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Pólya urn

Write pGn, Rnq for the numbers of green and red balls added by time n in the
classical Pólya urn:

Start at time 0 with one green and one red ball in an urn.

At each subsequent point in time, pick a ball uniformly at random from
the urn and replace it along with one of the same color.
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Running the urn backwards: exchangeability

Check that if we condition on the event tGn�1 � g,Rn�1 � ru, then the
order in which the g green balls and r red balls appear is uniformly
distributed over the

�
g�r
g

�
�
�
g�r
r

�
possibilities.

In particular,

PtGn � g � 1, Rn � r |Gn�1 � g,Rn�1 � ru �
g

g � r

and
PtGn � g,Rn � r � 1 |Gn�1 � g,Rn�1 � ru �

r

g � r
.
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Running coin-tossing backwards: exchangeability

Let Hn (resp. Tn) be the number of heads (resp. tails) that appear in n
independent tosses of a coin that comes up heads with probability p.

Check that if we condition on the event tHn�1 � h, Tn�1 � tu, then the
order in which the h heads and t tails appear is uniform over the�
h�t
h

�
�
�
h�t
t

�
possibilities.

In particular,

PtHn � h� 1, Tn � t |Hn�1 � h, Tn�1 � tu �
h

h� t

and

PtHn � h, Tn � t� 1 |Hn�1 � h, Tn�1 � tu �
t

h� t
.
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Pólya's urn backwards is coin-tossing backwards

Pólya's urn run backwards has the same transition dynamics as
coin-tossing run backwards.
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Binary trees

Let's start with trees that are rooted, binary (each vertex has 0, 1 or 2
children), and ordered (we distinguish between a left child and a right
child � even when there is only one child).

We can identify such a tree as a subtree of the complete rooted binary
tree.
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Complete rooted binary tree

Denote by t0, 1u� :�
�8
k�0t0, 1u

k the set of �nite words drawn from the
alphabet t0, 1u (with the empty word H allowed).

Write a word pv1, . . . , v`q P t0, 1u
� more simply as v1 . . . v`.

De�ne a directed graph with vertex set t0, 1u� by declaring that if
u � u1 . . . uk and v � v1 . . . v` are two words, then pu, vq is a directed
edge (that is, uÑ v) if and only if ` � k � 1 and ui � vi for i � 1, . . . , k
(i.e. v is a child of u).

This directed graph is the complete rooted binary tree (rooted at H).
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A partial order on the complete rooted binary tree and its �leaves�

We can think of t0, 1u8 as the leaves of the complete rooted binary tree.

De�ne a partial order on t0, 1u� by declaring that u   v if
uÑ w1 Ñ � � � Ñ wm Ñ v for some words w1, . . . , wm (i.e. v is a
descendant of u). This partial order extends to t0, 1u� \ t0, 1u8.
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Finite rooted binary trees

A �nite rooted binary tree is a non-empty subset t of t0, 1u� with the
property that if v P t and u P t0, 1u� is such that uÑ v, then u P t.

The vertex H belongs to any such tree t and is the root of t.
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Storing an ordered listing of rns as a �nite rooted binary tree
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One way of building a random �nite rooted binary tree

24

7

5

3 6

8 9

1

8 7 9 4 1 3 5 2 6

Figure: Finite rooted binary tree built from a realization of the uniform i.i.d.r.v.
U1, . . . , U9 with U8   U7   U9   U4   U1   U3   U5   U2   U6.
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Binary search tree process

If we do the construction of the previous slide for successive values of n
and only keep track of the resulting the rooted binary trees (i.e. we throw
away the labeling of vertices by rns), then we get a Markov chain taking
values in the space of �nite rooted binary trees called the binary search
tree process.
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Binary search tree process transition probabilities

The binary search tree process tTnunPN evolves as follows.
T1 � H
Given Tn, a tree with n leaves, there are n� 1 words of the form
v � v1 . . . v` such that v is not a vertex of the tree Tn but the word
v1 . . . v`�1 is.
Pick such a word uniformly at random and adjoin it to produce the tree
Tn�1.
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Pólya urn connection

For any u � u1 . . . um P t0, 1u� the sequences

#tv P Tn : u1 . . . um0 ¤ vu

and
#tv P Tn : u1 . . . um1 ¤ vu

evolve like time changes of the numbers of new green and red balls in a
classical Pólya urn that starts with 1 green and 1 red ball.

The binary search tree process is thus an in�nite hierarchical system of
Pólya urns.
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Digital search tree process

The digital search tree process tDnunPN is a Markov chain taking values in
the space of �nite binary trees that evolves as follows.

D1 � H
Given Dn, a tree with n leaves, there are n� 1 words of the form
v � v1 . . . v` such that v is not a vertex of the tree Dn but the word
v1 . . . v`�1 is.

