
MATH 418/544, Assignment 2 solutions

Problem 1. Consider percolation on a graph with vertex set N with mn parallel edges between n and n+1.
(a) Determine a necessary and sufficient condition on the sequence (mn) for which there is an infinite

connected cluster.
(b) Use this to find a sequence so that pc = 1/2 and at 1/2 there is a.s. an infinite cluster.

Solution. Let An be the event that at least one edge between n and n + 1 is open. Then an infinite
cluster exists if and only if An occurs eventually (efor all n > n0). By Borel-Cantelli, this is equivalent to∑

P(Ac
n) < ∞. We have Pp(A

c
n) = (1− p)mn , so the condition for percolation is

∑
(1− p)mn < ∞.

Take mn so that 2mn ≍ n log2 n. (Here ≍ means equal up to some absolute constants.) Then at p = 1/2
there is percolation since

∑
1

n log2 n
< ∞. This means mn ∼ log n/ log 2. For any smaller p < 1/2 we have

(1− p)mn = (2mn)− log(1−p)/ log(2) tends to 0 like a smaller power of n, so
∑

(1− p)mn = ∞ and there is no
percolation.

Note: the condition needed here is that qn = 1/2mn is summable, but for any ε > 0 we have
∑

q1−ε
n = ∞.

Problem 2. Let X1, X2, . . . be i.i.d. random variables with standard normal distribution, and Mn =
max(X1, . . . , Xn).
(a) Find lim sup Xn√

logn
.

(b) Show that Mn/
√
log n converges a.s. to the same value. (Hint: You need some estimates on the tail of

the normal distribution.)

Solution. Let f(x) = 1√
2π

e−x2/2 be the density of Xi.

Lemma 1. For t > 1 we have that 1
2tf(t) ≤ P(X > t) ≤ 2

t f(t).

Proof. For x > t, the density f(x) is above the tangent line at t, and below 1√
2π

e−xt/2. Integrating over

[t,∞) gives the claim.

� It follows from Borel-Cantelli that lim supXn/
√
log n =

√
2 a.s.: We have

∑
P(Xn > a

√
log n < ∞ for

a >
√
2 and the sum is infinite for a <

√
2.

� To get te result for Mn, let Yi = Xi/
√
log i. Fix some k, and note that

Mn√
log n

≤ max

(
X1√
log n

, . . . ,
Xk√
log n

, Yk+1, . . . , Yn

)
.

Now, the first k terms tend to 0, and lim supYn =
√
2, so lim supMn ≤

√
2.

For a matching lower bound, use that for large n, Mn/
√
log n ≥ (1 − ε)max

(
Yn/2, . . . , Yn

)
. An easy

application of Borel-Cantelli gives lim infMn/
√
log n ≥ (

√
2− ε).

Problem 3. Show that for any random variable with finite mean, tP(X > t) → 0 as t → ∞. Moreover, if
E|X|a < ∞ then taP(X > t) → 0.

Solution. Let Yt = X1X>t. Then Yt → 0, and Yt ≤ |X|a. By dominated convergence EYt → 0. However,
EYt ≥ taP(X > t), giving the claim.

Problem 4. Let Xi be i.i.d. random variables, and Sn =
∑

i≤n Xi.

(a) Show that if EXi = +∞ then 1
nSn → ∞ a.s.

(b) Show that if EXi is not defined (positive and negative parts both infinite) then a.s. lim sup 1
nSn = ∞

and lim inf 1
nSn = −∞.
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Solution.
� For any M > 0, let Yi = Xi ∧M . Then EY is finite and tends to infinity as M → ∞. Thus for any
K we can find M so that EY > K. Let Tn =

∑
i≤n Yi. By the LLN, Tn/n → EY , and so Tn/n > K

eventually. The claim follows since Sn ≥ Tn.
� This is wrong as written. The lim supSn/n is a tail random variable: not affected by changing any
finite number of Xis. By Kolmogorov, lim supSn/n must be trivial (always take the same value).
To show that the lim supSn/n cannot be se cannot be any finite value,

Definition 1. A random variable has density f if it’s distribution function is F (t) =
∫ t

−∞ f(x)dx. (In that
case, f(x) = F ′(x).) A random variable with a density is called continuous.

