Branching random walk with stretched exponential tails

Piotr Dyszewski (TUM \& UWr)

June 5, 2020

- the particles reproduce according to a Galton-Watson process with reproduction mean $m>1$
- the displacements are iid copies of X such that

$$
\mathbb{P}[X>t] \sim e^{-t^{r}}, \quad r \in(0,1)
$$

- $M_{n}=$ the position of the rightmost particle

Theorem (P.D, N. Gantert, T. Höfelsauer)

Take X such that $\mathbb{E} X=0$ and $\mathbb{E} X^{2}=1$.
Suppose that (...) and that X has a stretched exponential tail, i.e.

$$
\mathbb{P}[X>t] \sim e^{-t^{r}}, \quad r \in(0,1)
$$

Then there are constants γ, σ, α such that: for $r \in\left(0, \frac{2}{3}\right]$,

$$
\frac{M_{n}-\alpha n^{\frac{1}{r}}}{\sigma n^{\frac{1}{r}}-1} \rightarrow^{d} F(x)=\mathbb{E}\left[\exp \left\{-\gamma W e^{-x}\right\}\right]
$$

and for $r \in\left(\frac{2}{3}, 1\right)$

$$
\frac{M_{n}-\alpha n^{\frac{1}{r}}}{n^{2-\frac{1}{r}}} \rightarrow \frac{1}{2 \sigma}
$$

where W is a martingale limit associated with the underlying Galton-Watson process.

Let $\left(Z_{n}\right)$ be a Galton-Watson process with reproduction mean $m>1$. Assume for simplicity $\mathbb{P}\left[Z_{1}=0\right]=0$.
Let $\mathbb{T} \subseteq \cup_{n \geq 0} \mathbb{N}^{n}$ be the corresponding Galton-Watson tree.

$X_{y}, y \in \mathbb{T}$ iid
For $x \in \mathbb{T}$,

$$
V(x)=\sum_{y \leq x} x_{y}
$$

$$
M_{n}=\max _{|x|=n} V(x)
$$

$$
\begin{gathered}
\mathbb{P}[X>t] \sim e^{-t^{r}}, \quad r \in(0,1) \\
\mathbb{P}\left[X_{1}+X_{2}>t\right] \sim \mathbb{P}\left[\max \left\{X_{1}, X_{2}\right\}>t\right] \\
S_{n}=\sum_{1 \leq k \leq n} X_{k}, X_{n}^{*}=\max _{1 \leq k \leq n} X_{k} \\
\mathbb{P}\left[S_{n}>t_{n}\right] \sim ? \\
\mathbb{P}\left[S_{n}>c n^{\frac{1}{r}}\right] \approx \sup _{s} \mathbb{P}\left[X_{n}^{*}>c n^{\frac{1}{r}}-s\right] \mathbb{P}\left[S_{n-1}>s\right] \\
\approx \sup _{s} n \exp \left\{-\left(c n^{\frac{1}{r}}-s\right)^{r}-\frac{s^{2}}{2 n}\right\} \\
\approx \mathbb{P}\left[X_{n}^{*}>c n^{\frac{1}{r}}-r c^{r-1} n^{2-\frac{1}{r}}\right] \mathbb{P}\left[S_{n-1}>r c^{r-1} n^{2-\frac{1}{r}}\right] \\
\mathbb{P}\left[S_{n}>c n^{\frac{1}{r}}\right] \sim n \exp \left\{-c^{r} n+O\left(n^{3-\frac{2}{r}}\right)\right\}
\end{gathered}
$$

If $|x|=n$, then

$$
V(x) \stackrel{d}{=} S_{n}=\sum_{k=1}^{n} x_{k} .
$$

$$
\begin{aligned}
\mathbb{P}\left[M_{n}>c n^{\frac{1}{r}}\right] & =\mathbb{P}\left[\exists|x|=n, V(x)>c n^{\frac{1}{r}}\right] \\
& =\mathbb{P}\left[\sum_{|x|=n} \mathbb{1}_{\left\{v(x)>c n^{\frac{1}{r}}\right\}} \geq 1\right] \\
& \leq \mathbb{E}\left[\sum_{|x|=n} \mathbb{1}_{\left\{v(x)>c n^{\frac{1}{r}}\right\}}\right]=\mathbb{E}\left[Z_{n}\right] \mathbb{P}\left[S_{n}>c n^{\frac{1}{r}}\right] \\
& =m^{n} \mathbb{P}\left[S_{n}>c n^{\frac{1}{r}}\right] \\
& \sim m^{n} \exp \left\{-c^{r} n(1+o(1))\right\}
\end{aligned}
$$

$$
\frac{M_{n}}{n^{\frac{1}{r}}} \rightarrow \alpha=\log (m)^{\frac{1}{r}}
$$

The first term in the asymptotic expansion of M_{n} is related to the biggest displacement, i.e.

