Disordered systems and random graphs 3

Amin Coja-Oghlan
Goethe University

based on joint work with Dimitris Achlioptas, Oliver Gebhard, Max Hahn-Klimroth, Joon Lee, Philipp Loick, Noela Müller, Manuel Penschuck, Guangyan Zhou

The problem

Group testing
[D43,DH93]

- $n=$ population size, $k=n^{\theta}=\#$ infected, $m=\#$ tests
- all tests are conducted in parallel
- how many tests are necessary...
- ... information-theoretically?
- ... algorithmically?

Information-theoretic lower bounds

- if $k \sim n^{\theta}$ we need

$$
2^{m} \geq\binom{ n}{k} \quad \Rightarrow \quad m \geq \frac{1-\theta}{\log 2} \cdot k \log n
$$

Random hypergraphs

A randomised test design
[JAS16,A17]

- a random Δ-regular Γ-uniform hypergraph with

$$
\Delta \sim \frac{m \log 2}{k}, \quad \Gamma \sim \frac{n \log 2}{k}
$$

- the choice of Δ, Γ maximises the entropy of the test results

Random hypergraphs

Theorem
Let

$$
m_{\mathrm{rnd}}=\max \left\{\frac{1-\theta}{\log 2}, \frac{\theta}{\log ^{2} 2}\right\} k \log n \quad \text { where } \quad k \sim n^{\theta}
$$

The inference problem on the random hypergraph

- is insoluble if $m<(1-\varepsilon) m_{\text {rnd }}$
- reduces to hypergraph VC if $m>(1+\varepsilon) m_{\text {rnd }}$

Greedy algorithms

DD: Definitive Defectives

[ABJ14]

- declare all individuals in negative tests uninfected
- check for positive tests with just one undiagnosed individual
- declare those individuals infected
- declare all others uninfected
- \rightsquigarrow may produce false negatives

Greedy algorithms

DD: Definitive Defectives
[ABJ14]

- declare all individuals in negative tests uninfected
- check for positive tests with just one undiagnosed individual
- declare those individuals infected
- declare all others uninfected
- \rightsquigarrow may produce false negatives

Greedy algorithms

DD: Definitive Defectives

[ABJ14]

- declare all individuals in negative tests uninfected
- check for positive tests with just one undiagnosed individual
- declare those individuals infected
- declare all others uninfected
- \rightsquigarrow may produce false negatives

Greedy algorithms

Theorem
Let

$$
m_{\mathrm{DD}}=\frac{\max \{1-\theta, \theta\}}{\log ^{2} 2} k \log n
$$

- if $m>(1+\varepsilon) m_{\mathrm{DD}}$, then both DD succeeds
- if $m<(1-\varepsilon) m_{\mathrm{DD}}$, then DD and other algorithms fail [COGHKL19]

The SPIV algorithm

Theorem
[COGHKL19]
There exist a test design and an efficient algorithm SPIV that succeed w.h.p. for

$$
m \sim m_{\mathrm{rnd}}=\max \left\{\frac{1-\theta}{\log 2}, \frac{\theta}{\log ^{2} 2}\right\} k \log n
$$

The SPIV algorithm

Spatial coupling

- a ring comprising $1 \ll \ell \ll \log n$ compartments
- individuals join tests within a sliding window of size $1 \ll s \ll \ell$
- extra tests at the start facilitate DD

The SPIV algorithm

The algorithm

- run DD on the s seed compartments
- declare all individuals that appear in negative tests uninfected
- tentatively declare infected k / ℓ individuals with max score W_{x}
- combinatorial clean-up step

The SPIV algorithm

Unexplained tests

- let $W_{x, j}$ be the number of 'unexplained' positive tests $j-1$ compartments to the right of x

The SPIV algorithm

Unexplained tests

- if x is infected, then $W_{x, j} \sim \operatorname{Bin}\left(\Delta / s, 2^{j / s-1}\right)$
- if x is uninfected, then $W_{x, j} \sim \operatorname{Bin}\left(\Delta / s, 2^{j / s}-1\right)$

The SPIV algorithm

The score: first attempt

- just count unexplained tests
- we find the large deviations rate function of $\sum_{j=1}^{s-1} W_{x, j}$
- unfortunately, we will likely misclassify $\gg k$ individuals

The SPIV algorithm

The score: second attempt

- consider a weighted sum $W_{x}=\sum_{j=1}^{s-1} w_{j} W_{x, j}$
- Lagrange optimisation \rightsquigarrow optimal weights $w_{j}=-\log \left(1-2^{-j / s}\right)$
- only $o(k)$ misclassifications

A matching lower bound

Theorem
[COGHKL19]
Identifying the infected individuals is information-theoretically impossible with $(1-\varepsilon) m_{\mathrm{rnd}}$ tests.

A matching lower bound

Proof strategy

- Dilution: it suffices to consider $\theta=1-\delta$
- Regularisation: optimal designs are approximately regular
- Positive correlation: probability of being disguised [MT11,A18]
- Probabilistic method: disguised individuals likely exist

Group testing: summary

- optimal efficient algorithm SPIV based on spatial coupling
- matching information-theoretic lower bound
- existence of an adaptivity gap

Linear group testing via Belief Propagation

Linear group testing

- non-adaptive testing impossible when $k=\Theta(n)$
- Belief Propagation leads to a promising multi-stage scheme
- currently only experimental results

References

- M. Aldridge: Individual testing is optimal for nonadaptive group testing in the linear regime. IEEE Trans Inf Th 65 (2019)
- M. Aldridge, O. Johnson, J. Scarlett: Group testing: an information theory perspective (2019)
- A. Coja-Oghlan, O. Gebhard, M. Hahn-Klimroth, P. Loick: Optimal group testing. COLT 2020
- D. Donoho, A. Javanmard, A. Montanari:

Information-theoretically optimal compressed sensing via spatial coupling and approximate message passing. IEEE Trans Inf Th 59 (2013)

- R. Dorfman: The detection of defective members of large populations. Annals of Mathematical Statistics 14 (1943)
- S. Kudekar, T. Richardson, R. Urbanke: Spatially coupled ensembles universally achieve capacity under Belief Propagation. IEEE Trans Inf Th 59 (2013)
- P. Zhang, F. Krzakala, M. Mézard, L. Zdeborová: Non-adaptive pooling strategies for detection of rare faulty items. ICC 2013

