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Pélya urn

Write (G, Ry) for the numbers of green and red balls added by time n in the

classical Pélya urn:

m Start at time O with one green and one red ball in an urn.

m At each subsequent point in time, pick a ball uniformly at random from
the urn and replace it along with one of the same color.
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Running the urn backwards: exchangeability

m Check that if we condition on the event {Gn4+1 = g, Rnt1 = 7}, then the
order in which the g green balls and r red balls appear is uniformly
distributed over the (g:}»r) = (9I") possibilities.

m In particular,

IP){C:n:g_L]%n:'f‘|Gn+1:gvl%n-+-1 =T}= g+r

and r
P{Gn:g7Rn:r_1|Gn+1 =g,Rn+1 :’I"}Z

g+r’



Running coin-tossing backwards: exchangeability

m Let H, (resp. 1)) be the number of heads (resp. tails) that appear in n
independent tosses of a coin that comes up heads with probability p.

m Check that if we condition on the event {Hy,+1 = h,Th41 = t}, then the
order in which the h heads and ¢ tails appear is uniform over the

(") = ("+1) possibilities.

m In particular,

h
P{H, =h—1,Tp =t|Hns1=h,Tps1 =t} = ——
{ | Hnta n=t =y
and ;
P{H, =h,Tp=t—1|Hps1 =h,Tos1 =t} = ——.
{ | Hoe: =t =



Pélya’s urn backwards is coin-tossing backwards

m Pélya’s urn run backwards has the same transition dynamics as
coin-tossing run backwards.



Binary trees

m Let’s start with trees that are rooted, binary (each vertex has 0, 1 or 2
children), and ordered (we distinguish between a left child and a right
child — even when there is only one child).

m We can identify such a tree as a subtree of the complete rooted binary
tree.



Complete rooted binary tree

= Denote by {0,1}* := | |7_,{0,1}* the set of finite words drawn from the
alphabet {0, 1} (with the empty word & allowed).

m Write a word (v1,...,v¢) € {0,1}* more simply as v1 ... ve.

m Define a directed graph with vertex set {0,1}* by declaring that if
U =1u...ur and v =wv1...ve are two words, then (u,v) is a directed
edge (thatis, u » v)ifandonlyif =k +1and u; =v; fori=1,...,k
(i.e. v is a child of u).

m This directed graph is the complete rooted binary tree (rooted at ).
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A partial order on the complete rooted binary tree and its “leaves”

m We can think of {0,1}™ as the leaves of the complete rooted binary tree.

m Define a partial order on {0,1}* by declaring that u < v if
u— wy — - — wmy — v for some words w1, ..., wn, (i.e. visa
descendant of u). This partial order extends to {0, 1}* u {0,1}*.



Finite rooted binary trees

m A finite rooted binary tree is a non-empty subset t of {0, 1}* with the
property that if v € t and u € {0, 1}* is such that u — v, then u € t.

m The vertex J belongs to any such tree t and is the root of t.
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Storing an ordered listing of [n] as a finite rooted binary tree

879413526



One way of building a random finite rooted binary tree

8794 13526

Figure: Finite rooted binary tree built from a realization of the uniform i.i.d.r.v.
Ui,...,Ug with Ug < Uy < Ug < Uy < Uy < Uz < Us < Uz < Us.



Binary search tree process

m If we do the construction of the previous slide for successive values of n
and only keep track of the resulting the rooted binary trees (i.e. we throw
away the labeling of vertices by [n]), then we get a Markov chain taking
values in the space of finite rooted binary trees called the binary search

tree process.



Binary search tree process transition probabilities

m The binary search tree process {T},}nen evolves as follows.
n T =g
m Given T, a tree with n leaves, there are n + 1 words of the form
v = v1 ...vp such that v is not a vertex of the tree T, but the word
V1...Vp—_1 is.
m Pick such a word uniformly at random and adjoin it to produce the tree
Tps1.




Pélya urn connection

m For any u = us ... un € {0,1}* the sequences
H#{veTh :ur... um0 < v}

and
H#weTh i ur... uml < v}
evolve like time changes of the numbers of new green and red balls in a
classical Pélya urn that starts with 1 green and 1 red ball.
m The binary search tree process is thus an infinite hierarchical system of
Pélya urns.



Digital search tree process

m The digital search tree process {D,}nen is @ Markov chain taking values in
the space of finite binary trees that evolves as follows.

m D=

m Given D,, a tree with n leaves, there are n + 1 words of the form
v = v1 ...vp such that v is not a vertex of the tree D,, but the word
V1...Vp—1 is.

m Pick such a word v with probability 2—¢ = 21%| and adjoin it to produce
the tree Dy 1.



