(Hint: a finite Ω is possible). **Problem 1.** Find a random variable X, and two σ -algebras \mathcal{G}, \mathcal{H} so that $\mathbb{E}(\mathbb{E}(X|\mathcal{G})|\mathcal{H}) \neq \mathbb{E}(\mathbb{E}(X|\mathcal{H})|\mathcal{G})$. **Problem 2.** If a random variable has characteristic function $\varphi(t) = (1 - |t|)^+$, find its density. **Problem 3.** If X_n converge in distribution to X, and Y_n converge in probability to 0, show that $X_n + Y_n$ converge in distribution to X. **Problem 4.** • If $X_n \to X$ and $Y_n \to Y$ in probability show that $X_n + Y_n \to X + Y$ in probability. - Do the same for convergence in L^p for $p \ge 1$. - Show this fails for convergence in L^p for p < 1. - Show this fails for convergence in distribution. **Problem 5.** Suppose random variables (X,Y) have joint density f(x,y) on \mathbb{R}^2 . Let $Z(y) = \int_{\mathbb{R}} x f(x,y) dx / \int_{\mathbb{R}} f(x,y) dx$. Show that $Z = \mathbb{E}(X|Y)$ using the definition. **Problem 6.** Construct a martingale X_n so that $X_n \to \infty$ a.s. Problem 7. Do not hand this in; a related problem will be in the exam instead. Let X_i be i.i.d. bounded integer random variables, and let $S_n = \sum_{i \le n} X_i$. Suppose $\mathbb{P}(X > 0)$ and $\mathbb{P}(X < 0)$ are both non-zero, and $\mathbb{E}X \ne 0$. - (a) Show that there is some $0 < q \neq 1$ so that q^{S_n} is a martingale. - (b) Find that q when X_n is ± 1 with probabilities p, 1 p. - (c) Use this to find $\mathbb{P}_k(T_n < T_0)$, where $T_a = \inf\{t : X_t = a\}$. **Problem 8. If X_n are independent random variables such that $\sum \mathbb{E}X_n$ exists, and that $\sum X_n$ converges a.s., must it be that $\mathbb{E}\sum X_n = \sum \mathbb{E}X_n$?