Pick such a word v with probability 2�` � 2�|v| and adjoin it to produce
the tree Dn�1.
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Random walk connection

For any u � u1 . . . um P t0, 1u� the sequences

#tv P Dn : u1 . . . um0 ¤ vu

and
#tv P Dn : u1 . . . um1 ¤ vu

evolve like time changes of the numbers of heads and tails in fair
coin-tossing.

The digital search tree process is thus an in�nite hierarchical system of
simple random walks.
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Binary search tree process versus digital search tree process

The binary search tree process run backwards has the same transition
dynamics as the digital search tree process run backwards.
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Radix sort trees

Suppose that z1, . . . , zn P t0, 1u
8 are distinct in�nite binary words.

For each i P rns we may construct a �nite binary word yi that is an initial
segment of zi such that y1, . . . , yn are the distinct leaves of a �nite rooted
binary tree and y1, . . . , yn are the minimal length words with this property.

The resulting �nite rooted binary tree Rpz1, . . . , znq is called the radix
sort tree de�ned by the in�nite binary words z1, . . . , zn.

A depth �rst search of this tree visits the leaves in an order that coincides
with the lexicographic order of the corresponding in�nite binary words.
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Example of a radix sort tree



Radix sort tree for the words 01…

                                               0000…

                                               0001…
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Some notation for radix sort trees

Denote by S the class of �nite rooted binary trees that can arise as radix
sort trees.

A �nite rooted binary tree s belongs to S if and only if s � tHu or s has
at least two leaves and for any leaf u1 . . . up P s the sibling word
u1 . . . up�1ūp is also a vertex of s, where we set 0̄ :� 1 and 1̄ :� 0.

Write Sn, n P N, for the elements of S with n leaves.

In particular, S1 contains only the trivial tree with the single vertex tHu.
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Pruning a leaf from a radix sort tree

Consider t P Sn�1 and let v � v1 . . . vm be a leaf of t.

Suppose �rst that the sibling v1 . . . vm�1v̄m is not a leaf of t. Let
κpt, vq P Sn be the �nite rooted binary tree with the same leaf set as t
except that v has been removed.

On the other hand, suppose that the sibling v1 . . . vm�1v̄m is also a leaf of
t. There is a largest `   m such that the siblings v1 . . . v` and v1 . . . v`�1v̄`
are both vertices of t. In this case, let κpt, vq P Sn be the tree with the
same leaf set as t except that the leaf v and its sibling leaf v1 . . . vm�1v̄m
have both been removed and replaced by the single leaf v1 . . . v`.

If t is the radix sort tree for the in�nite binary inputs z1, . . . , zn�1 and
yn�1 is the leaf of t corresponding to the input zn�1, then κpt, yn�1q is
the radix sort tree for the inputs z1, . . . , zn.
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Example of pruning a leaf from a radix sort tree
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Radix sort processes

Let Z1, Z2, . . . be i.i.d. t0, 1u8-valued random variables with common
distribution some di�use probability measure ν.

Set νRn :� RpZ1, . . . , Znq.
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The radix sort process is Markov

The radix sort process pνRnqnPN is Markov. The easiest way to see this is
to show that the backwards in time process is Markov.

For s P Sn and t P Sn�1, the associated backwards transition probability is

PtνRn � s | νRn�1 � tu �
1

n� 1
tv : s � κpt, vqu.

That is, pνRnqnPN evolves backwards in time by picking leaves uniformly
at random and pruning them.

NOTE: The backwards transition probabilities of pνRnqnPN are the same
for all ν.
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The transition probabilities of the radix sort process

The radix sort process pνRnqnPN is a Markov chain with the following
transition dynamics. Suppose that νRn is the �nite rooted binary tree s
with leaves Lpsq. There are two cases to consider.

Case I. Suppose that y � u1u2 . . . um�1um is not a vertex of s and
u1u2 . . . um�1ūm is a (non-leaf) vertex of s. Let t be the �nite rooted
binary tree with leaves Lpsq \ tyu. Then

PtνRn�1 � t | νRn � su � νpτpyqq,

where τpyq :� tz P t0, 1u8 : y   zu.
Case II. Suppose that y P Lpsq and y1, y2 are siblings with y   y1 and
y   y2. Let t be the �nite rooted binary tree with leaves
pLpsqztyuq \ ty1, y2u. Then

PtνRn�1 � t | νRn � su � 2
νpτpy1qqνpτpy2qq

νpτpyqq
.
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Finite rooted full binary trees

A �nite rooted full binary tree is a �nite rooted binary tree in which every
vertex has 0 or 2 children.

The number of such trees with n� 1 leaves (and hence 2n� 1 vertices) is
the Catalan number 1

n�1

�
2n
n

�
.

