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Overview

Lecture 1: introduction
» random graphs and phase transitionss
» the cavity method
» first/second moment method

> Belief Propagation and density evolution



Overview

Lecture 2: random 2-SAT
» the contraction method
> spatial mixing
» the Aizenman-Sims-Starr scheme

» the interpolation method



Overview

Lecture 3: group testing

> basics of Bayesian inference
» analysis of combinatorial algorithms
> spatial coupling

» information-theoretic lower bounds
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Disordered systems s Rl

From glasses to random graphs [MP0O]

> (spin) glasses are disordered materials rather than crystals
» lattice models are difficult to grasp even non-rigorously
» classical mean-field models: complete interaction

» diluted mean-field models: sparse random graph topology



Disordered systems

The binomial random graph G = G(n, p) [ER60]

> vertex set xy,..., X,
» connect any two vertices w/ probability p = % independently

» local structure converges to Po(d) Galton-Watson tree



The Potts antiferromagnet

Definition

» fixd>0,g=2and >0

» the Boltzmann distribution reads

1
Z(G, B) H exp(-pl{o,=0yu}) (0€ {1,...,6]}")
’ vweE(G)

ZG,p= ). [T exp(-pl{r, =7,

T€fl,...,.q}" vweE(G)

Ue,p(0) =



The physics story: replica symmetry breaking

e @ -

Replica symmetry [KMRTSZ07]

» fix alarge d and increase

» for small g there are no extensive long-range correlations
te,p({ox, =T1,0x2=T2})~67_2 (t1,72€11,...,9})

» in fact, there is non-reconstruction and rapid mixing



The physics story: replica symmetry breaking

e @ -

Dynamic replica symmetry breaking [KMRTSZ07]

» still no extensive long-range correlations for moderate f
tg g0, =T1,0x2=T2})~CI_2 (t1,72€11,...,9})

» but there is reconstruction and torpid mixing



The physics story: replica symmetry breaking

e @ -

Static replica symmetry breaking [KMRTSZ07]

» for large 3 long-range correlations emerge
tg g0y, =T1,0x2=T2})7‘CI_2 (t1,72€11,...,9})

» afew pure states dominate



The stochastic block model

The Potts model as an inference problem [DKMZ11]

» choose arandom colouringe* €11, ..., g}"

» then choose a random graph G* with
P[G" =G||EG")| = |EG)|] x pgs0™)

> given G* can we (partly) infer ¢*?



Rigorous work

Techniques

» (lassical random graphs techniques
> method of moments
> branching processes
> large deviations

» Mathematial physics techniques
> coupling arguments
> exchangeable arrays and the cut metric
> Belief Propagation and the contraction method
> the interpolation method



Rigorous work

Success stories

\4

solution space geometry [ACO08,M12]
» random k-SAT [AMO02,AP03,COP16,DSS15]
» low-density parity check codes [G63,KRU13]
» stochastic block model [AS15,M14,MNS13,MNS14,COKPZ16]
> group testing [MTT08,COGHKL20]
>



Rigorous work

~ )
0°0.%¢ @
.:..... ....' .
|
Theorem [COKPZ17]

Let A(x) = xlogx and
53;‘ pld) = sgp Bgpalm)  where
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Random 2-SAT

The 2-SAT problem

» Boolean variables x;,..., x5,
» truth values +1 and —1

» four types of clauses:
XiVXj XiVXj X VX X VX

> a2-SAT formula is a conjunction ® = A", a; of clauses
> S(®) =set of satisfying assignments
> Z(®)=I[S(D)



Random 2-SAT

Example

> O=(1x1VX2)A(X1VX3)A(TX2V T1X3)

» Z(®) =2 and S(®) consists of the two assignments
= |
=-1 Oy, =+1

Ox, =+1 Oy, =+1 O xs

Oy =—1 Oy,

» glassy because variables may appear with opposing signs



Random 2-SAT

Computational complexity

» 2-SAT admits an efficient decision algorithm [K67]
» in fact, WalkSAT solves the problem efficiently [P91]
» the problem is NL-complete [IS87,P94]

» however, computing log Z(®) is #P-hard [V79]



Random 2-SAT

Random 2-SAT
» forafixed 0 < d <oolet m=Po(dn/2)
» @ =conjunction of m independent random clauses
» variable degrees have distribution Po(d)

» Key questions: is Z(®) > 0 and if so, what is

1
lim —logZ(®) ?
n—oon



Random 2-SAT

Prior work
» the threshold for S(®) = @ occurs at d =2 [CR92,G96]
» computation of log Z(®) via replica/cavity method [MZ96]
» the scaling window [BBCKWO1]
» partial results on ‘soft’ version [TO1,MS07,P14]
» existence of a function ¢(d) such that [AM14]
r}l_{lgo log# =¢(d)

for almost all d € (0,2)



The satisfiability threshold

Bicycles

> the clause [ v I’ is logically equivalent to the two implications
VA GTE SUNGTA))

> @ is satisfiable unless there is an implication chain
Xj—r e X = e — X

» such chains are called bicycles



The satisfiability threshold

Theorem [CR92,G96]

» If d <2 then ®@ does not contain a bicycle w.h.p.