$$
N_{n}=\max _{|y| \leq n} X_{y} .
$$

Proposition

$$
\frac{N_{n}-\alpha n^{\frac{1}{r}}}{\sigma n^{\frac{1}{r}-1}} \rightarrow^{d} H \stackrel{d}{=} \mathbb{E}\left[\exp \left\{-\gamma^{\prime} W e^{-x}\right\}\right]
$$

Proof.

$x_{n} \rightarrow \infty$

$$
\begin{aligned}
\mathbb{P}\left[N_{n} \leq x_{n}\right] & =\mathbb{E}\left[\mathbb{P}\left[N_{n} \leq x_{n} \mid\left(Z_{n}\right)\right]\right]=\mathbb{E}\left[\mathbb{P}\left[X \leq x_{n}\right]^{Y_{n}}\right] \\
& \sim \mathbb{E}\left[\exp \left\{-Y_{n} \mathbb{P}\left[X>x_{n}\right]\right\}\right] \\
Y_{n}=\#\{|x| \leq n\} & =\sum_{k=1}^{n} Z_{k} .
\end{aligned}
$$

Proof continued .

$m^{-n} Z_{n}$ is a positive martingale

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{Z_{n}}{m^{n}}=W>0 \\
& Y_{n} \sim \frac{m}{m-1} W m^{n}
\end{aligned}
$$

$x_{n}=\alpha n^{\frac{1}{r}}+\sigma n^{\frac{1}{r}-1} x$

$$
\begin{aligned}
& Y_{n} \mathbb{P}\left[X>x_{n}\right] \sim \frac{m}{m-1} W m^{n} \exp \left\{-\left(\alpha n^{\frac{1}{r}}+\sigma n^{\frac{1}{r}-1} x\right)^{r}\right\} \\
& \sim \frac{m}{m-1} W m^{n} \exp \left\{-\alpha^{r} n-\alpha^{r-1} r \sigma x\right\} \\
& \sim \gamma^{\prime} W \exp \{-x\} \\
& \sigma=\frac{\alpha^{1-r}}{r} \quad \gamma^{\prime}=\frac{m}{m-1} \\
& \mathbb{P}\left[\frac{N_{n}-\alpha n^{\frac{1}{r}}}{\sigma n^{\frac{1}{r}-1}} \leq x\right]=\mathbb{P}\left[N_{n} \leq x_{n}\right] \rightarrow \mathbb{E}\left[\exp \left\{-\gamma^{\prime} W e^{-x}\right\}\right]
\end{aligned}
$$

$$
\begin{gathered}
\frac{M_{n}}{n^{\frac{1}{r}}} \rightarrow \alpha \quad \frac{N_{n}}{n^{\frac{1}{r}}} \rightarrow \alpha \\
\max _{|x|=n}\left\{V(x)=\sum_{v \leq x} X_{v}: X_{v} \ll \alpha n^{\frac{1}{r}}\right\}=o(\ldots) \\
\#\{|v| \leq n\}=Y_{n} \approx m^{n} \\
\#\left\{|v| \leq n: X_{v} \approx \alpha n^{\frac{1}{r}}\right\} \approx m^{o(n)} \\
\left\{|v| \leq n: X_{v} \approx \alpha n^{\frac{1}{r}}\right\} \text { is a small subset of }\{|v| \leq n\}
\end{gathered}
$$

$$
\begin{aligned}
V(x) & =R_{1}(x)+V_{0}(x)+N(x)+R_{2}(x) \\
& =V_{0}(x)+N(x)
\end{aligned}
$$

$$
\begin{gathered}
M_{n} \approx \max \left\{V_{0}(x)+N(x)\right\} \\
N(x) \approx \alpha n^{\frac{1}{r}} \\
V_{0}(x) \stackrel{d}{=} S_{n-o(n)} \left\lvert\, x_{k} \ll \alpha n^{\frac{1}{r}}\right.
\end{gathered}
$$

The contribution of $V_{0}(x)$ is at most

$$
V_{0}(x)=O\left(n^{2-\frac{1}{r}}\right)
$$

on the other hand

$$
N_{n}=\max _{|V| \leq n} X_{v} \stackrel{d}{=} \alpha n^{\frac{1}{r}}+\sigma n^{\frac{1}{r}-1} H(1+o(1))
$$