Rémy's (1985) algorithm generates a sequence of random binary trees
pUnqnPN such that Un is uniformly distributed on the set of �nite rooted
full binary trees with n� 1 leaves.
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Rémy's algorithm

Start with U1 being the unique �nite rooted full binary tree ℵ :� tH, 0, 1u
with 3 vertices.

Supposing that Un has been generated, pick a vertex v uniformly at
random.

Cut o� the subtree rooted at v and set it aside.

Attach a copy of the tree ℵ with 3 vertices to the end of the edge that
previously led to v.

Re-attach the subtree rooted at v uniformly at random to one of the two
leaves in the copy of ℵ.
Call the two new vertices that have been produced clones of v.
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Example of one iteration of Rémy's algorithm

1 0 

00 

101 

10 11 

000 001 

01 

100 

Figure: First step in an iteration of Rémy's algorithm: pick a vertex v uniformly at
random.
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Example of one iteration of Rémy's algorithm � continued

000 001 

0 

00 01 

Figure: Second step in an iteration of Rémy's algorithm: cut o� the subtree rooted at
v and attach a copy of ℵ to the end of the edge that previously led to v.
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Example of one iteration of Rémy's algorithm � continued

000 001 

0 

00 01 

1 

10 11 

100 101 

1000 1001 

Figure: Third step in an iteration of Rémy's algorithm: re-attach the subtree rooted at
v to one of the two leaves of the copy of ℵ, and re-label the vertices appropriately.
The solid circle is the new location of v and the open circles are the clones of v.
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Digression: Embeddings

An embedding of a �nite rooted full binary tree s into a �nite rooted full
binary tree t is a map from the vertex set of s into the vertex set of t such
that the following hold.

The image of a leaf of s is a leaf of t.
If u, v are vertices of s such that v is below and to the left (resp. right) of
u, then the image of v in t is below and to the left (resp. right) of the
image of u in t.

Write Nps, tq for the number of embeddings of s into t.
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Digression: Embeddings � continued

a b 

c 

s    = 

t   = 

c c 

a b 
c 

a b 

a b 
c 

a b 

c 

a b 

c 

a b 

Figure: All the embeddings of the unique �nite rooted full binary tree s � ℵ with 3
vertices into a particular �nite rooted full binary tree t with 7 vertices.
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Digression: Embeddings � continued

Note that an embedding of s into t is uniquely determined by the images
of the leaves of s, because if x and y are vertices of s, then the image of
the most recent common ancestor of x and y in s must be the most recent
common ancestor in t of the images of x and y.
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Transition probabilities for the Rémy chain

Suppose that s and t are two �nite rooted full binary trees with,
respectively, m� 1 and m� n� 1 leaves. Then, the probability that the
Rémy chain transitions from s to t in n steps is

pnps, tq � n!
1

p2m� 1q � p2m� 3q � � � � � p2pm� nq � 1q

1

2n
Nps, tq,

where Nps, tq is the number of ways of embedding s into t.
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What are the multi-step transition probabilities of Rémy's chain?

Condition on Tm.

Say that a vertex of Tm�n is a clonal descendant of a vertex v P Tm if it is
v itself, a clone of v, a clone-of-a-clone of v, etc.

We can decompose Tm�n into connected pieces according to clonal
descent from the vertices of Tm.

w 

v 

x 

y 

w v 

x y 

Tm 

Tm+n 

subtree of clonal  
descendants of x 

u 

u 
n steps of the 
Rémy  chain 

Figure: Decomposition of Tm�n via clonal descent from the vertices of Tm.
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What are the multi-step transition probabilities? � continued

The numbers of clonal descendants of the 2m� 1 vertices is the result of
n steps in a Polya urn that starts with 2m� 1 balls of di�erent colors and
at each stage a ball is chosen uniformly at random and replaced along with
two balls of the same color.

Conditional on the numbers of clonal descendants, the binary trees of
clonal descendants are independent and uniformly distributed.

Conditional on the trees of clonal descendants, the ancestors from Tm are
located at independently and uniformly chosen leaves of their respective
trees of clonal descendants.
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One-step backward transition probabilities for the Rémy chain

Note that if s, t are �nite rooted full binary trees with n� 1 and n� 2
leaves, respectively, then, using the expressions for the forward transition
probabilities and the Catalan numbers,

PtTn � s |Tn�1 � tu �
1

n� 2
Nps, tq.
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Backward dynamics for the Rémy chain in words

The Rémy chain evolves one step backward in time as follows.
Pick a leaf uniformly at random.
Delete the chosen leaf and its sibling (which may or may not be a leaf).
If the sibling is not a leaf, then close up the resulting gap by attaching the
subtree below the sibling to the parent of the chosen leaf and the sibling.
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Backward dynamics for the Rémy chain � continued

000 001

0

00 01

1

10 11

100 101

1000 1001

Figure: Pick a leaf uniformly at random.
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Backward dynamics for the Rémy chain � continued

000 001

0

00 01

Figure: Delete the chosen leaf and its sibling.
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Backward dynamics for the Rémy chain � continued

10

00

101

10 11

000 001

01

100

Figure: Close up the gap if there is one.