Random walk connection

m For any u = us ... un € {0,1}* the sequences

#{veE Dy :ur... um0 < v}
and
#{wE Dy :ur...uml < v}
evolve like time changes of the numbers of heads and tails in fair
coin-tossing.
m The digital search tree process is thus an infinite hierarchical system of
simple random walks.



Binary search tree process versus digital search tree process

m The binary search tree process run backwards has the same transition
dynamics as the digital search tree process run backwards.



Radix sort trees

m Suppose that z1,...,2, € {0,1}* are distinct infinite binary words.

m For each i € [n] we may construct a finite binary word y; that is an initial
segment of z; such that yi1,...,y, are the distinct leaves of a finite rooted
binary tree and y1,...,yn are the minimal length words with this property.

m The resulting finite rooted binary tree R(z1,..., 2,) is called the radix
sort tree defined by the infinite binary words z1,..., zn.

m A depth first search of this tree visits the leaves in an order that coincides
with the lexicographic order of the corresponding infinite binary words.



Example of a radix sort tree

Radix sort tree for the words 01...
0000.

0001...

5600 ool



Some notation for radix sort trees

m Denote by S the class of finite rooted binary trees that can arise as radix
sort trees.
m A finite rooted binary tree s belongs to S if and only if s = {J} or s has

at least two leaves and for any leaf u; ... u, € s the sibling word
Ui ... Up_1Typ is also a vertex of s, where we set 0:=1 and 1:=0.

m Write S,,, n € N, for the elements of S with n leaves.

m In particular, S; contains only the trivial tree with the single vertex {(F}.



Pruning a leaf from a radix sort tree

m Consider t € S;,+1 and let v = v1 ... v, be a leaf of t.

m Suppose first that the sibling v1 ... vm—19m is not a leaf of t. Let
k(t,v) € S, be the finite rooted binary tree with the same leaf set as t
except that v has been removed.

m On the other hand, suppose that the sibling vi ... vm—10n, is also a leaf of
t. There is a largest £ < m such that the siblings vy ...ve and vy ... v_17¢
are both vertices of t. In this case, let k(t,v) € S,, be the tree with the
same leaf set as t except that the leaf v and its sibling leaf v1 ... vm—10m
have both been removed and replaced by the single leaf vy ... v,.

m If t is the radix sort tree for the infinite binary inputs 21, ..., zn+1 and
Yn+1 is the leaf of t corresponding to the input zp41, then k(t, yn11) is
the radix sort tree for the inputs 21, ..., zn.



Example of pruning a leaf from a radix sort tree

o oL
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Radix sort processes

m Let Z1,Z,... beiid. {0,1}*-valued random variables with common
distribution some diffuse probability measure v.

m Set "R, := R(Z1,..., 7).



The radix sort process is Markov

m The radix sort process (¥ Ry )nen is Markov. The easiest way to see this is
to show that the backwards in time process is Markov.

m For s€S,, and t € S, 41, the associated backwards transition probability is

P{"Rn =8| " Runs1 =t} =

= n+1{v:s=;~c(t,v)}.

m Thatis, (YRn)nen evolves backwards in time by picking leaves uniformly
at random and pruning them.

m NOTE: The backwards transition probabilities of (¥ Ry )nen are the same
for all v.



The transition probabilities of the radix sort process

m The radix sort process (¥ Ry)nen is @ Markov chain with the following
transition dynamics. Suppose that ¥ R,, is the finite rooted binary tree s
with leaves L(s). There are two cases to consider.

m Case |. Suppose that y = ujuz ... um—_1um is not a vertex of s and
ULU2 . .. Um—1Tm is @ (non-leaf) vertex of s. Let t be the finite rooted
binary tree with leaves L(s) u {y}. Then

P{“Rn+1 =t| YRn = s} = v(7(y)),

where 7(y) := {z € {0,1}* : y < z}.
m Case |l. Suppose that y € L(s) and y/,y"” are siblings with y < 3’ and
y < y”. Let t be the finite rooted binary tree with leaves

(L(s)\{y}) u {y',y"}. Then

P{Y Rosy = t] "Ry = s} = 227@HTWT)

v(m(y))



Finite rooted full binary trees

m A finite rooted full binary tree is a finite rooted binary tree in which every
vertex has 0 or 2 children.

m The number of such trees with n + 1 leaves (and hence 2n + 1 vertices) is
the Catalan number — (*").

m Rémy's (1985) algorithm generates a sequence of random binary trees
(Un)nen such that U, is uniformly distributed on the set of finite rooted
full binary trees with n + 1 leaves.



