Problem 1. The Total variation distance $d_{T V}(X, Y)$ is defined as $\inf \mathbb{P}\left(X^{\prime} \neq Y^{\prime}\right)$ over all couplings of X, Y. How does convergence in the total variation distance relate to the other notions of convergence discussed in class? (Including distribution, probability, a.s., L^{1}.)

Solution. Convergence is total variation implies convergence in probability and therefore also in distribution since $\mathbb{P}(|X-Y| \geq \varepsilon) \leq \mathbb{P}(X \neq Y)$.

It does not imply convergence a.s.: Let X_{n} be independent Bernoulli(1/n) then they do not converge a.s. but converge in T.V. In fact, $a_{n} X_{n}$ converges to 0 in total variation and a_{n} can be large, so $\mathbb{E}\left|X_{n}\right|^{p}$ can tend to ∞.

Problem 2. Let X_{n} be i.i.d. uniform in $[0,1]$ random variables. Let $Y_{n}=1$ if X_{n} is a local maximum: $X_{n}=\max \left\{X_{n}, X_{n-1}, X_{n+1}\right.$. Let $S_{n}=\sum_{i=1}^{n} Y_{i}$. Find constants a, b so that the sum of Y_{n} has a CLT:

$$
\frac{S_{n}-a n}{b \sqrt{n}} \rightarrow N(0,1)
$$

and prove this convergence. (Hint: The Y_{n} are not independent, but only depndent for nearby n 's. Approximate S_{n} by a sum of independent R.V.s.)

Solution. There are several approaches. The key is to split S_{n} into sums of inependent things, but it helps to allow a small error.

First we find $\mathbb{E} S_{n} \sim n / 3$ since $\mathbb{E} Y_{i}=1 / 3$. Next, the second moment: $\operatorname{Var} S_{n}=\sum_{i, j} \operatorname{Cov}\left(Y_{i}, Y_{j}\right)$. This sum has n terms with $i=j$ where $\operatorname{Cov}\left(Y_{i}, Y_{i}\right)=2 / 9$. There are about $2 n$ terms with $j=i \pm 1$ for which $\left.\operatorname{Cov} Y_{i}, Y_{j}\right)=-1 / 9$. There are about $2 n$ terms with $j=i \pm 2$ for which $\left.\operatorname{Cov} Y_{i}, Y_{j}\right)=2 / 15$. (Find this by checking the 5 ! orders of 5 consecutive elements.) Finally, the rest are independent so 0 covariance. Combined we get $\operatorname{Var}\left(S_{n}\right)=4 n / 15+O(1)$.

Therefore we aim to show $\frac{S_{n}-n / 3}{\sqrt{4 n / 15}} \rightarrow N(0,1)$. One way to do this is to split $[1, n]$ into intervals $I_{1} \ldots, I_{k}$ of length $o(n)$ with a gap of two indices between intervals. Say intervals of length $n / \log n$ with $k=\log n$. Let A_{i} be the sum over I_{i}. Then $\mathbb{E} A_{i}=\left|I_{i}\right| / 3$ and $\operatorname{Var}\left(A_{i}\right)=4 / 15\left|I_{i}\right|$. You can use the triangular array CLT (Lindeberg-Feller) to get that $\sum A_{i}$ is roughly normal. Moreover, the difference $S_{n}-\sum A_{i}$ is at most 2 for each segment so is $o(\sqrt{n})$ and neglegible.

Problem 3. Prove that φ_{X} is periodic if and only if X takes values in $a \mathbb{Z}$ (multiples of a) for some a.
Solution. If $X \in a \mathbb{Z}$ then $\varphi(t+2 \pi / a)=\varphi(t)$ since $(2 \pi / a) X$ is a multiple of 2π.
Conversely, if φ has period b, then $\varphi(b)=\varphi(0)=1$, so $\mathbb{E} e^{i b X}=1$. Since $\left|e^{i b X}\right| \leq 1$ this implies $e^{i b X}=1$ a.s., which implies X is a multiple of $2 \pi / b$.