Steven N. Evans Random trees



PATRICIA trees

Recall that a depth �rst search of a radix sort tree visits the leaves in an
order that coincides with the lexicographic order of the corresponding
in�nite binary words.

The radix sort tree stores more information than is necessary for the
purpose of sorting the in�nite binary words into lexicographic order.

More precisely, if one deletes the vertices with a single child in the radix
sort tree and closes up the gaps, then a depth �rst search of the resulting
PATRICIA tree still visits the leaves in an order that coincides with the
lexicographic order of the corresponding in�nite words.

PATRICIA is an acronym for �Practical Algorithm To Retrieve Information
Coded In Alphanumeric�.
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PATRICIA trees � continued

Note that in a PATRICIA tree each non-leaf vertex of the tree has two
children; that is, if the �nite binary word v � v1 . . . vm is a vertex of the
tree that is not a leaf, then both of the words v1 . . . vm0 and v1 . . . vm1
are also vertices of the tree.
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Example of a PATRICIA tree
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Some notation for PATRICIA trees

Denote by S̄ the set of �nite rooted binary trees which can arise as
PATRICIA trees.

A �nite rooted binary tree belongs to S̄ if and only if each vertex has 2 or
0 children.

Write S̄n, n P N, for the elements of S̄ with n leaves.

In particular, S̄1 contains only the trivial tree with the single vertex tHu.
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The PATRICIA contraction

Recall that S is the class of �nite rooted binary trees that can arise as
radix sort trees.

The PATRICIA contraction is the map Φ : SÑ S̄ that deletes vertices
with a single child and closes up the gaps.

The PATRICIA contraction maps Sn to S̄n for all n P N.
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Pruning a leaf from a PATRICIA tree

Consider t̄ P S̄n�1 and let v � v1 . . . vm be a leaf of t.

The �nite rooted binary tree κ̄pt̄, vq P S̄n is obtained by removing
v � v1 . . . vm and v1 . . . vm�1v̄m and closing up the gap if there is one
(this will be the case if the sibling v1 . . . vm�1v̄m is not a leaf).

If t̄ is the PATRICIA tree for the in�nite binary inputs z1, . . . , zn�1 and
yn�1 is the leaf of t corresponding to the input zn�1, then κ̄pt̄, yn�1q is
the PATRICIA tree for the inputs z1, . . . , zn.
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Example of pruning a leaf from a PATRICIA tree
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PATRICIA processes

The PATRICIA process p
ν
R̄nqnPN is obtained by taking

ν
R̄n, n P N, to be

the PATRICIA tree for the i.i.d. inputs Z1, . . . , Zn with common
distribution ν

Note that
ν
R̄n � ΦpνRnq, n P N, where we recall that Φ is the PATRICIA

contraction.
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The simplest radix sort and PATRICIA processes

Set γ :� πb8, where πpt0uq � πpt1uq � 1
2
; that is, γ is fair coin-tossing

measure on t0, 1u8.

Write Rn :� γRn and R̄n :�
γ
R̄n.
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The PATRICIA processes are Markov

A PATRICIA process p
ν
R̄nqnPN is Markov.

For s̄ P S̄n and t̄ P S̄n�1, the associated backward transition probability is

PtνR̄n � s̄ |
ν
R̄n�1 � t̄u �

1

n� 1
#tv : s̄ � κ̄pt̄, vqu.

That is, p
ν
R̄nqnPN evolves backward in time by picking leaves uniformly at

random and pruning them.

NOTE: The backward transition probabilities of p
ν
R̄nqnPN are the same

for all ν.
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The Rémy chain and the PATRICIA processes

The Rémy chain starts with the �nite rooted full binary tree ℵ � tH, 0, 1u.

A PATRICIA process starts with �nite rooted full binary tree tHu.

However, both processes have the same backward transition probabilities.
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What do all these processes have in common?

We have a Markov chain pXnqnPN0 with a countable state space E.

The state space is partitioned into disjoint pieces E0 \ E1 \ E2 \ . . .,
where E0 � teu for some distinguished state e.

The transition probabilities satisfy ppi, jq � 0 unless i P En and j P En�1

for some n P N0.

Consequently, if X0 � e, then Xn P En for all n P N0.
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Bridges

A bridge for the type of Markov chain X we are considering is a Markov
chain Y with:

The same state space as X.
Initial state Y0 � e.
The same backward transition probabilities as X.
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The central question

WHAT ARE ALL THE BRIDGES FOR A GIVEN MARKOV CHAIN?