Rémy’s algorithm

Start with Uy being the unique finite rooted full binary tree R := {(¥,0, 1}
with 3 vertices.

m Supposing that U, has been generated, pick a vertex v uniformly at
random.

Cut off the subtree rooted at v and set it aside.

m Attach a copy of the tree X with 3 vertices to the end of the edge that
previously led to v.

m Re-attach the subtree rooted at v uniformly at random to one of the two
leaves in the copy of N.

m Call the two new vertices that have been produced clones of v.



Example of one iteration of Rémy’s algorithm

000 001 100 101

Figure: First step in an iteration of Rémy’s algorithm: pick a vertex v uniformly at
random.



Example of one iteration of Rémy'’s algorithm — continued

000 001

Figure: Second step in an iteration of Rémy’s algorithm: cut off the subtree rooted at
v and attach a copy of N to the end of the edge that previously led to v.
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Example of one iteration of Rémy'’s algorithm — continued

000

1000 1001

Figure: Third step in an iteration of Rémy’s algorithm: re-attach the subtree rooted at
v to one of the two leaves of the copy of X, and re-label the vertices appropriately.
The solid circle is the new location of v and the open circles are the clones of v.



Digression: Embeddings

m An embedding of a finite rooted full binary tree s into a finite rooted full
binary tree t is a map from the vertex set of s into the vertex set of t such
that the following hold.

m The image of a leaf of s is a leaf of t.

m If u, v are vertices of s such that v is below and to the left (resp. right) of
u, then the image of v in t is below and to the left (resp. right) of the
image of w in t.

m Write N (s, t) for the number of embeddings of s into t.



Digression: Embeddings — continued

c c

a b ab ab
c c

a b a b ab

Figure: All the embeddings of the unique finite rooted full binary tree s = X with 3
vertices into a particular finite rooted full binary tree t with 7 vertices.
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Digression: Embeddings — continued

m Note that an embedding of s into t is uniquely determined by the images
of the leaves of s, because if  and y are vertices of s, then the image of
the most recent common ancestor of z and y in s must be the most recent
common ancestor in t of the images of z and y.



Transition probabilities for the Rémy chain

m Suppose that s and t are two finite rooted full binary trees with,
respectively, m + 1 and m +n + 1 leaves. Then, the probability that the
Rémy chain transitions from s to t in n steps is

1 1

P ) = T X G 3 X x Qi) =D 2 &)

where N (s, t) is the number of ways of embedding s into t.



What are the multi-step transition probabilities of Rémy's chain?

m Condition on T,
m Say that a vertex of Ty, is a clonal descendant of a vertex v € Ty, if it is
itself, a clone of v, a clone-of-a-clone of v, etc

m We can decompose T, +n into connected pieces according to clonal
descent from the vertices of T,

Lg—2
w
u
n steps of the
Rémy chain / \\
/
N
A/ \

~
subtree of clonal

~
i .-
descendants of x / y
/
/

[ \ T,

4

Figure: Decomposition of T}, 4+, via clonal descent from the vertices of T},
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What are the multi-step transition probabilities? — continued

m The numbers of clonal descendants of the 2m + 1 vertices is the result of
n steps in a Polya urn that starts with 2m + 1 balls of different colors and
at each stage a ball is chosen uniformly at random and replaced along with
two balls of the same color.

m Conditional on the numbers of clonal descendants, the binary trees of
clonal descendants are independent and uniformly distributed.

m Conditional on the trees of clonal descendants, the ancestors from T, are
located at independently and uniformly chosen leaves of their respective
trees of clonal descendants.



One-step backward transition probabilities for the Rémy chain

m Note that if s, t are finite rooted full binary trees with n + 1 and n + 2
leaves, respectively, then, using the expressions for the forward transition
probabilities and the Catalan numbers,

1
P{Tn = S|Tn+1 = t} = mN(S,t)



Backward dynamics for the Rémy chain in words

m The Rémy chain evolves one step backward in time as follows.

m Pick a leaf uniformly at random.

m Delete the chosen leaf and its sibling (which may or may not be a leaf).

m If the sibling is not a leaf, then close up the resulting gap by attaching the
subtree below the sibling to the parent of the chosen leaf and the sibling.