If $r<\frac{2}{3}, n^{2-\frac{1}{r}}=o\left(n^{\frac{1}{r}-1}\right)$ and so

$$
M_{n} \approx N_{n} \stackrel{d}{=} \alpha n^{\frac{1}{r}}+\sigma n^{\frac{1}{r}-1} H(1+o(1))
$$

$$
\frac{M_{n}-\alpha n^{\frac{1}{r}}}{\sigma n^{\frac{1}{r}-1}} \sim \frac{N_{n}-\alpha n^{\frac{1}{r}}}{\sigma n^{\frac{1}{r}-1}} \rightarrow \rightarrow^{d} H \stackrel{d}{=} \mathbb{E}\left[\exp \left\{-\gamma^{\prime} W e^{-x}\right\}\right]
$$

$$
\frac{M_{n}-N_{n}}{n^{\frac{1}{r}}-1} \rightarrow 0
$$

If $r>\frac{2}{3}, n^{\frac{1}{r}-1}=o\left(n^{2-\frac{1}{r}}\right)$

$M_{n} \approx \max \left\{V_{0}(x)+N(x)\right\}$

$$
\frac{M_{n}-\alpha n^{\frac{1}{r}}}{n^{2-\frac{1}{r}}} \rightarrow \frac{1}{2 \sigma}
$$

If $r=\frac{2}{3}, n^{2-\frac{1}{r}}=n^{\frac{1}{r}-1}=\sqrt{n}$

$$
M_{n} \approx \max \left\{N(x)+V_{0}(x)\right\}
$$

$\mathcal{N}_{X} \stackrel{d}{=} \Phi(\cdot) \stackrel{d}{=} \mathcal{N}(0,1)$.

$$
\frac{M_{n}-\alpha n^{\frac{1}{r}}}{\sigma \sqrt{n}} \approx \max \left\{\frac{N(x)-\alpha n^{\frac{1}{r}}}{\sigma \sqrt{n}}+\frac{1}{\sigma} \mathcal{N}_{x}\right\}
$$

$$
\begin{aligned}
\mathbb{P}\left[\frac{M_{n}-\alpha n^{\frac{1}{r}}}{\sigma \sqrt{n}} \leq t\right] & \approx \mathbb{E}\left[\mathbb{P}\left[\frac{N(x)-\alpha n^{\frac{1}{r}}}{\sigma \sqrt{n}}+\frac{1}{\sigma} \mathcal{N}>t\right]^{Y_{n}}\right] \\
& \approx \mathbb{E}\left[\exp \left\{\gamma^{\prime} W \int e^{-y}(1-\Phi(\sigma(t-y)) d y\}\right]\right. \\
& =\mathbb{E}\left[\exp \left\{-\gamma W e^{-t}\right\}\right]
\end{aligned}
$$

Theorem (P.D, N. Gantert, T. Höfelsauer)

Take X such that $\mathbb{E} X=0$ and $\mathbb{E} X^{2}=1$.
Suppose that (...) and that X has a stretched exponential tail, i.e.

$$
\mathbb{P}[X>t] \sim e^{-t^{r}}, \quad r \in(0,1)
$$

Then there are constants γ, σ, α such that: for $r \in\left(0, \frac{2}{3}\right]$,

$$
\frac{M_{n}-\alpha n^{\frac{1}{r}}}{\sigma n^{\frac{1}{r}-1}} \rightarrow^{d} F(x)=\mathbb{E}\left[\exp \left\{-\gamma W e^{-x}\right\}\right],
$$

and for $r \in\left(\frac{2}{3}, 1\right)$

$$
\frac{M_{n}-\alpha n^{\frac{1}{r}}}{n^{2-\frac{1}{r}}} \rightarrow \frac{1}{2 \sigma}
$$

where W is a martingale limit associated with the underlying Galton-Watson process.

References I

R
Piotr Dyszewski, Nina Gantert, and Thomas Höfelsauer, The maximum of a branching random walk with stretched exponantial tails, https://arxiv.org/abs/2004.03871

Nina Gantert, The maximum of a branching random walk with semiexponential increments, Annals of Probability 28 (2000), no. 3, 1219-1229.
围 A. V. Nagaev, Integral limit theorems taking large deviations into account when Cramér's condition does not hold. I, Theory of Probability \& Its Applications 14 (1969), no. 1, 51-64.

