
MATH 418/544, Assignment 3 solutions

Problem 1. The Total variation distance dTV (X,Y ) is defined as inf P(X ′ ̸= Y ′) over all couplings of X,Y .
How does convergence in the total variation distance relate to the other notions of convergence discussed in
class? (Including distribution, probability, a.s., L1.)

Solution. Convergence is total variation implies convergence in probability and therefore also in distribu-
tion since P(|X − Y | ≥ ε) ≤ P(X ̸= Y ).

It does not imply convergence a.s.: Let Xn be independent Bernoulli(1/n) then they do not converge a.s.
but converge in T.V. In fact, anXn converges to 0 in total variation and an can be large, so E|Xn|p can tend
to ∞.

Problem 2. Let Xn be i.i.d. uniform in [0, 1] random variables. Let Yn = 1 if Xn is a local maximum:
Xn = max{Xn, Xn−1, Xn+1. Let Sn =

∑n
i=1 Yi. Find constants a, b so that the sum of Yn has a CLT:

Sn − an

b
√
n

→ N(0, 1),

and prove this convergence. (Hint: The Yn are not independent, but only depndent for nearby n’s. Approx-
imate Sn by a sum of independent R.V.s.)

Solution. There are several approaches. The key is to split Sn into sums of inependent things, but it helps
to allow a small error.

First we find ESn ∼ n/3 since EYi = 1/3. Next, the second moment: VarSn =
∑

i,j Cov(Yi, Yj). This
sum has n terms with i = j where Cov(Yi, Yi) = 2/9. There are about 2n terms with j = i ± 1 for which
Cov Yi, Yj) = −1/9. There are about 2n terms with j = i ± 2 for which Cov Yi, Yj) = 2/15. (Find this
by checking the 5! orders of 5 consecutive elements.) Finally, the rest are independent so 0 covariance.
Combined we get Var(Sn) = 4n/15 +O(1).

Therefore we aim to show Sn−n/3√
4n/15

→ N(0, 1). One way to do this is to split [1, n] into intervals I1 . . . , Ik

of length o(n) with a gap of two indices between intervals. Say intervals of length n/ log n with k = log n.
Let Ai be the sum over Ii. Then EAi = |Ii|/3 and Var(Ai) = 4/15|Ii|. You can use the triangular array
CLT (Lindeberg-Feller) to get that

∑
Ai is roughly normal. Moreover, the difference Sn −

∑
Ai is at most

2 for each segment so is o(
√
n) and neglegible.

Problem 3. Prove that φX is periodic if and only if X takes values in aZ (multiples of a) for some a.

Solution. If X ∈ aZ then φ(t+ 2π/a) = φ(t) since (2π/a)X is a multiple of 2π.
Conversely, if φ has period b, then φ(b) = φ(0) = 1, so EeibX = 1. Since |eibX | ≤ 1 this implies eibX = 1

a.s., which implies X is a multiple of 2π/b.

Problem 4. Write a proof of the following statement from class: If X ≥ 0 is a R.V. then EX =
∫∞
0

P(X >

t)dt. Moreover EXa =
∫∞
0

ta−1P(X > t)dt.

Solution. For a simple random variable this is verified by rearranging the sums. If X =
∑

ai1Ai then let
Bi =

⋃
j>i Aj = {X > ai}. Then P(X > t) = P(Bi) on [ai, ai+1], and continue from that.

For a general random variable, let Xn be simple increasing tending to X, then P(Xn > t) → P(X > t)
for almost all t, and so the integrals converge.

For the moments, apply the above to Y = Xa: EXa =
∫∞
0

P(Xa > t)dt. Then use a change of variable
t = sa.

Problem 5. Prove that for any random variable with finite mean, tP(X > t) → 0 as t → ∞. Moreover, if
E|X|a < ∞ then taP(X > t) → 0.
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Solution. For the first claim, let Xt = t1X>t, then Xt ≤ X and Xt → 0 almost surely. By dominated
convergence, tP(X > t) = EXt → 0.

The second part is the same with Xt = ta1X>t.

Problem 6. If Xn
prob−−−→ X are independent, show that X must be a constant random variable.

Solution. Suppose for a contradiction that X is not constant, so that there are some a < b and ε so that
P(X < a) ≥ ε and P(X > b) ≥ ε. Let δ = (b − a)/3. Convergence in probability implies convergence in
distribution, so eventually P(Xn < a) ≥ ε/2 and the same for P(Xn > b). Therefore with probability (ε/2)2,
for m,n large we have that Xn < a and Xm > b With probability tending to 1, |Xn −X| ≤ δ, and same for
Xm. This means there is positive probability that all of these occur, which is impossible.

It is also possible to use that there is a subsequence that convereges almost surely, but infinitely often
we have Xn < a and also infinitely often Xn > b.

Problem 7. Show that convergence in probability is equivalent to convergence in the metric

d(X,Y ) = E(|X − Y | ∧ 1).

Solution. Note that E|X−Y |∧1 ≥ εP(|X−Y | ≥ ε). If d(Xn, X) → 0, then P(|Xn−X| > ε) ≤ d(Xn, X)/ε
tends to 0.

Conversely, if Xn → X in probability, then |Xn − X| ∧ 1 → 0 in distribution. Dominated convergence
implies E|Xn −X| ∧ 1 → 0.
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