
Problems for Ivan Corwin’s OOPS lectures

Read this first: Problems should be completed by groups of students and submitted by 14:00UTC the next day
to the TA’s. Please identify the members of your group. The TA’s will collate and select the best solutions to
post. Questions? Email Promit (ghosal.promit926@gmail.com), Xuan (xuanw@math.columbia.edu) or Ivan
(ivan.corwin@gmail.com)

Problems for Lecture 1

1. Recall that a partition λ = (λ1 ≥ λ2 ≥ · · · ≥ 0) is a weakly decreasing sequence of non-negative
integers. The size of the partition |λ| =

∑
i λi, the length of the partition `(λ) = #{j : λj > 0} and

two partitions λ and µ interlace (written λ � µ if λ1 ≥ µ1 ≥ λ2 ≥ · · · . We defined the (skew) Schur
polynomials as

sλ/µ(a1, . . . , aM ) :=
∑

λ=λ(M)�λ(M−1)�···λ(0)=µ

M∏
s=1

sλ(s)/λ(s−1)(as)

where the one-variable skew Schur polynomial is given by sλ/µ(a) := 1λ�µa
|λ|−|µ|.

Prove the following properties of Schur polynomials

(a) Use the Lindström-Gessel-Viennot lemma to prove that

sλ(a1, . . . , aM ) = det
[
hλi+j−i(a1, . . . , aM )

]M
i,j=1

where hj(a1, . . . , aM ) are the complete homogeneous symmetric polynomials, given by

hj(a1, . . . , aM ) =
∑

i1≤···≤ij

ai1 · · · aij .

(b) Prove a similar formula for sλ/µ(a1, . . . , aM ) and use that to deduce that these are symmetric
polynomials (symmetric in interchanging the a variables).

(c) Prove the bialternate formula:

sλ(a1, . . . , aM ) =
det
[
a
λj+M−j
i

]M
i,j=1

det
[
aM−ji

]M
i,j=1

.

The denominator is called the Vandermonde determinant – evaluate it as a product.

(d) Prove the Cauchy-Littlewood identity

∑
λ

sλ(a1, . . . , aM )sλ(b1, . . . , bN ) =

M∏
i=1

N∏
j=1

1

1− aibj
=: Z(~a;~b).

Hint: First show the one-variable skew Cauchy-Littlewood identity∑
ν

sν/λ(a)sν/µ(b) =
1

1− ab
∑
κ

sλ/κ(b)sµ/κ(a)

by hand and then use the first definition of Schur polynomials (via interlacing partitions) to prove
the multi-variable identity. Along the way, you will prove a multi-variable version of the skew
Cauchy-Littlewood identity.

1



(e) The Schur process on ~λ =
(
∅ = λ(0) � λ(1) � · · ·λ(M) � · · ·λ(M +N − 1) � λ(M +N) = ∅

)
is

given by

P~a;~b(~λ) = Z(~a;~b)−1
M∏
s=1

sλ(s)/λ(s−1)(as)

N∏
s=1

sλ(M+N−s)/λ(M+N−s+1)(bs).

Consider geo(~a;~b) random walks Yi, i ≥ 1 from Yi(0) = −i to Yi(M + N) = −i. Condition them

on non-touching and let λi(s) = Yi(s) + i. Show that the induced measure on ~λ is precisely the
above Schur process.

(f) Prove that the marginal distribution of λ(M) under the above Schur process is given by the Schur
measure

P~a;~b(λ) = Z(~a,~b)−1sλ(~a)sλ(~b).

What can you say about the law of other marginals (i.e., λ(s) for any other s)?

2. Consider a measure P supported on N -element subsets Y = {y1, . . . , yN} of a finite set Ω (with |Ω| ≥ N).
Define the kth correlation function

ρk(x1, . . . , xk) := P
(
Y such that {x1, . . . , xk} ⊂ Y

)
where we assume all xi are distinct. A P is called determinantal if there exists a kernel K : Ω×Ω→ R
(or a real valued matrix with rows and columns indexed by Ω) such that for all k,

ρk(x1, . . . , xk) = det
(
K(xi, xj)

)k
i,j=1

.

Prove that for any S ⊂ Ω,
P(Y ∩ S = ∅) = det(1−K)S

where ∅ is the empty set, 1 is the identity matrix, and det(M)S means to evaluate the determinant of
the |S| × |S| matrix made up entries Mi,j for i and j in S.

Along the way in proving this you will need to prove the following expansion formula

det(I −K)S = 1 +

∞∑
k=1

(−1)k

k!

∑
x1,...,xk∈S

det
(
K(xi, xj)

)k
i,j=1

.

Notice that even though the sum over k is to infinity, it really terminates because eventually all matrices
have determinant 0.

