Problem 1. Consider percolation on a graph with vertex set \mathbb{N} with m_{n} parallel edges between n and $n+1$.
(a) Determine a necessary and sufficient condition on the sequence $\left(m_{n}\right)$ for which there is an infinite connected cluster.
(b) Use this to find a sequence so that $p_{c}=1 / 2$ and at $1 / 2$ there is a.s. an infinite cluster.

Solution. Let A_{n} be the event that at least one edge between n and $n+1$ is open. Then an infinite cluster exists if and only if A_{n} occurs eventually (efor all $n>n_{0}$). By Borel-Cantelli, this is equivalent to $\sum \mathbb{P}\left(A_{n}^{c}\right)<\infty$. We have $\mathbb{P}_{p}\left(A_{n}^{c}\right)=(1-p)^{m_{n}}$, so the condition for percolation is $\sum(1-p)^{m_{n}}<\infty$.

Take m_{n} so that $2^{m_{n}} \asymp n \log ^{2} n$. (Here \asymp means equal up to some absolute constants.) Then at $p=1 / 2$ there is percolation since $\sum \frac{1}{n \log ^{2} n}<\infty$. This means $m_{n} \sim \log n / \log 2$. For any smaller $p<1 / 2$ we have $(1-p)^{m_{n}}=\left(2^{m_{n}}\right)^{-\log (1-p) / \log (2)}$ tends to 0 like a smaller power of n, so $\sum(1-p)^{m_{n}}=\infty$ and there is no percolation.

Note: the condition needed here is that $q_{n}=1 / 2^{m_{n}}$ is summable, but for any $\varepsilon>0$ we have $\sum q_{n}^{1-\varepsilon}=\infty$.
Problem 2. Let X_{1}, X_{2}, \ldots be i.i.d. random variables with standard normal distribution, and $M_{n}=$ $\max \left(X_{1}, \ldots, X_{n}\right)$.
(a) Find $\lim \sup \frac{X_{n}}{\sqrt{\log n}}$.
(b) Show that $M_{n} / \sqrt{\log n}$ converges a.s. to the same value. (Hint: You need some estimates on the tail of the normal distribution.)

Solution. Let $f(x)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2}$ be the density of X_{i}.
Lemma 1. For $t>1$ we have that $\frac{1}{2 t} f(t) \leq \mathbb{P}(X>t) \leq \frac{2}{t} f(t)$.
Proof. For $x>t$, the density $f(x)$ is above the tangent line at t, and below $\frac{1}{\sqrt{2 \pi}} e^{-x t / 2}$. Integrating over $[t, \infty)$ gives the claim.

- It follows from Borel-Cantelli that $\lim \sup X_{n} / \sqrt{\log n}=\sqrt{2}$ a.s.: We have $\sum \mathbb{P}\left(X_{n}>a \sqrt{\log n}<\infty\right.$ for $a>\sqrt{2}$ and the sum is infinite for $a<\sqrt{2}$.
- To get te result for M_{n}, let $Y_{i}=X_{i} / \sqrt{\log i}$. Fix some k, and note that

$$
\frac{M_{n}}{\sqrt{\log n}} \leq \max \left(\frac{X_{1}}{\sqrt{\log n}}, \ldots, \frac{X_{k}}{\sqrt{\log n}}, Y_{k+1}, \ldots, Y_{n}\right)
$$

Now, the first k terms tend to 0 , and $\limsup Y_{n}=\sqrt{2}$, so $\lim \sup M_{n} \leq \sqrt{2}$.
For a matching lower bound, use that for large $n, M_{n} / \sqrt{\log n} \geq(1-\varepsilon) \max \left(Y_{n / 2}, \ldots, Y_{n}\right)$. An easy application of Borel-Cantelli gives $\lim \inf M_{n} / \sqrt{\log n} \geq(\sqrt{2}-\varepsilon)$.

Problem 3. Show that for any random variable with finite mean, $t \mathbb{P}(X>t) \rightarrow 0$ as $t \rightarrow \infty$. Moreover, if $\mathbb{E}|X|^{a}<\infty$ then $t^{a} \mathbb{P}(X>t) \rightarrow 0$.

Solution. Let $Y_{t}=X 1_{X>t}$. Then $Y_{t} \rightarrow 0$, and $Y_{t} \leq|X|^{a}$. By dominated convergence $\mathbb{E} Y_{t} \rightarrow 0$. However, $\mathbb{E} Y_{t} \geq t^{a} \mathbb{P}(X>t)$, giving the claim.

Problem 4. Let X_{i} be i.i.d. random variables, and $S_{n}=\sum_{i \leq n} X_{i}$.
(a) Show that if $\mathbb{E} X_{i}=+\infty$ then $\frac{1}{n} S_{n} \rightarrow \infty$ a.s.
(b) Show that if $\mathbb{E} X_{i}$ is not defined (positive and negative parts both infinite) then a.s. $\lim \sup \frac{1}{n} S_{n}=\infty$ and $\liminf \frac{1}{n} S_{n}=-\infty$.

Solution.

