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Outline

Lecture 1: Definition and basic properties of SLE, examples

Lecture 2: Basic properties of SLE

Lecture 3: Imaginary geometry

References:
Conformally invariant processes in the plane by Lawler
Lectures on Schramm-Loewner evolution by Berestycki and Norris
Imaginary geometry I by Miller and Sheffield
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Simple random walk
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Simple random walk

Donsker’s theorem: Simple random walk converges to Brownian motion.
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Loop-erased random walk (LERW)
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Loop-erased random walk (LERW)

Lawler-Schramm-Werner’04: Loop-erased random walk ⇒ SLE2.

Illustration by P. Nolin
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Critical percolation on the triangular lattice

a

b

Smirnov’01: Critical percolation on the triangular lattice ⇒ SLE6
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Critical percolation on the triangular lattice

b

a

Smirnov’01: Critical percolation on the triangular lattice ⇒ SLE6
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Uniform spanning tree (UST)

Z2 restricted to a box
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Uniform spanning tree (UST)
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Uniform spanning tree (UST)

a

b

UST with wired ab boundary arc
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Uniform spanning tree (UST)

a

b

Peano curve

N. Holden (ETH-ITS Zürich) SLE and imaginary geometry August 4, 2020 6 / 39



Uniform spanning tree (UST)

a

b

Peano curve

Lawler-Schramm-Werner’04: Peano curve of the UST ⇒ SLE8
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Conformal maps

f

D ⊂ C D̃ ⊂ C

Definition (Conformal map)

f is conformal if f is bijective and f ′ exists.

f (z) = f1(z1, z2) + if2(z1, z2), z = z1 + iz2

Lemma (Cauchy-Riemann equations)

If f is conformal then

∂1f1 = ∂2f2, ∂2f1 = −∂1f2.
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Conformal invariance of planar Brownian motion

Theorem

Let W be a planar Brownian motion started from 0.

Define τD := inf{t ≥ 0 : W (t) 6∈ D} for D ⊂ C a domain s.t. 0 ∈ D.

Let f : D → D̃ be a conformal map fixing the origin.

Then W̃ := f ◦W |[0,τD ] has the law of a planar Brownian motion run

until first leaving D̃, modulo time reparametrization.a

aWe identify w1 : I1 → C and w2 : I2 → C (with I1, I2 ⊂ R intervals) if there
is an increasing bijection φ : I1 → I2 such that w1 = w2 ◦ φ.

f
W

W̃ = f ◦W

D ⊂ C D̃ ⊂ C
0

0

W (τD)
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Conformal invariance of planar Brownian motion
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Conformal invariance of Brownian motion: proof sketch

f
W

W̃ = f ◦W

D ⊂ C D̃ ⊂ C
0

0

W (τD)

Theorem

W̃ := f ◦W |[0,τD ] has the law of a planar Brownian motion run until first

leaving D̃, modulo time reparametrization.

Write W̃ (t) = W̃1(t) + iW̃2(t).

Exercise: Show that Itô’s formula and the Cauchy-Riemann equations give

W̃1, W̃2 are local martingales.
〈W̃1〉t = 〈W̃2〉t and this function is a.s. strictly increasing in t.

〈W̃1, W̃2〉 ≡ 0.

These properties characterize a planar Brownian motion modulo time
change (see e.g. Revuz-Yor).
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Riemann mapping theorem

f

D ⊂ C
D

Theorem (Riemann mapping theorem)

If D is a non-empty simply connected open proper subset of C then there
exists a conformal map f : D → D.

N. Holden (ETH-ITS Zürich) SLE and imaginary geometry August 4, 2020 11 / 39



Riemann mapping theorem

f

a

b

c

b′

c′

a′

Theorem (Riemann mapping theorem)

If D is a non-empty simply connected open proper subset of C then there
exists a conformal map f : D → D.

Three degrees of freedom.
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Mapping out function

η : [0,∞)→ H curve in H from 0 to ∞.

η
η

0 0
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Mapping out function

η : [0,∞)→ H curve in H from 0 to ∞.

Kt = H \ {unbounded component of H \ η([0, t])}.

Kt

Kt

0 0

η(t) η(t)
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Mapping out function

η : [0,∞)→ H curve in H from 0 to ∞.