Backward dynamics for the Rémy chain — continued

11

000

1000 1001

Figure: Pick a leaf uniformly at random.



Backward dynamics for the Rémy chain — continued

000

Figure: Delete the chosen leaf and its sibling.
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Backward dynamics for the Rémy chain — continued

000 001 100 101

Figure: Close up the gap if there is one.



PATRICIA trees

m Recall that a depth first search of a radix sort tree visits the leaves in an
order that coincides with the lexicographic order of the corresponding
infinite binary words.

m The radix sort tree stores more information than is necessary for the
purpose of sorting the infinite binary words into lexicographic order.

m More precisely, if one deletes the vertices with a single child in the radix
sort tree and closes up the gaps, then a depth first search of the resulting
PATRICIA tree still visits the leaves in an order that coincides with the
lexicographic order of the corresponding infinite words.

m PATRICIA is an acronym for “Practical Algorithm To Retrieve Information
Coded In Alphanumeric”.



PATRICIA trees — continued

m Note that in a PATRICIA tree each non-leaf vertex of the tree has two
children; that is, if the finite binary word v = v1 ... vy, is a vertex of the
tree that is not a leaf, then both of the words v1...v,,0 and v1...vp1

are also vertices of the tree.



Example of a PATRICIA tree

ool
o) oL.. .
radisc sect QOO0 -
ool
feee for
oLt ...
[N

oool. - ¢

Steven N. Evans



Some notation for PATRICIA trees

m Denote by S the set of finite rooted binary trees which can arise as
PATRICIA trees.

m A finite rooted binary tree belongs to S if and only if each vertex has 2 or
0 children.

m Write S,., n € N, for the elements of S with n leaves.

m In particular, S; contains only the trivial tree with the single vertex {Z}.



The PATRICIA contraction

m Recall that S is the class of finite rooted binary trees that can arise as
radix sort trees.

m The PATRICIA contraction is the map & : S — S that deletes vertices
with a single child and closes up the gaps.

m The PATRICIA contraction maps S, to S,, for all n e N.



Pruning a leaf from a PATRICIA tree

m Consider t € S,41 and let v = v1 ... vy be a leaf of t.

m The finite rooted binary tree &(t,v) € S,, is obtained by removing
U =11...Um and v1...Um_10my and closing up the gap if there is one
(this will be the case if the sibling v1 ... vp—10, is not a leaf).

m If t is the PATRICIA tree for the infinite binary inputs z1,...,2,+1 and
Yn+1 is the leaf of t corresponding to the input 2,41, then E(t, yn+1) is
the PATRICIA tree for the inputs 21, ..., zn.



Example of pruning a leaf from a PATRICIA tree

PatRictd progng
YA \eo¥

\

\
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PATRICIA processes

m The PATRICIA process (" R,)nen is obtained by taking "R, n € N, to be
the PATRICIA tree for the i.i.d. inputs Z1, ..., Z, with common
distribution v

m Note that “R,, = ®(“R,), n € N, where we recall that ® is the PATRICIA
contraction.



The simplest radix sort and PATRICIA processes

m Set v := @7, where 7({0}) = 7({1}) = 1; that is, 7 is fair coin-tossing
measure on {0,1}%.
m Write R,, := "R, and R, :="R,.



The PATRICIA processes are Markov

m A PATRICIA process (" R )nen is Markov.

m Forse S, and t € S,.;1, the associated backward transition probability is

m That is, ("R,)nen evolves backward in time by picking leaves uniformly at
random and pruning them.

m NOTE: The backward transition probabilities of (R, )nen are the same
for all v.



The Rémy chain and the PATRICIA processes

m The Rémy chain starts with the finite rooted full binary tree X = {¢¥, 0, 1}.
m A PATRICIA process starts with finite rooted full binary tree {(F}.

m However, both processes have the same backward transition probabilities.



What do all these processes have in common?

m We have a Markov chain (X, )nen, with a countable state space E.

m The state space is partitioned into disjoint pieces Eo L F1 L1 Ea L1, ..,
where Ey = {e} for some distinguished state e.

m The transition probabilities satisfy p(i,5) = 0 unless i € E,, and j € Epn41
for some n € Np.

m Consequently, if Xo = e, then X,, € E,, for all n € Ny.



Bridges

m A bridge for the type of Markov chain X we are considering is a Markov
chain Y with:
m The same state space as X.
m Initial state Yy = e.
m The same backward transition probabilities as X.



The central question

m WHAT ARE ALL THE BRIDGES FOR A GIVEN MARKOV CHAIN?



