MATH 418/544, Assignment 2 solutions

Problem 1. Consider percolation on a graph with vertex set N with m,, parallel edges between n and n+ 1.
(a) Determine a necessary and sufficient condition on the sequence (m,) for which there is an infinite
connected cluster.
(b) Use this to find a sequence so that p. = 1/2 and at 1/2 there is a.s. an infinite cluster.

Solution. Let A, be the event that at least one edge between m and n + 1 is open. Then an infinite
cluster exists if and only if A,, occurs eventually (efor all n > ng). By Borel-Cantelli, this is equivalent to
> P(AS) < 0o. We have P,(AS) = (1 — p)™n, so the condition for percolation is ) (1 — p)™" < co.

Take m, so that 2™ = nlog?n. (Here =< means equal up to some absolute constants.) Then at p = 1/2
there is percolation since Y m < 00. This means m, ~ logn/log2. For any smaller p < 1/2 we have

(1 —p)mn = (2mn)~los(1=p)/108(2) tends to 0 like a smaller power of n, so 3. (1 — p)™» = oo and there is no
percolation.
Note: the condition needed here is that g,, = 1/2™» is summable, but for any ¢ > 0 we have 3" ¢} =% = co.

Problem 2. Let X, X5,... be i.i.d. random variables with standard normal distribution, and M, =
max(Xy,..., Xn).

; im s Xn
(a) Find limsup TR
(b) Show that M,,/+/logn converges a.s. to the same value. (Hint: You need some estimates on the tail of

the normal distribution.)

Solution. Let f(z) = \/%e*ﬁﬂ be the density of X;.
Lemma 1. Fort > 1 we have that 5 f(t) <P(X >t) < 2 f(t).

Proof. For x > t, the density f(z) is above the tangent line at ¢, and below

\/%e_“/? Integrating over

[t,00) gives the claim. O
e Tt follows from Borel-Cantelli that lim sup X,,/v/logn = v/2 a.s.: We have 3" P(X,, > ay/logn < oo for

a > /2 and the sum is infinite for a < v/2.
o To get te result for M, let Y; = X;/+/logi. Fix some k, and note that

M _ X1 Xk y, Y,
max ey , S
Viegn — Vlogn Viogn h

Now, the first k& terms tend to 0, and limsup Y;, = v/2, so limsup M,, < v/2.
For a matching lower bound, use that for large n, M,,/v/logn > (1 — ) max (Yn/g, . ,Yn). An easy

application of Borel-Cantelli gives lim inf M,, /v/Togn > (v/2 — ¢).

Problem 3. Show that for any random variable with finite mean, tP(X > ¢) — 0 as t — oo. Moreover, if
E|X|* < oo then t*P(X >t) — 0.

Solution. Let Y; = X1x~;. Then Y; — 0, and ¥; < |X|*. By dominated convergence EY; — 0. However,
EY; > t*P(X > t), giving the claim.

Problem 4. Let X; be i.i.d. random variables, and S,, =)
(a) Show that if EX; = +oco then 15, — oo a.s.
(b) Show that if EX; is not defined (positive and negative parts both infinite) then a.s. limsup 25, = oo
and lim inf %Sn = —00.

X;.

i<n



Solution.
e For any M > 0, let Y; = X; A M. Then EY is finite and tends to infinity as M — oco. Thus for any
K we can find M so that EY > K. Let T, = Y., Y;. By the LLN, T,,/n — EY, and so T;,/n > K
eventually. The claim follows since S,, > T,. B
e This is wrong as written. The limsup S, /n is a tail random variable: not affected by changing any
finite number of X;s. By Kolmogorov, limsup S,,/n must be trivial (always take the same value).
To show that the limsup S, /n cannot be se cannot be any finite value,

Definition 1. A random variable has density f if it’s distribution function is F(t) = fioo f(x)dz. (In that
case, f(z) = F'(z).) A random variable with a density is called continuous.

Problem 5. If X is a continuous random variable with distribution function F' and density f = F’, show
(from the definition of expectation in class) that EX = [*_ af(z)dx.

Solution. For X > 0, take a simple random variable Y,, = [nX]/n, where [z] is the integer part (that is,
X rounded down to a multiple of 1/n). We have by definition

EY, =3 %P(z’ <nX <itl)= /Ooo[nx]/nf(x)dx.

This is a Riemann sum for the integral, and as n — oo this approaches fo xf(x)d.
Any other simple variable Z < X satisfies Z <Y + 1/n, so the expectation of X cannot be larger.
For non-positive X, the density of X is f on Ry, and of X~ it is f(—x), so we can write the integral

as fi)oo —l—fooo.

Definition 2. A pair of random variables X,Y has join density function f : R? — R if P((X,Y) € A) =
Jfa f(z,y) da dy.

Problem 6. Suppose continuous random variables X1, X5 have densities f1, fo respectively. Prove from the
definition of independence that they are independent if and only if they have a joint density of the form

f(z,y) = fi(x) f2(y)-

Solution. For intervals Iy, I, we have P(Vi, X; € I;) = [[, f(x,y)dzdy. If f factors, then this is a product
of P(X; € I;), and so the events {X; € I;} are independent. Since this is true for intervals, the independence
extends to arbitrary measurable sets A;.

Conversely, if the variables are independent, let I; = [x;, z; +¢]. Then from the definition of joint density
P(Vi, X; € I;) ~ €2 f(x1,22). On the other hand by independence this is close to e f1(x1) - € fa(22). Equating
the two gives the factorization of f.

Problem 7. Let X,Y are two independent random variables. For an angle 6, the rotation by theta is the
pair of random variables

X' = Xcosf +Ysind, Y' = —Xsinf +Y cosf.
Find a joint distribution of independent variables X,Y, with P(X = 0) < 1 so that for any 6 the rotation

(X’,Y’) has the same (joint) distribution as (X,Y).
Bonus: Find (with proof) all such distributions.



Solution. ii.d. standard Gaussian X,Y have density f(z,y) = %6_(12—“/2)/2. This is rotationally sym-
metric, so is invariant to rotations.

If the variables have finite variance o2, the following shows uniqueness: Let Sy with N = 2" be a sum of
2" i.i.d. copies of X. We have that (X + X’)/v/2 has the same law as X, so Sy has the same distribution as
Vv2X. By induction, Sy has the same law as v N X, and therefore Sy / VN has the same law as X. However,
the CLT implies Sy /v N — N(0,02), so X must be Gaussian.

Without assuming finite variance the proof is more delicate.

*Problem 8. (a) For given p € (0,1), construct a tree where p. = p.
(b) Find a tree where p. = p and 6(p.) > 0.
(Hint: if a vertex in level n has d, children, write recursions for the probability that 0 is connected to
level n, and analyse these.

Solution. There are many methods. The common idea is to switch between degrees d and d’ in some way.
For (a), if vertices have random degree with expected degree 1/p, then p. = p since the percolation is a
Bienayme-Galton-Watson tree.

For (b) you need to carefully switch between levels with degree d and d’ so that 6(p) > 0. For example,
if p=1/d then take d = d + 1, and have very fey levels with degree d’. The analysis is rather delicate.



