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The problem

Group testing [D43,DH93]

Ï n =population size, k = nθ = #infected, m = #tests

Ï all tests are conducted in parallel

Ï how many tests are necessary. . .

Ï . . . information-theoretically?

Ï . . . algorithmically?



Information-theoretic lower bounds
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Random hypergraphs

A randomised test design [JAS16,A17]

Ï a random ∆-regular Γ-uniform hypergraph with

∆∼ m log2

k
, Γ∼ n log2

k

Ï the choice of ∆,Γmaximises the entropy of the test results



Random hypergraphs
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Theorem

Let
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}
k logn where k ∼ nθ

The inference problem on the random hypergraph

Ï is insoluble if m < (1−ε)mrnd [JAS16]

Ï reduces to hypergraph VC if m > (1+ε)mrnd [COGHKL19]



Greedy algorithms

DD: Definitive Defectives [ABJ14]

Ï declare all individuals in negative tests uninfected

Ï check for positive tests with just one undiagnosed individual

Ï declare those individuals infected

Ï declare all others uninfected

Ï  may produce false negatives
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Theorem

Let

mDD = max{1−θ,θ}

log2 2
k logn

Ï if m > (1+ε)mDD, then both DD succeeds [ABJ14]

Ï if m < (1−ε)mDD, then DD and other algorithms fail
[COGHKL19]



The SPIV algorithm
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Theorem [COGHKL19]

There exist a test design and an efficient algorithm SPIV that
succeed w.h.p. for

m ∼ mrnd = max

{
1−θ
log2

,
θ

log2 2

}
k logn



The SPIV algorithm
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Spatial coupling

Ï a ring comprising 1 ¿ `¿ logn compartments

Ï individuals join tests within a sliding window of size 1 ¿ s ¿ `

Ï extra tests at the start facilitate DD

inspired by low-density parity check codes [KMRU10]
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The algorithm

Ï run DD on the s seed compartments

Ï declare all individuals that appear in negative tests uninfected

Ï tentatively declare infected k/` individuals with max score Wx

Ï combinatorial clean-up step



The SPIV algorithm

x

Unexplained tests

Ï let Wx, j be the number of ‘unexplained’ positive tests j −1
compartments to the right of x



The SPIV algorithm

x

Unexplained tests

Ï if x is infected, then Wx, j ∼ Bin(∆/s,2 j /s−1)

Ï if x is uninfected, then Wx, j ∼ Bin(∆/s,2 j /s −1)



The SPIV algorithm
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The score: first attempt

Ï just count unexplained tests

Ï we find the large deviations rate function of
s−1∑
j=1

Wx, j

Ï unfortunately, we will likely misclassify À k individuals



The SPIV algorithm

x

The score: second attempt

Ï consider a weighted sum Wx =
s−1∑
j=1

w j Wx, j

Ï Lagrange optimisation optimal weights w j =− log(1−2− j /s)

Ï only o(k) misclassifications



A matching lower bound
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Theorem [COGHKL19]

Identifying the infected individuals is information-theoretically
impossible with (1−ε)mrnd tests.



A matching lower bound
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Proof strategy

Ï Dilution: it suffices to consider θ = 1−δ
Ï Regularisation: optimal designs are approximately regular

Ï Positive correlation: probability of being disguised [MT11,A18]

Ï Probabilistic method: disguised individuals likely exist



Group testing: summary
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Ï optimal efficient algorithm SPIV based on spatial coupling

Ï matching information-theoretic lower bound

Ï existence of an adaptivity gap



Linear group testing via Belief Propagation

Linear group testing

Ï non-adaptive testing impossible when k =Θ(n) [A19]

Ï Belief Propagation leads to a promising multi-stage scheme

Ï currently only experimental results
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