Problem 5. If X is a continuous random variable with distribution function F and density f = F ′, show
(from the definition of expectation in class) that EX =

∫∞
−∞ xf(x)dx.

Solution. For X > 0, take a simple random variable Yn = [nX]/n, where [x] is the integer part (that is,
X rounded down to a multiple of 1/n). We have by definition

EYn =
∑
i

i

n
P(i ≤ nX < i+ 1) =

∫ ∞

0

[nx]/nf(x)dx.

This is a Riemann sum for the integral, and as n → ∞ this approaches
∫
0
xf(x)dx.

Any other simple variable Z ≤ X satisfies Z ≤ Y + 1/n, so the expectation of X cannot be larger.
For non-positive X, the density of X+ is f on R+, and of X− it is f(−x), so we can write the integral

as
∫ 0

−∞ +
∫∞
0

.

Definition 2. A pair of random variables X,Y has join density function f : R2 → R if P((X,Y ) ∈ A) =∫∫
A
f(x, y) dx dy.

Problem 6. Suppose continuous random variables X1, X2 have densities f1, f2 respectively. Prove from the
definition of independence that they are independent if and only if they have a joint density of the form
f(x, y) = f1(x)f2(y).

Solution. For intervals I1, I2, we have P(∀i,Xi ∈ Ii) =
∫∫

A
f(x, y) dx dy. If f factors, then this is a product

of P(Xi ∈ Ii), and so the events {Xi ∈ Ii} are independent. Since this is true for intervals, the independence
extends to arbitrary measurable sets Ai.

Conversely, if the variables are independent, let Ii = [xi, xi+ ε]. Then from the definition of joint density
P(∀i,Xi ∈ Ii) ∼ ε2f(x1, x2). On the other hand by independence this is close to εf1(x1) · εf2(x2). Equating
the two gives the factorization of f .

Problem 7. Let X,Y are two independent random variables. For an angle θ, the rotation by theta is the
pair of random variables

X ′ = X cos θ + Y sin θ, Y ′ = −X sin θ + Y cos θ.

Find a joint distribution of independent variables X,Y , with P(X = 0) < 1 so that for any θ the rotation
(X ′, Y ′) has the same (joint) distribution as (X,Y ).
Bonus: Find (with proof) all such distributions.
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Solution. i.i.d. standard Gaussian X,Y have density f(x, y) = 1
2π e

−(x2+y2)/2. This is rotationally sym-
metric, so is invariant to rotations.

If the variables have finite variance σ2, the following shows uniqueness: Let SN with N = 2n be a sum of
2n i.i.d. copies of X. We have that (X +X ′)/

√
2 has the same law as X, so S2 has the same distribution as√

2X. By induction, SN has the same law as
√
NX, and therefore SN/

√
N has the same law as X. However,

the CLT implies SN/
√
N → N(0, σ2), so X must be Gaussian.

Without assuming finite variance the proof is more delicate.

*Problem 8. (a) For given p ∈ (0, 1), construct a tree where pc = p.
(b) Find a tree where pc = p and θ(pc) > 0.
(Hint: if a vertex in level n has dn children, write recursions for the probability that 0 is connected to

level n, and analyse these.

Solution. There are many methods. The common idea is to switch between degrees d and d′ in some way.
For (a), if vertices have random degree with expected degree 1/p, then pc = p since the percolation is a
Bienayme-Galton-Watson tree.

For (b) you need to carefully switch between levels with degree d and d′ so that θ(p) > 0. For example,
if p = 1/d then take d′ = d+ 1, and have very fey levels with degree d′. The analysis is rather delicate.
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