The central question sharpened

m A mixture of two bridges is a bridge. So what we really want to know is:

s WHAT ARE ALL THE EXTREMAL BRIDGES FOR A GIVEN MARKOV
CHAIN?

m FACT: A bridge is extremal if and only if it has almost surely trivial tail
o-field.



The extremal bridges for the simplest radix sort chain

m Recall the simplest radix sort chain R := 7R, where ~ is fair coin-tossing
measure.
m We have observed that each chain of the form YR is a bridge for R.

m We will show that these bridges are extremal and they are the only
extremal bridges for R.



A conjecture

m We have seen that the PATRICIA chains “ R are bridges for the Rémy
chain T or, equivalently the simplest PATRICIA chain R.

m The above result for the simplest radix sort chain R suggest that all the

extremal bridges for T' (equivalently, R) are of the form “R.



The conjecture is false!

11011010

Figure: The value at time n of an extremal Rémy bridge. The tree consists of leaves
hanging off a single spine that moves to the left or right accordmg to successive tosses
of a fair coin. It is clear that this chain is not of the form “ R for any v.



What are the extremal Rémy bridges?

m What are the extremal bridges for the Rémy chain T' (equivalently, the
simplest PATRICIA process R)?

m Write (T, )nen for an extremal Rémy bridge.



Consistently labeling the leaves in a Rémy bridge

By Kolmogorov's extension theorem, there is a Markov process (77,”)nen such
that for each n € N the random element T, is a leaf-labeled binary tree with
n + 1 leaves labeled by [n + 1] and the following hold.

m The binary tree obtained by removing the labels of T is T.*.

m For every n € N, the conditional distribution of X given T is uniform
over the (n + 1)! possible labelings of 7).

m In going backward from time n + 1 to time n, T, is transformed into
T as follows:
m The leaf labeled n + 2 is deleted, along with its sibling.

m If the sibling of the leaf labeled n + 2 is also a leaf, then the common parent
(which is now a leaf) is assigned the sibling’s label.



Most recent common ancestors

m We want to use the labeling and a projective construction to build an
infinite binary-tree-like structure for which N plays the role of the leaves.

m If 4,5 € N are the labels of two leaves T, that are represented as the
words u1 ... u, and vy ...ve in {0,1}*, then set
[,7]n ;= u1...Um = v1...0Um, where m := max{h : up = vp}.

m That is, [4,j]» is the most recent common ancestor in T, of the leaves
labeled i and j.

[iil,



Interior vertices

m Define an equivalence relation = on the Cartesian product N x N by
declaring that (¢/,5') = (¢",5") if and only if [i, j']» = [i", "]~ for some
(and hence all) n such that @', 5",i", 5" € [n + 1].

m Write {3, j) for the equivalence class of the pair (i, 7).

m Think of {3, j) as the being the most recent common ancestor of the leaves
i and j and of such points being interior vertices of a tree-like object.



Ordering equivalence classes — below and to the left

m Define a partial order <1, on the set of equivalence classes by declaring for
(#',5"),G",3") € N x N that (i, ') <r, (&", 5" if and only if for some (and
hence all) n such that 7/, 5',4", 5" € [n + 1] we have [¢, 7' ]n = u1 ... ug
and [i",5"]n = w1 ... ux0v1 ... v for some uy, ..., uk,v1,...,v¢ € {0,1}.

m Interpret the ordering (i’, 5’y <r (i, ;") as the “vertex” (i, ;" being
below and to the left of the “vertex” {i’,;").



Ordering equivalence classes — below and to the right

m Similarly, define another partial order < by declaring that
5" <r ", 3"y if and only if for some (and hence all) n such that
i, 5',1", 5" € [n+ 1] we have [¢',j']n = w1 ... ux and
[",7"]n = w1 ... uklvr ... ve for some ui, ..., ug,v1,...,ve € {0,1}.
m Interpret the ordering (i’,j') <gr (i", ;") as the “vertex” (i", ;") being
below and to the right of the “vertex” (', ;).



Yet another partial order — below

m Define a third partial order < on the set of equivalence classes of N x N by
declaring that (', ') < (", 7" if either (&', 5"y <p ", 5" or
@5y <r <", 5").

m Interpret the ordering (7', j'> < (i, j") as the "vertex” {(i", ;") being below
the “vertex” (i, j'>.



Properties of the equivalence relation and partial orders

The equivalence relation = and the partial orders <1, <g, and < have the
following properties.