3. Consider a measure PN on size N subsets of Z of the form

PN (x1, . . . , xN ) = cN det
[
φi(xj)

]N
i,j=1

· det
[
ψi(xj)

]N
i,j=1

where φ1, . . . , φN , ψ1, . . . , ψN : Z→ C are functions such that the Gram matrix

Gi,j :=
∑
x∈Z

φi(x)ψj(x)

has finite entries for 1 ≤ i, j ≤ N , and cN is a constant needed to normalize the measure to sum to 1.

Prove that PN is determinantal with kernel

K(x, y) =

N∑
i,j=1

φi(x)[G−t]i,jψj(y)

where G−t means the transpose of the inverse of the Gram matrix. Here is a sketch for a proof of this
fact – please fill in the details.
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• Prove that the normalizing constant cN = N ! det
[
Gi,j

]N
i,j=1

and hence conclude that G is invert-

ible.

• Prove that there exist matrices A and B such that AGBt = I. Thus, if we define Φk(x) =∑N
`=1Ak`φ`(x) and Ψk(y) =

∑N
`=1Bk`ψ`(y) for 1 ≤ k ≤ N , the Φ and Ψ are biorthogonal in the

sense that
∑
x Φi(x)Ψj(x) = 1i=j .

• Show that the n-th correlation function can be expressed in terms of the Φk and Ψk as

ρn(x1, . . . , xn) =
1

(N − n)!

∑
xn+1,...,xN

det
[
Φi(xj)

]N
i,j=1

det
[
Ψi(xj)

]N
i,j=1

.

• Use the Cauchy-Binet formula to conclude the desired result.

4. Apply the previous formula to the bialternant formula for Schur polynomials to show that the Schur
measure is determinantal. Prove Okounkov’s formula: Choose λ from the Schur measure

P~a;~b(λ) = Z(~a,~b)−1sλ(~a)sλ(~b), where Z(~a;~b) =

M∏
i=1

N∏
j=1

1

1− aibj
.

Then Ỹ =
{
λi− i+ 1/2

}
i≥1 is a determinantal point process on Z+ 1/2 with kernel K(i, j) defined by

the generating series

∑
i,j∈Z+1/2

K(i, j)viw−j =
Z(~a; v)Z(~b;w−1)

Z(~b; v−1)Z(~a;w)

∑
k=1/2,3/2,···

(
w/v

)k
.

Along the way, you should prove a double-contour integral formula for K(i, j) from which the generating
function identity follows from Cauchy’s residue theorem. In the special case where M = N and all
ai = bj = q, the double-contour integral formula should simplify to

K(i, j) =
1

(2π
√
−1)2

∮ ∮ √
vw

v − w

( (1− q/v)(1− qw)

(1− qv)(1− q/w)

)N
v−i−1wj−1dvdw

where both the v and w contours are circles that contain q and do not contain 1, and the v contour
also entirely contains the w contour.

Problems for Lecture 2

1. Consider a line ensemble with k fixed starting points and k fixed ending point, and a bounding curve
above and below (as in the figure with k = 2 and the black dots representing the starting and ending
points). The ensemble is defined as the uniform distribution on all non-touching paths which are
integer valued, piece-wise constant, non-decreasing and connect the starting and ending points, without
touching the bounding curves. On the right of the figure we illustrate a jump for the Metropolis Markov
chain which chooses a line, a location and then randomly moves the value up or down by 1, provided
the update does not violate the conditions set out. Show that this update converges to the uniform
distribution. Use this to prove the monotone coupling with respect to different starting and ending
points, and bounding curves.

2. Give an example of a discrete random walk which when conditioned to form a bridge violates monotone
coupling. Specifically, provide an example of a time homogeneous random walk whose measure, when
conditioned to go from 0 to 0, versus from 0 to 1 is not stochastically ordered.

3. Consider a Brownian bridge B : [0, 1] → R with B(0) = B(1) = 0. Let M [0, 1/2] = maxx∈[0,1/2]B(x).
Use a “no big max” type argument to prove that P(M [0, 1/2] ≥ s) ≤ 2P(B(1/2) ≥ s/2).
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4. Prove that a Brownian bridge B : [0, 1] → R with B(0) = B(1) = 0 almost surely has a unique
maximizer. Hint: Let I and J be intervals with rational endpoint I = [i1, i2], J = [j1, j2] with
i1 < i2 < j1 < j2 and let EI,J be the event that the maximum of B on I and of B on J are equal. Then
the event of non-uniqueness of the maximizer is equal to the countable union of events EI,J where I
and J range over the countable number of ordered rational intervals I and J in [0, 1]. Since this is a
countable union, if we can show that the probability of each EI,J is zero, we will be done. Prove that
using the Gibbs property for the Brownian bridge.

5. Fill in the details in the proof of the following result: The probability that the maximizer of the Airy2

process minus a parabola is outside [−R,R] is of order e−cR
3

. Use the Gibbs property and a union
bound. You may also use the upper and lower tail bounds for the Tracy-Widom GUE distribution (the
one-point distribution for the Airy2 process).
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