Steven N. Evans Random trees



The central question sharpened

A mixture of two bridges is a bridge. So what we really want to know is:

WHAT ARE ALL THE EXTREMAL BRIDGES FOR A GIVEN MARKOV
CHAIN?

FACT: A bridge is extremal if and only if it has almost surely trivial tail
σ-�eld.
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The extremal bridges for the simplest radix sort chain

Recall the simplest radix sort chain R :� γR, where γ is fair coin-tossing
measure.

We have observed that each chain of the form νR is a bridge for R.

We will show that these bridges are extremal and they are the only
extremal bridges for R.
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A conjecture

We have seen that the PATRICIA chains
ν
R̄ are bridges for the Rémy

chain T or, equivalently the simplest PATRICIA chain R̄.

The above result for the simplest radix sort chain R suggest that all the
extremal bridges for T (equivalently, R̄) are of the form

ν
R̄.
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The conjecture is false!

 

11  

  

  

1

110

11011010

Figure: The value at time n of an extremal Rémy bridge. The tree consists of leaves
hanging o� a single spine that moves to the left or right according to successive tosses
of a fair coin. It is clear that this chain is not of the form

ν
R̄ for any ν.
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What are the extremal Rémy bridges?

What are the extremal bridges for the Rémy chain T (equivalently, the
simplest PATRICIA process R̄)?

Write pT8n qnPN for an extremal Rémy bridge.
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Consistently labeling the leaves in a Rémy bridge

By Kolmogorov's extension theorem, there is a Markov process pT̃8n qnPN such
that for each n P N the random element T̃8n is a leaf-labeled binary tree with
n� 1 leaves labeled by rn� 1s and the following hold.

The binary tree obtained by removing the labels of T̃8n is T8n .

For every n P N, the conditional distribution of T̃8n given T8n is uniform
over the pn� 1q! possible labelings of T8n .

In going backward from time n� 1 to time n, T̃8n�1 is transformed into

T̃8n as follows:
The leaf labeled n� 2 is deleted, along with its sibling.
If the sibling of the leaf labeled n� 2 is also a leaf, then the common parent
(which is now a leaf) is assigned the sibling's label.
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Most recent common ancestors

We want to use the labeling and a projective construction to build an
in�nite binary-tree-like structure for which N plays the role of the leaves.
If i, j P N are the labels of two leaves T8n that are represented as the
words u1 . . . uk and v1 . . . v` in t0, 1u

�, then set
ri, jsn :� u1 . . . um � v1 . . . vm, where m :� maxth : uh � vhu.
That is, ri, jsn is the most recent common ancestor in T8n of the leaves
labeled i and j.

i j 

[i,j]n 
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Interior vertices

De�ne an equivalence relation � on the Cartesian product N� N by
declaring that pi1, j1q � pi2, j2q if and only if ri1, j1sn � ri2, j2sn for some
(and hence all) n such that i1, j1, i2, j2 P rn� 1s.

Write xi, jy for the equivalence class of the pair pi, jq.

Think of xi, jy as the being the most recent common ancestor of the leaves
i and j and of such points being interior vertices of a tree-like object.
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Ordering equivalence classes � below and to the left

De�ne a partial order  L on the set of equivalence classes by declaring for
pi1, j1q, pi2, j2q P N�N that xi1, j1y  L xi

2, j2y if and only if for some (and
hence all) n such that i1, j1, i2, j2 P rn� 1s we have ri1, j1sn � u1 . . . uk
and ri2, j2sn � u1 . . . uk0v1 . . . v` for some u1, . . . , uk, v1, . . . , v` P t0, 1u.

Interpret the ordering xi1, j1y  L xi
2, j2y as the �vertex� xi2, j2y being

below and to the left of the �vertex� xi1, j1y.
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Ordering equivalence classes � below and to the right

Similarly, de�ne another partial order  R by declaring that
xi1, j1y  R xi

2, j2y if and only if for some (and hence all) n such that
i1, j1, i2, j2 P rn� 1s we have ri1, j1sn � u1 . . . uk and
ri2, j2sn � u1 . . . uk1v1 . . . v` for some u1, . . . , uk, v1, . . . , v` P t0, 1u.

Interpret the ordering xi1, j1y  R xi
2, j2y as the �vertex� xi2, j2y being

below and to the right of the �vertex� xi1, j1y.
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Yet another partial order � below

De�ne a third partial order   on the set of equivalence classes of N�N by
declaring that xi1, j1y   xi2, j2y if either xi1, j1y  L xi

2, j2y or
xi1, j1y  R xi

2, j2y.

Interpret the ordering xi1, j1y   xi2, j2y as the �vertex� xi2, j2y being below
the �vertex� xi1, j1y.
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Properties of the equivalence relation and partial orders

The equivalence relation � and the partial orders  L,  R, and   have the
following properties.