Problem 4. Write a proof of the following statement from class: If $X \geq 0$ is a R.V. then $\mathbb{E} X=\int_{0}^{\infty} \mathbb{P}(X>$ $t) d t$. Moreover $\mathbb{E} X^{a}=\int_{0}^{\infty} t^{a-1} \mathbb{P}(X>t) d t$.

Solution. For a simple random variable this is verified by rearranging the sums. If $X=\sum a_{i} 1_{A_{i}}$ then let $B_{i}=\bigcup_{j>i} A_{j}=\left\{X>a_{i}\right\}$. Then $\mathbb{P}(X>t)=\mathbb{P}\left(B_{i}\right)$ on $\left[a_{i}, a_{i+1}\right]$, and continue from that.

For a general random variable, let X_{n} be simple increasing tending to X, then $\mathbb{P}\left(X_{n}>t\right) \rightarrow \mathbb{P}(X>t)$ for almost all t, and so the integrals converge.

For the moments, apply the above to $Y=X^{a}: \mathbb{E} X^{a}=\int_{0}^{\infty} \mathbb{P}\left(X^{a}>t\right) d t$. Then use a change of variable $t=s^{a}$.

Problem 5. Prove that for any random variable with finite mean, $t \mathbb{P}(X>t) \rightarrow 0$ as $t \rightarrow \infty$. Moreover, if $\mathbb{E}|X|^{a}<\infty$ then $t^{a} \mathbb{P}(X>t) \rightarrow 0$.

Solution. For the first claim, let $X_{t}=t 1_{X>t}$, then $X_{t} \leq X$ and $X_{t} \rightarrow 0$ almost surely. By dominated convergence, $t \mathbb{P}(X>t)=\mathbb{E} X_{t} \rightarrow 0$.

The second part is the same with $X_{t}=t^{a} 1_{X>t}$.
Problem 6. If $X_{n} \xrightarrow{p r o b} X$ are independent, show that X must be a constant random variable.
Solution. Suppose for a contradiction that X is not constant, so that there are some $a<b$ and ε so that $\mathbb{P}(X<a) \geq \varepsilon$ and $\mathbb{P}(X>b) \geq \varepsilon$. Let $\delta=(b-a) / 3$. Convergence in probability implies convergence in distribution, so eventually $\mathbb{P}\left(X_{n}<a\right) \geq \varepsilon / 2$ and the same for $\mathbb{P}\left(X_{n}>b\right)$. Therefore with probability $(\varepsilon / 2)^{2}$, for m, n large we have that $X_{n}<a$ and $X_{m}>b$ With probability tending to $1,\left|X_{n}-X\right| \leq \delta$, and same for X_{m}. This means there is positive probability that all of these occur, which is impossible.

It is also possible to use that there is a subsequence that convereges almost surely, but infinitely often we have $X_{n}<a$ and also infinitely often $X_{n}>b$.

Problem 7. Show that convergence in probability is equivalent to convergence in the metric

$$
d(X, Y)=\mathbb{E}(|X-Y| \wedge 1)
$$

Solution. Note that $\mathbb{E}|X-Y| \wedge 1 \geq \varepsilon \mathbb{P}(|X-Y| \geq \varepsilon)$. If $d\left(X_{n}, X\right) \rightarrow 0$, then $\mathbb{P}\left(\left|X_{n}-X\right|>\varepsilon\right) \leq d\left(X_{n}, X\right) / \varepsilon$ tends to 0 .

Conversely, if $X_{n} \rightarrow X$ in probability, then $\left|X_{n}-X\right| \wedge 1 \rightarrow 0$ in distribution. Dominated convergence implies $\mathbb{E}\left|X_{n}-X\right| \wedge 1 \rightarrow 0$.

