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Overview

Lecture 1: introduction

Ï random graphs and phase transitionss

Ï the cavity method

Ï first/second moment method

Ï Belief Propagation and density evolution



Overview

Lecture 2: random 2-SAT

Ï the contraction method

Ï spatial mixing

Ï the Aizenman-Sims-Starr scheme

Ï the interpolation method



Overview

Lecture 3: group testing

Ï basics of Bayesian inference

Ï analysis of combinatorial algorithms

Ï spatial coupling

Ï information-theoretic lower bounds



Disordered systems

O
Si

From glasses to random graphs [MP00]

Ï (spin) glasses are disordered materials rather than crystals

Ï lattice models are difficult to grasp even non-rigorously

Ï classical mean-field models: complete interaction

Ï diluted mean-field models: sparse random graph topology



Disordered systems

The binomial random graph G=G(n, p) [ER60]

Ï vertex set x1, . . . , xn

Ï connect any two vertices w/ probability p = d
n independently

Ï local structure converges to Po(d) Galton-Watson tree



The Potts antiferromagnet

Definition

Ï fix d > 0, q ≥ 2 and β> 0

Ï the Boltzmann distribution reads

µG,β(σ) = 1

Z (G,β)

∏
v w∈E(G)

exp(−β1{σv =σw }) (σ ∈ {1, . . . , q}n)

Z (G,β) = ∑
τ∈{1,...,q}n

∏
v w∈E(G)

exp(−β1{τv = τw })



The physics story: replica symmetry breaking

Replica symmetry [KMRTSZ07]

Ï fix a large d and increase β

Ï for small β there are no extensive long-range correlations

µG,β({σx1 = τ1,σx2 = τ2}) ∼ q−2 (τ1,τ2 ∈ {1, . . . , q})

Ï in fact, there is non-reconstruction and rapid mixing



The physics story: replica symmetry breaking

Dynamic replica symmetry breaking [KMRTSZ07]

Ï still no extensive long-range correlations for moderate β

µG,β({σx1 = τ1,σx2 = τ2}) ∼ q−2 (τ1,τ2 ∈ {1, . . . , q})

Ï but there is reconstruction and torpid mixing



The physics story: replica symmetry breaking

Static replica symmetry breaking [KMRTSZ07]

Ï for large β long-range correlations emerge

µG,β({σx1 = τ1,σx2 = τ2}) 6∼ q−2 (τ1,τ2 ∈ {1, . . . , q})

Ï a few pure states dominate



The stochastic block model

The Potts model as an inference problem [DKMZ11]

Ï choose a random colouring σ∗ ∈ {1, . . . , q}n

Ï then choose a random graph G∗ with

P
[
G∗ =G | |E(G∗)| = |E(G)|]∝µG ,β(σ∗)

Ï given G∗ can we (partly) infer σ∗?



Rigorous work

Techniques

Ï Classical random graphs techniques
Ï method of moments
Ï branching processes
Ï large deviations

Ï Mathematial physics techniques
Ï coupling arguments
Ï exchangeable arrays and the cut metric
Ï Belief Propagation and the contraction method
Ï the interpolation method



Rigorous work

x1 x2 x3 x4 x5 x6

a1 a2 a3

y1 y2 y3 y4 y5 y6

Success stories

Ï solution space geometry [ACO08,M12]

Ï random k-SAT [AM02,AP03,COP16,DSS15]

Ï low-density parity check codes [G63,KRU13]

Ï stochastic block model [AS15,M14,MNS13,MNS14,COKPZ16]

Ï group testing [MTT08,COGHKL20]

Ï . . .



Rigorous work

Theorem [COKPZ17]
LetΛ(x) = x log x and

B∗
q,β(d) = sup

π
Bq,β,d (π) where

Bq,β,d (π) = E

[
Λ(

∑q
σ=1

∏γ

i=1 1− (1−e−β)µ(π)
i (σ))

q(1− (1−e−β)/q)γ
− d

2

Λ(1− (1−e−β)
∑q
σ=1µ

(π)
1 (σ)µ(π)

2 (σ))

1− (1−e−β)/q

]
.