(A) Fori,7€eN, (4,5) = (5,9).

(B) For distinct 4,5 € N, either (i, 5> <r {i,i) and {i,5) <r {j,5), or
<Z7]> <R <7'7’L> and <7'7.7> <L <.77]>

(C) “Triplet property” For distinct i, j, k, exactly one of

<7‘7.7> = <27k> < <]7 k>
<j7 k> = <.77 Z> < <k77’>

or

<k77*> = <k7.7> < <Zv‘7>

is valid.

(D) For i,j,k,£ €N, at most one of the relations (i, 7) <, {k,£) and
(i, jy <r {k,£) can hold and (i, j) < {(k,£) if and only if either
i, 5y <r <k, £) or (i, j) <r <k, 0).

(E) Fix f,g,h,i,5,k € N. If {f, g) <r <h,i) < (j, k), then {f,g) <r j, k).
Similarly, if {f,g) <r <{h,i) < {j, k), then {f, 9> <r {J, k).



Triplet property

Lifey =< %)

AN = /N
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Didendritic systems

m Suppose that N is a set, = is an equivalence relation on N, and each of
<r,<R,<is a partial order on the resulting collection of equivalence
classes. We say that D = (N, =,{-, "), <1, <r, <) is a didendritic system
if the properties (A)-(E) hold with N replaced by A

m A didendritic system with a finite label set N is just a rooted full binary
tree with its leaves labeled by N.



Didendritic systems and sequences of leaf-labeled finite rooted full binary

trees

m Suppose that (£,)nen is a sequence of finite rooted full binary trees such
that the leaves of £,, n € N, are labeled by [n + 1]. Assume that this
sequence is is consistent in the sense that %, is produced from .1 by:

m deleting leaf labeled n + 2 along with its sibling;
m if the sibling was also a leaf, assigning its label to the common parent
(which is now a leaf).

Then there is a corresponding didendritic system constructed as above for

(Tnﬁ)nEN-

m Moreover, any didendritic system on N arises in this way for a unique
consistent sequence (tn)nen-



Permuting a didendritic systems

m Given a didendritic system D = (N, =, (-, <p, <R, and a
permutation o of N, the didendritic system D7 = 7, <9, <®) s
defined by

m (¢,5) =7 (i",5") if and only if (¢(i'),0(5")) = (0(i"), 0(§")).

m {i,7)7 is the equivalence class of the pair (¢, ;) for the equivalence relation
_O'

m (h, z)" <9 {4, k)7 if and only if {o(h),o(i)) <L {o(j), (k)
m (h, i)’ <R {j, k)7 if and only if {o(h),c(i)) <gr (o(j), (k).



Exchangeable random didendritic systems

m A random didendritic system D = (N, =, {-,-), <, <g, <) is
exchangeable if for each permutation o of N such that o (i) =4 for all but
finitely many ¢ € N the random didendritic system D? has the same
distribution as D.



Didendritic systems and Rémy bridges

m The random didendritic system corresponding to the labeled version of a
Rémy bridge is exchangeable.

m Conversely, the sequence of random leaf-labeled finite rooted full binary
trees produced from an exchangeable random didendritic system is the
labeled version of a Rémy bridge.



Ergodic exchangeable random didendritic systems

m An exchangeable random didendritic system D is ergodic if
P({De A}JA{D7 € A}) =0

for some measurable set A for all permutations o of N with o (i) = 4 for all
but finitely many 7 € N implies that

P{D € A} € {0,1}.

m Any exchangeable random didendritic system is a mixture of ergodic
exchangeable random didendritic systems.

m The tail o-field of a Rémy bridge is almost surely trivial (equivalently, the
Rémy bridge is extremal) if and only if the corresponding exchangeable
random didendritic system is ergodic.



Constructing a distance

m Consider an extremal Rémy bridge and the corresponding ergodic
exchangeable random didendritic system. By de Finetti and the strong law
of large numbers,

(i, ) = lim - Z 14,3 < p}

exists for each pair 7,5 € N.
m Almost surely, d is an ultrametric on N. That is, almost surely the
following hold.

m Forall 4,5 €N, d(i,j) = 0, and d(é,5) = 0 if and only if i = j.
m Forall 4,5 €N, d(i,7) = d(j,19).
m Forall 4,5,k €N, d(i, k) < d(i,5) v d(j, k).

m A fortiori, d is almost surely a metric on N.