- For any $M>0$, let $Y_{i}=X_{i} \wedge M$. Then $\mathbb{E} Y$ is finite and tends to infinity as $M \rightarrow \infty$. Thus for any K we can find M so that $\mathbb{E} Y>K$. Let $T_{n}=\sum_{i \leq n} Y_{i}$. By the LLN, $T_{n} / n \rightarrow \mathbb{E} Y$, and so $T_{n} / n>K$ eventually. The claim follows since $S_{n} \geq T_{n}$.
- This is wrong as written. The $\lim \sup S_{n} / n$ is a tail random variable: not affected by changing any finite number of X_{i} s. By Kolmogorov, $\lim \sup S_{n} / n$ must be trivial (always take the same value). To show that the $\lim \sup S_{n} / n$ cannot be se cannot be any finite value,

Definition 1. A random variable has density f if it's distribution function is $F(t)=\int_{-\infty}^{t} f(x) d x$. (In that case, $f(x)=F^{\prime}(x)$.) A random variable with a density is called continuous.

Problem 5. If X is a continuous random variable with distribution function F and density $f=F^{\prime}$, show (from the definition of expectation in class) that $\mathbb{E} X=\int_{-\infty}^{\infty} x f(x) d x$.

Solution. For $X>0$, take a simple random variable $Y_{n}=[n X] / n$, where $[x]$ is the integer part (that is, X rounded down to a multiple of $1 / n$). We have by definition

$$
\mathbb{E} Y_{n}=\sum_{i} \frac{i}{n} \mathbb{P}(i \leq n X<i+1)=\int_{0}^{\infty}[n x] / n f(x) d x
$$

This is a Riemann sum for the integral, and as $n \rightarrow \infty$ this approaches $\int_{0} x f(x) d x$.
Any other simple variable $Z \leq X$ satisfies $Z \leq Y+1 / n$, so the expectation of X cannot be larger.
For non-positive X, the density of X^{+}is f on \mathbb{R}_{+}, and of X^{-}it is $f(-x)$, so we can write the integral as $\int_{-\infty}^{0}+\int_{0}^{\infty}$.

Definition 2. A pair of random variables X, Y has join density function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ if $\mathbb{P}((X, Y) \in A)=$ $\iint_{A} f(x, y) d x d y$.
Problem 6. Suppose continuous random variables X_{1}, X_{2} have densities f_{1}, f_{2} respectively. Prove from the definition of independence that they are independent if and only if they have a joint density of the form $f(x, y)=f_{1}(x) f_{2}(y)$.

Solution. For intervals I_{1}, I_{2}, we have $\mathbb{P}\left(\forall i, X_{i} \in I_{i}\right)=\iint_{A} f(x, y) d x d y$. If f factors, then this is a product of $\mathbb{P}\left(X_{i} \in I_{i}\right)$, and so the events $\left\{X_{i} \in I_{i}\right\}$ are independent. Since this is true for intervals, the independence extends to arbitrary measurable sets A_{i}.

Conversely, if the variables are independent, let $I_{i}=\left[x_{i}, x_{i}+\varepsilon\right]$. Then from the definition of joint density $\mathbb{P}\left(\forall i, X_{i} \in I_{i}\right) \sim \varepsilon^{2} f\left(x_{1}, x_{2}\right)$. On the other hand by independence this is close to $\varepsilon f_{1}\left(x_{1}\right) \cdot \varepsilon f_{2}\left(x_{2}\right)$. Equating the two gives the factorization of f.

Problem 7. Let X, Y are two independent random variables. For an angle θ, the rotation by theta is the pair of random variables

$$
X^{\prime}=X \cos \theta+Y \sin \theta, \quad Y^{\prime}=-X \sin \theta+Y \cos \theta
$$

Find a joint distribution of independent variables X, Y, with $\mathbb{P}(X=0)<1$ so that for any θ the rotation (X^{\prime}, Y^{\prime}) has the same (joint) distribution as (X, Y).
Bonus: Find (with proof) all such distributions.

Solution. i.i.d. standard Gaussian X, Y have density $f(x, y)=\frac{1}{2 \pi} e^{-\left(x^{2}+y^{2}\right) / 2}$. This is rotationally symmetric, so is invariant to rotations.

If the variables have finite variance σ^{2}, the following shows uniqueness: Let S_{N} with $N=2^{n}$ be a sum of 2^{n} i.i.d. copies of X. We have that $\left(X+X^{\prime}\right) / \sqrt{2}$ has the same law as X, so S_{2} has the same distribution as $\sqrt{2} X$. By induction, S_{N} has the same law as $\sqrt{N} X$, and therefore S_{N} / \sqrt{N} has the same law as X. However, the CLT implies $S_{N} / \sqrt{N} \rightarrow N\left(0, \sigma^{2}\right)$, so X must be Gaussian.

Without assuming finite variance the proof is more delicate.
*Problem 8. (a) For given $p \in(0,1)$, construct a tree where $p_{c}=p$.
(b) Find a tree where $p_{c}=p$ and $\theta\left(p_{c}\right)>0$.
(Hint: if a vertex in level n has d_{n} children, write recursions for the probability that 0 is connected to level n, and analyse these.

Solution. There are many methods. The common idea is to switch between degrees d and d^{\prime} in some way. For (a), if vertices have random degree with expected degree $1 / p$, then $p_{c}=p$ since the percolation is a Bienayme-Galton-Watson tree.

For (b) you need to carefully switch between levels with degree d and d^{\prime} so that $\theta(p)>0$. For example, if $p=1 / d$ then take $d^{\prime}=d+1$, and have very fey levels with degree d^{\prime}. The analysis is rather delicate.

