
Online Open Probability School Summer of 2020

Homework 1: Gibbsian Line Ensembles
Lecturer: Ivan Corwin TA: Xuan Wu, Promit Ghosal

1(a). Take U = {ui}Mi=1, ui = r + 1 − i and V = {vi}Mi=1, vi = λi + r + 1 − i. Consider non-intersecting
up/right paths from {(ui, 1)}Mi=1 to {(vi,M)}Mi=1, see the following picture for an illustration.
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Figure 1.1: Non-intersecting paths.

Assign edge weights as follows. Each vertical edge has weight 1 and each horizontal edge has weight
as where s is the height of this edge. For any path π connecting two points, define the weight of such
path wt(π) as the product of its edges’ weights. Similarly, define the weight wt(π) of an M -tuple path
π = (π1, π2, · · · , πM ) connecting two sets of endpoints as the product of weights for each path πi.

Define an M ×M matrix K with Kij =
∑
π:ui→vi wt(π), where the summation is over all up/right

path from (uj , 1) to (vi,M). The LGV lemma says that

detK =
∑

π:U→V
wt(π),

where the summation in the RHS is over all M -tuple non-intersecting paths from {(ui, 1)}Mi=1 to
{(vi,M)}Mi=1.

Now we aim to identify the LHS with complete homogeneous symmetric polynomials hλi+j−i(a1, · · · , aM )
and the RHS with Schur polynomial sλ(a1, · · · , aM ), which would complete the proof.

For the LHS, the contribution of each Kij only comes from the horizontal edges and it takes vi − ui =
λi + j − i horizontal steps to go from (uj , 1) to (vi,M). By summing over the locations of these
horizontal jumps we obtain the expression of hλi+j−i(a1, · · · , aM ).

For the RHS, for each M -tuple non-intersecting paths π = (π1, π2, · · · , πM ) connecting {ui, 1}Mi=1 and
{vi,M}Mi=1, define a sequence of interlacing partitions λ(M) � λ(M − 1) � · · · � λ(0) = ∅ as follows.
Let λi(k) be the number of horizontal steps for the i-th path (count from right to left) before leaving
height k. It can be readily verified that the above construction gives an identification between non-
intersecting paths π = (π1, π2, · · · , πM ) connecting {ui, 1}Mi=1 and {vi,M}Mi=1 and interlacing partitions.
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By decomposing the weight wt(π) into the contributions from each height level from 1 to M , we
could identify that wt(π) with the product of one variable skew Schur polynomials, which implies the
equivalence between the RHS and the Schur polynomial, hence finishes the proof.

1(b). By the same argument as in 1(a) but replace ui with µi + r + 1− i, we have

sλ/µ(a1, · · · , aM ) = det[hλi−µj+j−i]
M
i,j=1.

Symmetry for these skew Schur polynomials follows from the symmetry of h.

1(c). Note that Schur polynomials sλ enjoys following recursive relation

sλ(a1, · · · , aM ) =
∑
µ�λ

sµ(a1, · · · , aM−1) · a|λ|−|µ|M .

Denote the RHS as fλ(a1, · · · , aM ). First verify that fλ(a1, · · · , aM ) = sλ(a1, · · · , aM ) when M = 1
and then verify the recursive relation for fλ(a1, · · · , aM ). The M = 1 case is straightforward. We now
proceed to sketch the computation for the recursive relation. First consider the case aM = 1 and the
general aM case follows by the homogeneity of Schur polynomials. Step 1, subtract each row by the
last row for the two determinants. Step 2, divide each row by ai − 1, 1 ≤ i ≤ M − 1. Step 3, observe
that the denominator turns into a Vandermonde determinant with one degree lower. Step 4, for the
determinant in the nominator, from the first column to the second last column, subtract each column
by its right next column. Observe that the determinant now could be expanded as a summation of the

form det
[
a
µj+M−j
i

]M−1
i,j=1

over partitions µ � λ, hence finishes the proof.

The Vandermonde determinant det
[
aM−ji

]M
i,j=1

could be expanded as
∏

1≤i<j≤n

(aj − ai).

1(d). We show the skew-Cauchy identity using the Schur operators. Define the operators {ui}i≥1 and {di}i≥1.

Ui · λ :=

{
λ+ �, if possible,

0, otherwise.
, di · λ =

{
λ−�, if possible,

0, otherwise.
.

Note that these operators satisfies the following commutation relations:

djui = uidj , di+1ui+i = uidi, d1u1 = I. (1.1)

With {ui}i≥1 and {di}i≥1, we define

A(x) = . . . (1 + xu2)(1 + xu1), B(x) = (1 + xd1)(1 + xd2) . . .

For any two partitions λ, µ, 〈λ, µ〉 = δλ,µ. Notice that

〈A(xn)A(xn−1) . . . A(x1)µ, λ〉 = sλ/µ(x1, . . . , xn)

〈B(xn)B(xn−1) . . . B(x1)µ, λ〉 = sµ/λ(x1, . . . , xn).

We claim and prove that

A(a)B(b)
1

1− ab
= B(b)A(x) (1.2)

Assuming (1.2), we first complete showing the skew-Cauchy identity.∑
ν

sν/λ(a)sν/µ(b) = 〈B(b)A(a)λ, µ〉

= 〈 1

1− ab
A(a)B(b)λ, µ〉

=
∑
κ

sλ/κ(b)sµ/κ(a)
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We now show (1.2). For this, we require the following identity which holds for any two non-commutative
operators φ, ψ:

(1 + φ)(1− ψφ)−1(1 + ψ) = (1 + ψ)(1− ψφ)−1(1 + φ). (1.3)

The proof of (1.2) is direct consequence of the above identity and the commutation relations (1.1) (fill
in the details).