Digression: R-trees = tree-like metric spaces

m A segment in a metric space (X, d) is the image of an isometry
a: [a,b] — X. The endpoints of the segment are «(a) and a(b).

m A metric space (X, d) is geodesic if for all z,y € X there is a segment in
X with endpoints {z, y}.
m An R-tree is a metric space (X, d) with the following properties.
m The space (X, d) is geodesic.
m If two segments of (X, d) intersect in a single point, which is an endpoint of
both, then their union is a segment.

Fact: If (X,d) is an R-tree, then for all z,y € X there is a unique segment
in X with endpoints {z,y}.



Constructing an R-tree

m The most recent common ancestor of <h, i) and {j, k) is of the form
{€,my, where ¢ € {h,i} and m € {j, k}.
m In terms of the metric d, £ and m are any such pair for which
d(¢,m) = d(h,j) v d(h, k) v d(i,7) v d(i, k).
m We therefore extend the metric by setting
N 1 . .

=d(h,j) v d(h, k) v d(i,j) v d(i, k) — %(d(h, i) +d(j, k)).



Constructing an R-tree — continued

m This extension is indeed a metric and the four point condition holds; that
is for equivalence classes w, x, y, z at least one of the following sets of
conditions holds

m d(w, ) + d(y, 2) < d(w, y) + d(z, 2) = d{w, ) + d(z, y),
m d(w,z) + d{z,y) < d(w, )+ d(y, 2) — d{w, y) + (v, 2).
m d(w,y) + d(z, z) < d(w, 2) + d(z,y) = d(w, z) + d(y, z).



Constructing an R-tree — continued

m Because the four point condition holds, we can embed {{i,5) : 4,5 € N} in
a distance-preserving manner into a minimal, complete R-tree T with a
root p in such a way that (i, 5) < {(k,£) if and only if (i, ) is on the
geodesic segment from p to <{k, £).

m That is, the natural partial order on (T, p) extends the partial order < on
the embedded set {{i,5) : 7,7 € N}.



Core and projections

m The core S of T is the smallest closed subtree containing
{GG,5) 4,5 €N, i #j}.
m The projection II(z) of € T onto S is the unique point in S closest to x.

T1(x)



Sampling measure

m Put &, := II(k) = II(<k, k)) € S.
m The equivalence relation = and the partial order < can be reconstructed
from (&g)keN.

m By de Finetti and ergodicity, (£x)ken is an i.i.d. sequence with common
distribution u, where p is a diffuse probability measure on S.



Distinguishing left from right

m Any didendritic system (=, {-,-), <r, <g) is uniquely determined by the
equivalence relation =, the partial order <, and a determination for each
pair of distinct labeled leaves i, j € N whether

Gyjy<ci and (G,jy<rj
or
Gyjy<p g and  (,j) <g .
m For an ergodic exchangeable random didendritic system, define J;;,

1,7 €N, i # j, by Ji; =0 (resp. Ji; = 1) if the former (resp. latter)
alternative holds.

m The array J is jointly exchangeable and ergodic.



Distinguishing left from right — continued

m By the Aldous-Hoover-Kallenberg theory of jointly exchangeable arrays, we
may suppose that on some extension of our underlying probability space
there exist i.i.d. random variables (U;)ien, and (Usj)i, jen, i<; that are
uniform on [0, 1] and a function F such that

Jij = F(&,Us,&5,U;,Usj),

where Uij = Uji for ¢ > ]

m With some extra work, we can show that
Jij = G(&,Us,§5,U;)

for a suitable function G.



Where have we got to?

m Any Rémy bridge is a mixture of extremal Rémy bridges (i.e. ones with
trivial tail o-fields).

m There is a bijection between extremal Rémy bridges and ergodic
exchangeable random didendritic systems.

m Any ergodic exchangeable random didendritic system is determined by

ma S,

ma pES,

Ea ponsS,

ma G:Sx[0,1] x S x [0,1] — {0,1}.

m The ensemble (S, p, 1, G) has to satisfy certain obvious consistency
conditions (e.g. for u®3-a.e. (z,y,2) € S, two of the three geodesic
segments [p, x] N [p,y], [p,x] N [p, 2], [p,y] N [p, 2] are equal and these
two are strictly contained in the third).

m Conversely, any ensemble (S, p, u, G) that satisfies the consistency
conditions gives rise to an ergodic exchangeable random didendritic system
and hence to an extremal Rémy bridge.



SEE

Recall the Rémy bridge whose value at time 7 is a finite rooted full binary tree
consisting of n + 1 vertices along a single spinal path that has n leaves coming
off to the left of right according to tosses of a fair coin.