Then

dcond(q,β) = inf

{
d > 0 : B∗

q,β(d) = ln q + d

2
ln(1− (1−e−β)/q)

}
.



Random 2-SAT

The 2-SAT problem

Ï Boolean variables x1, . . . , xn

Ï truth values +1 and −1

Ï four types of clauses:

xi ∨x j xi ∨¬x j ¬xi ∨x j ¬xi ∨¬x j

Ï a 2-SAT formula is a conjunctionΦ=∧m
i=1 ai of clauses

Ï S(Φ) =set of satisfying assignments

Ï Z (Φ) = |S(Φ)|



Random 2-SAT
x1 x3x2

a1 a2 a3

Example

Ï Φ= (¬x1 ∨x2)∧ (x1 ∨x3)∧ (¬x2 ∨¬x3)

Ï Z (Φ) = 2 and S(Φ) consists of the two assignments

σx1 =+1 σx2 =+1 σx3 =−1

σx1 =−1 σx2 =−1 σx3 =+1

Ï glassy because variables may appear with opposing signs



Random 2-SAT
x1 x3x2

a1 a2 a3

Computational complexity

Ï 2-SAT admits an efficient decision algorithm [K67]

Ï in fact, WalkSAT solves the problem efficiently [P91]

Ï the problem is NL-complete [IS87,P94]

Ï however, computing log Z (Φ) is #P-hard [V79]



Random 2-SAT
x1 x3x2

a1 a2 a3

Random 2-SAT

Ï for a fixed 0 < d <∞ let m = Po(dn/2)

Ï Φ=conjunction of m independent random clauses

Ï variable degrees have distribution Po(d)

Ï Key questions: is Z (Φ) > 0 and if so, what is

lim
n→∞

1

n
log Z (Φ) ?



Random 2-SAT

Prior work

Ï the threshold for S(Φ) =; occurs at d = 2 [CR92,G96]

Ï computation of log Z (Φ) via replica/cavity method [MZ96]

Ï the scaling window [BBCKW01]

Ï partial results on ‘soft’ version [T01,MS07,P14]

Ï existence of a function φ(d) such that [AM14]

lim
n→∞

log Z (Φ)

n
=φ(d)

for almost all d ∈ (0,2)



The satisfiability threshold

Bicycles

Ï the clause l ∨ l ′ is logically equivalent to the two implications

l ∨ l ′ ≡ (¬l → l ′)∧ (¬l ′ → l )

Ï Φ is satisfiable unless there is an implication chain

xi →···→¬xi →···→ xi

Ï such chains are called bicycles



The satisfiability threshold

Theorem [CR92,G96]

Ï If d < 2 thenΦ does not contain a bicycle w.h.p.

Ï If d > 2 thenΦ contains a bicycle w.h.p.



The second moment method

A naive attempt

Ï we aim to compute log Z (Φ) for a typicalΦ

Ï Jensen’s inequality shows that

log Z (Φ) ≤ logE[Z (Φ) | m]+o(n) w.h.p.



The second moment method

The first moment

Ï computing E[Z (Φ) | m] is a cinch:

E[Z (Φ) | m] = 2n ·
(

3

4

)m

Ï hence,

1

n
log Z (Φ) ≤ (1−d) log2+ d

2
log3 w.h.p.



