Problem 1. Find a random variable X, and two σ -algebras \mathcal{G}, \mathcal{H} so that $\mathbb{E}(\mathbb{E}(X|\mathcal{G})|\mathcal{H}) \neq \mathbb{E}(\mathbb{E}(X|\mathcal{H})|\mathcal{G})$. (Hint: a finite Ω is possible).

Solution. Anything works. Minimal example: $\Omega = \{0, 1, 2\}$, with $\mathcal{G} = \sigma(\{0\})$ and $\mathcal{H} = \sigma(\{2\})$. Take \mathbb{P} uniform on Ω and $X(\omega) = \omega$.

Writing (a, b, c) for a function with value a, b, c at 0, 1, 2, we have

$$\mathbb{E}(X|\mathcal{G}) = (0, 3/2, 3/2) \qquad \mathbb{E}(\mathbb{E}(X|\mathcal{G})|\mathcal{H}) = (3/4, 3/4, 3/2),$$

and

$$\mathbb{E}(X|\mathcal{H}) = (1/2, 1/2, 2)$$
 $\mathbb{E}(\mathbb{E}(X|\mathcal{H})|\mathcal{G}) = (1/2, 5/4, 5/4)$

Problem 2. If a random variable has characteristic function $\varphi(t) = (1 - |t|)^+$, find its density.

Solution. Use the inverse fourier transform formula. Since φ has bounded support,

$$f(x) = \frac{1}{2\pi} \int_{-1}^{1} e^{-itx} \varphi(t) dt$$
$$= \frac{1 - \cos(x)}{\pi x^2}.$$

Problem 3. If X_n converge in distribution to X, and Y_n converge in probability to 0, show that $X_n + Y_n$ converge in distribution to X.

Solution. Suppose F_X is continuous at t. Then

$$\mathbb{P}(X_n + Y_n \le t) \ge \mathbb{P}(X_n \le t - \varepsilon, |Y_n| \le \varepsilon)$$

Since $\mathbb{P}(|Y_n| \leq \varepsilon) \to 1$, for any δ eventually, $\mathbb{P}(X_n + Y_n \leq t) \geq \mathbb{P}(X_n \leq t - \varepsilon) - \delta$. We can take ε so that $\mathbb{P}(X_n \leq t - \varepsilon) \geq \mathbb{P}(X \leq t) - \delta$, so eventually $\mathbb{P}(X_n + Y_n \leq t) \geq F(t) - 2\delta$.

In a similar way, eventually $\mathbb{P}(X_n + Y_n \leq t) \leq F(t) + 2\delta$.

Problem 4. (a) If $X_n \to X$ and $Y_n \to Y$ in probability show that $X_n + Y_n \to X + Y$ in probability.

- (b) Do the same for convergence in L^p for $p \ge 1$.
- (c) Show this fails for convergence in L^p for p < 1.
- (d) Show this fails for convergence in distribution.

Solution. Let $U_n = X_n - X$ and $V_n = Y_n - Y$.

- (a) With high probability (i.e. tending to 1) $|U_n| \leq \varepsilon$ and similarly for $|V_n|$. Therefore with high probability $|U_n + V_n| \leq 2\varepsilon$.
- (b) This follows from $||U_n + V_n||_p \le ||U_n||_p + ||V_n||_p$.
- (c) The implication actually holds: For p < 1 we have $|U_n + V_n|^p \le |U_n|^p + |V_n|^p$. Take expectations to get the claim.
- (d) Let X_n and Y_n all have the same distribution, so they converge in distribution. However, $X_n + Y_n$ might not converge. For example, all are ± 1 , and $Y_n = (-1)^n X_n$.

Problem 5. Suppose random variables (X, Y) have joint density f(x, y) on \mathbb{R}^2 . Let $Z(y) = \int_{\mathbb{R}} x f(x, y) dx / \int_{\mathbb{R}} f(x, y) dx$. Show that $Z = \mathbb{E}(X|Y)$ using the definition.

Problem 6. Construct a martingale X_n so that $X_n \to \infty$ a.s.

Solution. Let the increments be independent with $\mathbb{P}(D_n = 1) = 1 - n^{-2}$ and $\mathbb{P}(D_n = -n^2 + 1) = n^{-2}$. By Borel-Cantelli, eventually $D_n = 1$ so $X_n \to \infty$.

Problem 7. Do not hand this in; a related problem will be in the exam instead. Let X_i be i.i.d. bounded integer random variables, and let $S_n = \sum_{i \leq n} X_i$. Suppose $\mathbb{P}(X > 0)$ and $\mathbb{P}(X < 0)$ are both non-zero, and $\mathbb{E}X \neq 0$.

- (a) Show that there is some $0 < q \neq 1$ so that q^{S_n} is a martingale.
- (b) Find that q when X_n is ± 1 with probabilities p, 1 p.
- (c) Use this to find $\mathbb{P}_k(T_n < T_0)$, where $T_a = \inf\{t : X_t = a\}$.

****Problem 8.** If X_n are independent random variables such that $\sum \mathbb{E}X_n$ exists, and that $\sum X_n$ converges a.s., must it be that $\mathbb{E} \sum X_n = \sum \mathbb{E}X_n$?