on the sequence $\left(m_{n}\right)$ for which there is an infinite connected cluster.
(b) Use this to find a sequence so that $p_{c}=1 / 2$ and at $1 / 2$ there is a.s. an infinite cluster.

Problem 2. Let X_{1}, X_{2}, \ldots be i.i.d. random variables with standard normal distribution, and $M_{n}=$ $\max \left(X_{1}, \ldots, X_{n}\right)$.
(a) Find $\lim \sup \frac{X_{n}}{\sqrt{\log n}}$.
(b) Show that $M_{n} / \sqrt{\log n}$ converges a.s. to the same value. (Hint: You need some estimates on the tail of the normal distribution.)

Problem 3. Show that for any random variable with finite mean, $t \mathbb{P}(X>t) \rightarrow 0$ as $t \rightarrow \infty$. Moreover, if $\mathbb{E}|X|^{a}<\infty$ then $t^{a} \mathbb{P}(X>t) \rightarrow 0$.

Problem 4. Let X_{i} be i.i.d. random variables, and $S_{n}=\sum_{i \leq n} X_{i}$.
(a) Show that if $\mathbb{E} X_{i}=+\infty$ then $\frac{1}{n} S_{n} \rightarrow \infty$ a.s.
(b) Show that if $\mathbb{E} X_{i}$ is not defined (positive and negative parts both infinite) then a.s. $\lim \sup \frac{1}{n} S_{n}=\infty$ and $\lim \inf \frac{1}{n} S_{n}=-\infty$.
Definition 1. A random variable has density f if it's distribution function is $F(t)=\int_{-\infty}^{t} f(x) d x$. (In that case, $f(x)=F^{\prime}(x)$.) A random variable with a density is called continuous.

Problem 5. If X is a continuous random variable with distribution function F and density $f=F^{\prime}$, show (from the definition of expectation in class) that $\mathbb{E} X=\int_{-\infty} x f(x) d x$.

Definition 2. A pair of random variables X, Y has join density function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ if $\mathbb{P}((X, Y) \in A)=$ $\iint_{A} f(x, y) d x d y$.

Problem 6. Suppose continuous random variables X_{1}, X_{2} have densities f_{1}, f_{2} respectively. Prove from the definition of independence that they are independent if and only if they have a joint density of the form $f(x, y)=f_{1}(x) f_{2}(y)$.

Problem 7. Let X, Y are two independent random variables. For an angle θ, the rotation by theta is the pair of random variables

$$
X^{\prime}=X \cos \theta+Y \sin \theta, \quad Y^{\prime}=-X \sin \theta+Y \cos \theta
$$

Find a joint distribution of independent variables X, Y, with $\mathbb{P}(X=0)<1$ so that for any θ the rotation $\left(X^{\prime}, Y^{\prime}\right)$ has the same (joint) distribution as (X, Y).
Bonus: Find (with proof) all such distributions.
*Problem 8. (a) For given $p \in(0,1)$, construct a tree where $p_{c}=p$.
(b) Find a tree where $p_{c}=p$ and $\theta\left(p_{c}\right)>0$.
(Hint: if a vertex in level n has d_{n} children, write recursions for the probability that 0 is connected to level n, and analyse these.