The second moment method

The second moment

Ï this bound is tight if E[Z (Φ)2] =O(E[Z (Φ)]2)

Ï we calculate

E[Z (Φ)2 | m] = ∑
σ,τ∈{±1}n

P[Φ |=σ,Φ |= τ | m]

=
n∑

`=−n

∑
σ,τ:σ·τ=`

(
1

2
+ (1+`/n)2

16

)m

=
n∑

`=−n

(
n

(n +`)/2

)(
1

2
+ (1+`/n)2

16

)m



The second moment method

The second moment

Ï hence,

1

n
logE[Z (Φ)2 | m] ∼ max−1≤α≤1

H((1+α)/2)+ d

2
log

(
1

2
+ (1+α)2

16

)
Ï at α= 0 the above function evaluates to

log2+d log
3

4
∼ 2

n
logE[Z (Φ) | m]

Ï therefore, we succeed iff the max is attained at α= 0 :(



The cavity method
x1 x3x2

a1 a2 a3

The factor graph

Ï vertices x1, . . . , xn represent variables

Ï vertices a1, . . . , am represent clauses

Ï the graph G(Φ) contains few short cycles

Ï locally G(Φ) resembles a Galton-Watson branching process



The cavity method
x1 x3x2

a1 a2 a3

The Boltzmann distribution

Ï assuming S(Φ) 6= ; define

µΦ(σ) = 1 {σ ∈ S(Φ)}

Z (Φ)
(σ ∈ {±1}{x1,...,xn })

Ï let σ=σΦ be a sample from µΦ



The cavity method
x1 x3x2

a1 a2 a3

Belief Propagation

Ï define the variable–to–clause messages by

µΦ,x→a(σ) =µΦ−a(σx =σ) (σ=±1)

Ï “marginal of x upon removal of a”



The cavity method
x1 x3x2

a1 a2 a3

Belief Propagation

Ï define the clause–to–variable messages by

µΦ,a→x (σ) =µΦ−(∂x\a)(σx =σ) (σ=±1)

Ï “marginal of x upon removal of all neighbours b ∈ ∂x, b 6= a”



The cavity method

The replica symmetric ansatz

The messages (approximately) satisfy

µΦ,x→a(σ) ∝ ∏
b∈∂x\a

µΦ,b→x (σ)

µΦ,a→x (σ) ∝ 1−1
{
σ 6= sign(x, a)

}
µΦ,∂a\x (−sign(∂a \ x))



The cavity method

The Bethe free entropy

Ï we expect that

log Z (Φ) ∼
n∑

i=1
log

∑
σ=±1

∏
a∈∂xi

µΦ,a→x (σ)

+
m∑

i=1
log

(
1− ∏

x∈∂ai

µΦ,x→ai
(−sign(x, ai ))

)

−
n∑

i=1

∑
a∈∂xi

log
∑
σ=±1

µΦ,x→ai (σ)µΦ,ai→x (σ)



The cavity method

Density evolution

Ï consider the empirical distribution of the messages:

πΦ = 1

2m

n∑
i=1

∑
a∈∂xi

δµΦ,x→a (+1)

Ï d+,d− ∼ Po(d/2), µ0,µ1,µ2, . . . samples from πΦ

µ0
d=

∏d+
i=1µi∏d+

i=1µi +
∏d−

i=1µi+d+



The cavity method
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Summary: the replica symmetric prediction [MZ96]

For d < 2 there is a unique distribution πd on (0,1) s.t.

µ0
d=

∏d+
i=1µi∏d+

i=1µi +
∏d−

i=1µi+d+

and lim
n→∞n−1 log Z (Φ) =Bd where

Bd = E

[
log

(
d+∏
i=1

µi +
d−∏
i=1

µi+d+

)
− d

2
log

(
1−µ1µ2

)]



The cavity method
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Theorem [ACOHKLMPZ20]

For d < 2 there is a unique distribution πd on (0,1) s.t.

µ0
d=

∏d+
i=1µi∏d+

i=1µi +
∏d−

i=1µi+d+

and lim
n→∞n−1 log Z (Φ) =Bd where

Bd = E

[
log

(
d+∏
i=1

µi +
d−∏
i=1

µi+d+

)
− d

2
log

(
1−µ1µ2

)]
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