Exercises
0. The grandfather graph G is as follows Start with a 3 -regular tree π_{3} with all edges directed towards some end. Add an edge from each vertex to its grandfather and forget the orientations.

Prove this is not unimodula: There is an isometry invariant $f(x, y)$ with $\sum_{x} f(0, x) \neq \sum_{x} f(x, 0)$

1. For rid coins on \mathbb{Z} with $P(H$ Heals $)=\frac{1}{3}$, construct a partition of \mathbb{Z} into triplets of $\{T, T, H\}$, in an invariant way
(invariant: If the coins are shifted, so are the groups).
1^{\prime} Generalize this.
2. For ind coins on \mathbb{Z} with any $p \in(0,1)$ find a fractional matching (mass trasport rule) with $\sum_{n} f(0, n)=1$ and $\sum_{n} f(n, 0)=p^{-1} 1_{X_{0}=H}$. The rule f should be translation invariant.
3. Do the same on any Cayley graph
4. Given Poisson processes in \mathbb{R}^{d} of intensities $\lambda_{1}>\lambda_{2} \geqslant \lambda_{3}$ prove that (there exists an invariant matching between the points st every pt is matched to a different color) iff $\lambda_{1} \leqslant \lambda_{2}+\lambda_{3}$.
5. Construct a 2-col matching on \mathbb{R}^{d} as follows. There will be stages $k \in \mathbb{N}$. in stage k split \mathbb{R}^{d} into boxes of side length 2^{k}, with random shift (for trans inv.) points in each box that are not previously matched are pained as much as possible
Prove that all points are eventually paired (assume $\lambda_{1}=\lambda_{2}$) Prove that the density of points with $|x-M(x)|>l$ is $\leq c l^{-d / 2}$ and deduce $\mathbb{P}(x>l) \leqslant Q^{-d / 2}$.
6. Fill in the details in a proof that if a pt proc has distinct distances and no ∞ descending chains (a seq X_{n} with $\left|x_{n}-x_{n+1}\right|<\left|x_{n-1}-x_{n}\right| \forall n \mid$ then there is a unique stable matching.
7. Prove that any sets of n red and n green pts in \mathbb{R}^{2} with no 4 in a line have a non-crossing matching.