(A) For i, j P N, pi, jq � pj, iq.

(B) For distinct i, j P N, either xi, jy  L xi, iy and xi, jy  R xj, jy, or
xi, jy  R xi, iy and xi, jy  L xj, jy.

(C) �Triplet property� For distinct i, j, k, exactly one of

xi, jy � xi, ky   xj, ky

xj, ky � xj, iy   xk, iy
or

xk, iy � xk, jy   xi, jy
is valid.

(D) For i, j, k, ` P N, at most one of the relations xi, jy  L xk, `y and
xi, jy  R xk, `y can hold and xi, jy   xk, `y if and only if either
xi, jy  L xk, `y or xi, jy  R xk, `y.

(E) Fix f, g, h, i, j, k P N. If xf, gy  L xh, iy   xj, ky, then xf, gy  L xj, ky.
Similarly, if xf, gy  R xh, iy   xj, ky, then xf, gy  R xj, ky.
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Triplet property
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Didendritic systems

Suppose that N is a set, � is an equivalence relation on N , and each of
 L, R,  is a partial order on the resulting collection of equivalence
classes. We say that D � pN ,�, x�, �y, L, R, q is a didendritic system
if the properties (A)-(E) hold with N replaced by N .

A didendritic system with a �nite label set N is just a rooted full binary
tree with its leaves labeled by N .
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Didendritic systems and sequences of leaf-labeled �nite rooted full binary
trees

Suppose that pt̃nqnPN is a sequence of �nite rooted full binary trees such
that the leaves of t̃n, n P N, are labeled by rn� 1s. Assume that this
sequence is is consistent in the sense that t̃n is produced from t̃n�1 by:

deleting leaf labeled n� 2 along with its sibling;
if the sibling was also a leaf, assigning its label to the common parent
(which is now a leaf).

Then there is a corresponding didendritic system constructed as above for
pT̃8n qnPN.

Moreover, any didendritic system on N arises in this way for a unique
consistent sequence pt̃nqnPN.
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Permuting a didendritic systems

Given a didendritic system D � pN,�, x�, �y,  L,  R,  q and a
permutation σ of N, the didendritic system Dσ � p�σ, x�, �yσ,  σL,  

σ
Rq is

de�ned by
pi1, j1q �σ pi2, j2q if and only if pσpi1q, σpj1qq � pσpi2q, σpj2qq,
xi, jyσ is the equivalence class of the pair pi, jq for the equivalence relation
�σ ,
xh, iyσ  σL xj, kyσ if and only if xσphq, σpiqy  L xσpjq, σpkqy,
xh, iyσ  σR xj, kyσ if and only if xσphq, σpiqy  R xσpjq, σpkqy.
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Exchangeable random didendritic systems

A random didendritic system D � pN,�, x�, �y,  L,  R,  q is
exchangeable if for each permutation σ of N such that σpiq � i for all but
�nitely many i P N the random didendritic system Dσ has the same
distribution as D.

Steven N. Evans Random trees



Didendritic systems and Rémy bridges

The random didendritic system corresponding to the labeled version of a
Rémy bridge is exchangeable.

Conversely, the sequence of random leaf-labeled �nite rooted full binary
trees produced from an exchangeable random didendritic system is the
labeled version of a Rémy bridge.
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Ergodic exchangeable random didendritic systems

An exchangeable random didendritic system D is ergodic if

PptD P Au4tDσ P Auq � 0

for some measurable set A for all permutations σ of N with σpiq � i for all
but �nitely many i P N implies that

PtD P Au P t0, 1u.

Any exchangeable random didendritic system is a mixture of ergodic
exchangeable random didendritic systems.

The tail σ-�eld of a Rémy bridge is almost surely trivial (equivalently, the
Rémy bridge is extremal) if and only if the corresponding exchangeable
random didendritic system is ergodic.
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Constructing a distance

Consider an extremal Rémy bridge and the corresponding ergodic
exchangeable random didendritic system. By de Finetti and the strong law
of large numbers,

dpi, jq :� lim
nÑ8

1

n

ņ

p�1

1txi, jy ¤ pu

exists for each pair i, j P N.
Almost surely, d is an ultrametric on N. That is, almost surely the
following hold.

For all i, j P N, dpi, jq ¥ 0, and dpi, jq � 0 if and only if i � j.
For all i, j P N, dpi, jq � dpj, iq.
For all i, j, k P N, dpi, kq ¤ dpi, jq _ dpj, kq.

A fortiori, d is almost surely a metric on N.
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Digression: R-trees � tree-like metric spaces

A segment in a metric space pX, dq is the image of an isometry
α : ra, bs Ñ X. The endpoints of the segment are αpaq and αpbq.