» If d > 2 then @ contains a bicycle w.h.p.



The second moment method

A naive attempt

> we aim to compute log Z(®) for a typical ®

> Jensen’s inequality shows that

log Z(®) <logE[Z(®) | m] + o(n)

w.h.p.



The second moment method

The first moment

» computing E[Z(®) | m] is a cinch:
3 m
E[Z(®) | m]=2"- (Z)
> hence,

1 d
ZlogZ((I)) <(1-d)log2+ Elog?) w.h.p.



The second moment method

The second moment
> this bound is tight if E[Z(®)?] = O(E[Z(®)]?)
» we calculate

E[Z@)?|ml= ) P[®@ko,®=7|m]

o,Te{£1}"

n 1 a+¢/n)2\™
-y ¥ [+5

{=—no,t:01=¢

~ Z (1 . (1+€/n)2)'”
= (n+€)/2 16



The second moment method

The second moment

> hence,
11 E[Z((I>)2| ] H((1+ )/2)+dl (1+(1+a)2)
—lo m] ~ max a —log| =+ ———
n & —l=as<1 2 & 2 16

» at a = 0 the above function evaluates to

3 2
log2 + dlog:l ~ ;logE[Z(GJ) | m]

» therefore, we succeed iff the max is attained at @ = 0 o



The cavity method

The factor graph

> vertices xi,..., X, represent variables
> vertices ay,..., 4, represent clauses
» the graph G(®) contains few short cycles

» locally G(®) resembles a Galton-Watson branching process



The cavity method

The Boltzmann distribution
> assuming S(®) # @ define

_ 1o e S(@)} (X1 yever X}
po(0) = = = (o€ {1} )

> let o0 = 0 be asample from ue



The cavity method

Belief Propagation

» define the variable-to—clause messages by
Mo, x—a(0) = Uo—a(0x =0) (0=+1)

> “marginal of x upon removal of a”



The cavity method

Belief Propagation

» define the clause-to—variable messages by

Ho,a—x(0) = Uo-9x\a) (0 x = 0) (0=4+1)

> “marginal of x upon removal of all neighbours b € dx, b # a”



The cavity method

The replica symmetric ansatz

The messages (approximately) satisfy

1o, x—a(0) X H Hao,b—x(0)
bedx\a

pa,a—x(0) o 1—1{0 #sign(x, @)} pe,oq\x(—sign@a \ x))



The cavity method

The Bethe free entropy
> we expect that

logZ(tl>)~Zlog Y ] paa—x0)

i=1 o=x%1aeodx;

m
+) log|1- [] pe. g (-sign(x,a))
i=1

x€eda;

_Z Z log Z Ho,x—a; (0) o, a;—x(0)

i=1aedx; o=%1



The cavity method

Density evolution

» consider the empirical distribution of the messages:

1 n
o= - > D Oporat+)

i=1aeox;
» d*,d” ~Po(d/2), Kos Bys KBy, ... samples from 7w

d,
d 1,2, 1
Fo=—3" a
Hi:l Kt Hi:l Hiiat




The cavity method

Summary: the replica symmetric prediction [MZ96]

For d < 2 there is a unique distribution 7 on (0, 1) s.t.

d,
" d Hi:l”i
0~ d.
Hi:1”l Hl Hitvar

and ’}im n_llogZ((I)) = 9B, where
— 0

By =E
i=1 i=1

d. d
log(ﬂ i+ H Biia, ) —log(1 _ﬂlﬂz)]



The cavity method

Theorem [ACOHKLMPZ20]
For d < 2 there is a unique distribution 74 on (0, 1) s.t.
d.
d Hi—l 7]
Ho=—3. a
Hi:l Kt Hi:l Hira+

and r}im n! log Z(®) = #B,; where
—00

B, =E

i=1 i

d, d_ d
log(ﬂ pit [l l‘i+d+) - log(1 _”1”2)]
Hpll
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