Here we may take

m the complete separable R-tree S to be [0, 1] equipped with the usual
metric,
m the root p to be the point 0 € [0, 1],
m the diffuse sampling probability measure p to be Lebesgue measure on
[0, 1],
m the “left-vs-right” function G : 8 x [0,1] x S x [0,1] — {0, 1} to be given
by
1, ifa:<yandu<%,
0, ifm<yandu>%,
G(x,u,y,v) =3 1, fy<wzandv< 3,
0, ify<xandv>%,
0 otherwise.



Why are things much simpler for the radix sort chain?

m This seems to be a subtle point that depends on monotonicity that is
present in the radix sort chain which is not present in the
Rémy/PATRICIA chain.



Labeling the leaves of a radix sort bridge

m Suppose that (R} )nen is a radix sort bridge.

m By Kolmogorov's extension theorem we may suppose that there is a
Markov process (R )nen such that for each n € N the random element
R is a leaf-labeled rooted binary tree with n leaves labeled by [n] and
the following hold.

m The rooted binary tree obtained by removing the labels of RZ is R,

m For every n € N, the conditional distribution of RX given R¥ is uniform
over the n! possible labelings of R°.

m In going backward from time n + 1 to time n, R;f;rl is transformed into

RZ by pruning the leaf labeled n + 1.



Limit labels

m Given i € [n], let (i), € {0,1}* be the leaf of Ry labeled i in R .

m Observe that {1); < {(i)i+1 < ... and so
(Yo = limy—0{iyn € {0,1}" 11 {0,1}” is well-defined.

m For distinct ¢, j € N, the most recent common ancestor {iy, A {j)n is the
same for all n = i A j and coincides with {(iY» A (j)wx.



CLAIM: The sequence ({i)«)ien is exchangeable.

PROOF: It is clear by construction that ({i)n);e[n] is (finitely) exchangeable
and the claim follows upon taking limits as n — 0.



Tail triviality

CLAIM: The tail o-field of (R} )nen is P-a.s. trivial if and only if ((i)e )ien is
an independent identically distributed sequence.

PROOF: The bijective correspondence between the distributions of the bridges
(R )nen and the distributions of their labeled versions (R;),en is compatible
with convex combinations, and hence preserves extremality.

Therefore the tail o-field of the bridge (R;, )nen is P-a.s. trivial if and only if
the exchangeable sequence ({iy ):en is ergodic.

A well-known consequence of de Finetti's theorem is that an exchangeable

sequence is ergodic if and only if it is independent and identically distributed.



CLAIM: If ({2)s )ien is independent and identically distributed with common
distribution v, then v is concentrated on {0,1}” and diffuse.

PROOF: For any u € {0, 1}*, the sequence (1{u = (k) })ren is independent
and identically distributed, and hence #{k e N: u = (k).} = 0 P-a.s. or
#{keN:u="_{kyp} =00 P-as.

Now, if P{{i)s € {0,1}*} > 0 there would be a u € {0, 1}* such that with
positive probability (i), = (i) = u for all n sufficiently large.

Then, on the event {{i)cc = u} we would have #{k € N:<{k)o. = u} =1,
because {(j)s # (i) for j # i when (i) € {0,1}".

This shows that P{{i), € {0,1}*} = 0.



Diffuseness — continued

We therefore have that ((k)x)ren is an independent identically distributed
sequence of {0, 1}*-valued random variables.

Because (i) A (j)os = (ipn A {Jon € {0,1}* for all n =i v j P-a.s. when

i # j, it follows that (i), # {j)x P-a.s. for i # j and the common distribution
of ((k)oo)ren is diffuse.



Identification of the extremal bridges

CLAIM: The tail o-field of (R, )nen is P-a.s. trivial if and only if (R )nen has
the same distribution as (¥ Ry )nen for some diffuse probability measure v on
{0,13”.

PROOF: We have already seen that when v is a diffuse probability measure on
{0,1}” the process (¥ Ryn)nen is a bridge which, by the Hewitt-Savage zero-one
law, has a trivial tail o-field.



Identification of the extremal bridges — continued

o0

Conversely, suppose that the bridge (R; )nen has a trivial tail o-field. Let v be
the common diffuse distribution of the independent, identically distributed
sequence of {0,1}*-valued random variables ({i)s )ien. It is clear that

Ry = R({(1)w,...,{n)x), n €N, and so (R, )nen has the same distribution
as (Y Ry )nen-
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