A metric space pX, dq is geodesic if for all x, y P X there is a segment in
X with endpoints tx, yu.

An R-tree is a metric space pX, dq with the following properties.
The space pX, dq is geodesic.
If two segments of pX, dq intersect in a single point, which is an endpoint of
both, then their union is a segment.

Fact: If pX, dq is an R-tree, then for all x, y P X there is a unique segment
in X with endpoints tx, yu.
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Constructing an R-tree

The most recent common ancestor of xh, iy and xj, ky is of the form
x`,my, where ` P th, iu and m P tj, ku.

In terms of the metric d, ` and m are any such pair for which
dp`,mq � dph, jq _ dph, kq _ dpi, jq _ dpi, kq.

We therefore extend the metric by setting

dpxh, iy, xj, kyq �
1

2
prdp`,mq � dph, iqs � rdp`,mq � dpj, kqsq

� dph, jq _ dph, kq _ dpi, jq _ dpi, kq �
1

2
pdph, iq � dpj, kqq.
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Constructing an R-tree � continued

This extension is indeed a metric and the four point condition holds; that
is for equivalence classes w, x, y, z at least one of the following sets of
conditions holds

dpw, xq � dpy, zq ¤ dpw, yq � dpx, zq � dpw, zq � dpx, yq,
dpw, zq � dpx, yq ¤ dpw, xq � dpy, zq � dpw, yq � dpx, zq,
dpw, yq � dpx, zq ¤ dpw, zq � dpx, yq � dpw, xq � dpy, zq.

w
x

y

z
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Constructing an R-tree � continued

Because the four point condition holds, we can embed txi, jy : i, j P Nu in
a distance-preserving manner into a minimal, complete R-tree T with a
root ρ in such a way that xi, jy   xk, `y if and only if xi, jy is on the
geodesic segment from ρ to xk, `y.

That is, the natural partial order on pT, ρq extends the partial order   on
the embedded set txi, jy : i, j P Nu.
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Core and projections

The core S of T is the smallest closed subtree containing
txi, jy : i, j P N, i � ju.

The projection Πpxq of x P T onto S is the unique point in S closest to x.

S

x

T

Π(x)
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Sampling measure

Put ξk :� Πpkq � Πpxk, kyq P S.

The equivalence relation � and the partial order   can be reconstructed
from pξkqkPN.

By de Finetti and ergodicity, pξkqkPN is an i.i.d. sequence with common
distribution µ, where µ is a di�use probability measure on S.
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Distinguishing left from right

Any didendritic system p�, x�, �y,  L,  Rq is uniquely determined by the
equivalence relation �, the partial order  , and a determination for each
pair of distinct labeled leaves i, j P N whether

xi, jy  L i and xi, jy  R j

or

xi, jy  L j and xi, jy  R i.

For an ergodic exchangeable random didendritic system, de�ne Jij ,
i, j P N, i � j, by Jij � 0 (resp. Jij � 1) if the former (resp. latter)
alternative holds.

The array J is jointly exchangeable and ergodic.
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Distinguishing left from right � continued

By the Aldous-Hoover-Kallenberg theory of jointly exchangeable arrays, we
may suppose that on some extension of our underlying probability space
there exist i.i.d. random variables pUiqiPN, and pUijqi,jPN, i j that are
uniform on r0, 1s and a function F such that

Jij � F pξi, Ui, ξj , Uj , Uijq,

where Uij � Uji for i ¡ j.

With some extra work, we can show that

Jij � Gpξi, Ui, ξj , Ujq

for a suitable function G.
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Where have we got to?

Any Rémy bridge is a mixture of extremal Rémy bridges (i.e. ones with
trivial tail σ-�elds).

There is a bijection between extremal Rémy bridges and ergodic
exchangeable random didendritic systems.

Any ergodic exchangeable random didendritic system is determined by
a complete, separable R-tree S,
a distinguished root ρ P S,
a di�use sampling probability measure µ on S,
a �left-vs-right� function G : S� r0, 1s � S� r0, 1s Ñ t0, 1u.

The ensemble pS, ρ, µ,Gq has to satisfy certain obvious consistency
conditions (e.g. for µb3-a.e. px, y, zq P S3, two of the three geodesic
segments rρ, xs X rρ, ys, rρ, xs X rρ, zs, rρ, ys X rρ, zs are equal and these
two are strictly contained in the third).