One can easily prove multivariable version of the skew-Cauchy identity by successively applying the
relation (1.2) in the inner product definition of the Schur polynomials. From the skew-Cauchy identity,
Cauchy’s identity follows by setting λ = µ = ∅.

1(d). Follows directly from the definition of the random walk Yi, i ≥ 1.

1(e). The marginal distribution of λM is obtained by summing the the Schur process probability distribution
function over λ1, . . . , λM−1 and λM+1, . . . , λM+N−1. By the definition of the Schur polynomials, this
sum coincides with the following expression:

1

Z(a;b)
sλM

(a)sλM
(b) (1.4)

This shows the first claim.

The marginal distribution of λs for s < M and s > M are given as follows:

P(λs = λ) =

{
1

Z({a1,...,as},b)sλ({a1, . . . , as})sλ(b) s < M,
1

Z(a,{b1,...,bM+N−s})sλ(a)sλ({b1, . . . , bM+N−s}) s > M.
(1.5)

Use skew-Cauchy identity to prove this claim.

2. (This solution is provided by the group of Serdar, Stephen, Jens.) Let us start by proving the expansion
formula. For any set S, let P (S) denote the set of permutations of S. We will use the formula for the
determinant:

det(M) =
∑

σ∈S({1,...,n})

sgn(σ)

n∏
i=1

M [i, σ(i)].

(Note that the empty product is 1, and the empty set has one permutation, so the determinant of a
0× 0 matrix is 1.)

Let m = |S|. We will first derive the following expansion formula:

det(I −K)S =
∑
A⊆S

(−1)|A| det(K)A, (1.6)

which implies the desired expansion formula as

∑
A⊆S

(−1)|A| det(K)A =
∑
k

(−1)k

k!

∑
x1,··· ,xk∈S

det[K(xi, xj)]
k
i,j=1.

By the formula for the determinant,

det(I −K)S =
∑

σ∈P (S)

sgn(σ)
∏
x∈S

(I −K)[x, σ(x)].
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For a permutation σ ∈ P (S) and a set A ⊆ S, let us say “f(σ,A)” when σ(x) = x for all x ∈ S \ A.
Then the right-hand-side of the desired formula becomes∑

A⊆S

(−1)|A|
∑

σ′∈P (A)

sgn(σ′)
∏
x∈A

K[x, σ′(x)]

=
∑
A⊆S

(−1)|A|
∑

σ∈P (S),f(σ,A)

sgn(σ)
∏
x∈A

K[x, σ(x)]

=
∑

σ∈P (S)

sgn(σ)
∑

A⊆S,f(σ,A)

(−1)|A|
∏
x∈A

K[x, σ(x)].

Therefore, all that remains is to show that for all σ ∈ P (S),∏
x∈S

(I −K)[x, σ(x)] =
∑

A⊆S,f(σ,A)

(−1)|A|
∏
x∈A

K[x, σ(x)]

Fix σ ∈ P (S) and let S0 = {x ∈ S : σ(x) = x}. Then∏
x∈S

(I −K)[x, σ(x)] =
∏
x∈S0

(1−K[x, x]) ·
∏

x∈S\S0

(−K[x, σ(x)])

=

 ∑
B⊆S0

(−1)|B|
∏
x∈B

K[x, x]

(−1)|S|−|S0|
∏

x∈S\S0

K[x, σ(x)]


(by expanding

∏
x∈S0

(1−K[x, x]))

=
∑

A⊇S\S0

(−1)|A|
∏
x∈S

K[x, σ(x)] (by taking A = B ∪ (S \ S0))

=
∑

A⊆S,f(σ,A)

(−1)|A|
∏
x∈S

K[x, σ(x)],

which completes the proof.

Now let us prove that P(Y ∩ S = ∅) = det(I −K)S . By the inclusion-exclusion principle,

P(Y ∩ S 6= ∅) =
∑

A⊆S,A 6=∅

(−1)|A|+1P(A ⊆ Y )

=
∑

A⊆S,A 6=∅

(−1)|A|+1ρ(A)

=
∑

A⊆S,A 6=∅

(−1)|A|+1 det(K)A.

Taking the complement,

P(Y ∩ S = ∅) = 1−
∑

A⊆S,A 6=∅

(−1)|A|+1 det(K)A

=
∑
A⊆S

(−1)|A| det(K)A

= det(I −K)S by (1.6).

3. • There is a typo. cN should be 1/(N ! det[G]). Prove this result by using Cauchy-Binet’s identity.
Since the partition function includes the sum over any N ! permutations of any set of N -numbers
{x1, . . . , xN} ∈ Z, this explains the multiplicative factor N ! with the determinant of the gram
matrix.
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• The matrix A and B can be constructed using the singular value decomposition ofG. IfG = P∆Qt

for some orthogonal matrix P,Q and a diagonal matrix ∆, then, one can set A = ∆−1/2P t and
B = ∆−1/2Qt. Other properties are easily verifiable.

• Rewriting of ρ in terms of Φ and Ψ is a simple consequence of the results of Step 1 and 2. The last
step follows again from Cauchy-Binet’s formula. For details, we refer to page 22-23 of ’Lectures
on integrable probability’ by Borodin and Gorin.

4. For the solution of this problem, we refer to Theorem 5.3 (page 28) and its proof in page 29 of ’Lectures
in integrable probability’ by Borodin and Gorin.