Conversely, any ensemble pS, ρ, µ,Gq that satis�es the consistency
conditions gives rise to an ergodic exchangeable random didendritic system
and hence to an extremal Rémy bridge.
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Example

Recall the Rémy bridge whose value at time n is a �nite rooted full binary tree
consisting of n� 1 vertices along a single spinal path that has n leaves coming
o� to the left of right according to tosses of a fair coin.
Here we may take

the complete separable R-tree S to be r0, 1s equipped with the usual
metric,

the root ρ to be the point 0 P r0, 1s,

the di�use sampling probability measure µ to be Lebesgue measure on
r0, 1s,

the �left-vs-right� function G : S� r0, 1s � S� r0, 1s Ñ t0, 1u to be given
by

Gpx, u, y, vq �

$''''''&
''''''%

1, if x   y and u   1
2
,

0, if x   y and u ¡ 1
2
,

1, if y   x and v   1
2
,

0, if y   x and v ¡ 1
2
,

0, otherwise.

Steven N. Evans Random trees



Why are things much simpler for the radix sort chain?

This seems to be a subtle point that depends on monotonicity that is
present in the radix sort chain which is not present in the
Rémy/PATRICIA chain.
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Labeling the leaves of a radix sort bridge

Suppose that pR8n qnPN is a radix sort bridge.

By Kolmogorov's extension theorem we may suppose that there is a
Markov process pR̃8n qnPN such that for each n P N the random element

R̃8n is a leaf-labeled rooted binary tree with n leaves labeled by rns and
the following hold.

The rooted binary tree obtained by removing the labels of R̃8n is R8n .

For every n P N, the conditional distribution of R̃8n given R8n is uniform
over the n! possible labelings of R8n .

In going backward from time n� 1 to time n, R̃8n�1 is transformed into

R̃8n by pruning the leaf labeled n� 1.
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Limit labels

Given i P rns, let xiyn P t0, 1u
� be the leaf of R8n labeled i in R̃8n .

Observe that xiyi ¤ xiyi�1 ¤ . . . and so
xiy8 � limnÑ8xiyn P t0, 1u

� \ t0, 1u8 is well-de�ned.

For distinct i, j P N, the most recent common ancestor xiyn ^ xjyn is the
same for all n ¥ i^ j and coincides with xiy8 ^ xjy8.
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CLAIM: The sequence pxiy8qiPN is exchangeable.

PROOF: It is clear by construction that pxiynqiPrns is (�nitely) exchangeable
and the claim follows upon taking limits as nÑ8.
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Tail triviality

CLAIM: The tail σ-�eld of pR8n qnPN is P-a.s. trivial if and only if pxiy8qiPN is
an independent identically distributed sequence.

PROOF: The bijective correspondence between the distributions of the bridges
pR8n qnPN and the distributions of their labeled versions pR̃8n qnPN is compatible
with convex combinations, and hence preserves extremality.
Therefore the tail σ-�eld of the bridge pR8n qnPN is P-a.s. trivial if and only if
the exchangeable sequence pxiy8qiPN is ergodic.
A well-known consequence of de Finetti's theorem is that an exchangeable
sequence is ergodic if and only if it is independent and identically distributed.
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Di�useness

CLAIM: If pxiy8qiPN is independent and identically distributed with common
distribution ν, then ν is concentrated on t0, 1u8 and di�use.

PROOF: For any u P t0, 1u�, the sequence p1tu � xky8uqkPN is independent
and identically distributed, and hence #tk P N : u � xky8u � 0 P-a.s. or
#tk P N : u � xky8u � 8 P-a.s.
Now, if Ptxiy8 P t0, 1u�u ¡ 0 there would be a u P t0, 1u� such that with
positive probability xiyn � xiy8 � u for all n su�ciently large.
Then, on the event txiy8 � uu we would have #tk P N : xky8 � uu � 1,
because xjy8 � xiy8 for j � i when xiy8 P t0, 1u�.
This shows that Ptxiy8 P t0, 1u�u � 0.
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Di�useness � continued

We therefore have that pxky8qkPN is an independent identically distributed
sequence of t0, 1u8-valued random variables.
Because xiy8 ^ xjy8 � xiyn ^ xjyn P t0, 1u

� for all n ¥ i_ j P-a.s. when
i � j, it follows that xiy8 � xjy8 P-a.s. for i � j and the common distribution
of pxky8qkPN is di�use.
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Identi�cation of the extremal bridges

CLAIM: The tail σ-�eld of pR8n qnPN is P-a.s. trivial if and only if pR8n qnPN has
the same distribution as pνRnqnPN for some di�use probability measure ν on
t0, 1u8.

PROOF: We have already seen that when ν is a di�use probability measure on
t0, 1u8 the process pνRnqnPN is a bridge which, by the Hewitt-Savage zero-one
law, has a trivial tail σ-�eld.
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Identi�cation of the extremal bridges � continued

Conversely, suppose that the bridge pR8n qnPN has a trivial tail σ-�eld. Let ν be
the common di�use distribution of the independent, identically distributed
sequence of t0, 1u8-valued random variables pxiy8qiPN. It is clear that
R8n � Rpx1y8, . . . , xny8q, n P N, and so pR8n qnPN has the same distribution
as pνRnqnPN.
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