Kt = H \ {unbounded component of H \ η([0, t])}.
gt : H \ Kt → H, gt(∞) =∞.

η|[0,t]

0

gt

H H
gt(η(t))
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Mapping out function

η : [0,∞)→ H curve in H from 0 to ∞.

Kt = H \ {unbounded component of H \ η([0, t])}.
gt : H \ Kt → H, gt(∞) =∞.

gt(z) = a1z + a0 + a−1z
−1 + . . . for a1, a0, · · · ∈ R near z =∞

Show g̃t(z) := −1/gt(−z−1) = ã1z + ã2z
2 + . . . by Schwarz reflection.

η|[0,t]

0

gt

H H
gt(η(t))
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0
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0
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gt : H \ Kt → H, gt(∞) =∞.

gt(z) = a1z + a0 + a−1z
−1 + . . . for a1, a0, · · · ∈ R near z =∞

Show g̃t(z) := −1/gt(−z−1) = ã1z + ã2z
2 + . . . by Schwarz reflection.

Fix gt by choosing a1 = 1, a0 = 0.

η|[0,t]

0

gt

H H
gt(η(t))
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Mapping out function

η : [0,∞)→ H curve in H from 0 to ∞.

Kt = H \ {unbounded component of H \ η([0, t])}.
gt : H \ Kt → H, gt(∞) =∞.
gt(z) = a1z + a0 + a−1z

−1 + . . . for a1, a0, · · · ∈ R near z =∞
Show g̃t(z) := −1/gt(−z−1) = ã1z + ã2z

2 + . . . by Schwarz reflection.

Fix gt by choosing a1 = 1, a0 = 0.

gt is the mapping out function of the hull Kt .

Remark: Any compact H-hull K (i.e., a bounded subset of H s.t.
H \ K is open and simply connected) can be associated with a
mapping out function g : H \ K → H.

η|[0,t]

0

gt

H H
gt(η(t))
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Half-plane capacity

Recall: gt(z) = z + a−1z
−1 + a−2z

−2 + . . .
hcap(Kt) := a−1 is the “size” of Kt .

Lemma (additivity)

hcap(Kt+s) = hcap(Kt) + hcap(gt(Kt+s \ Kt)).

0

gt = z + a−1z
−1 + . . . z 7→ z + b−1z

−1 + . . .

gt+s = z + (a−1 + b−1)z
−1 + . . .

Kt gt(Kt+s \Kt)
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Half-plane capacity

Recall: gt(z) = z + a−1z
−1 + a−2z

−2 + . . .
hcap(Kt) := a−1 is the “size” of Kt .

Lemma (additivity)

hcap(Kt+s) = hcap(Kt) + hcap(gt(Kt+s \ Kt)).

Lemma (scaling)

hcap(rKt) = r2 hcap(Kt)

0

Kt

z 7→ rz rKt

0

0 0

gt rgt(·/r)

z 7→ rz

Observe that g̃t(z) := rgt(z/r) is the
mapping out function of rKt and that

g̃t(z) = z + r2 hcap(Kt)z
−1 + . . .
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Half-plane capacity

Recall: gt(z) = z + a−1z
−1 + a−2z

−2 + . . .
hcap(Kt) := a−1 is the “size” of Kt .

Lemma (additivity)

hcap(Kt+s) = hcap(Kt) + hcap(gt(Kt+s \ Kt)).

Lemma (scaling)

hcap(rKt) = r2 hcap(Kt)

Convention: Parametrize η such that hcap(Kt) = 2t.
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Driving function and Loewner equation

η simple curve in (H, 0,∞) parametrized by half-plane capacity.

Definition (Driving function)

W (t) := gt(η(t))

Proposition (Loewner equation)

If τz = inf{t ≥ 0 : z ∈ Kt} then

ġt(z) =
2

gt(z)−W (t)
for t ∈ [0, τz), g0(z) = z ∈ H.

η|[0,t]

0

gt

0 W (t)
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Schramm’s idea

Key idea: study W instead of η.

If η describes the conjectural scaling limit of certain discrete models,
then W must be a multiple of a Brownian motion!

η|[0,t]

0

gt

0 W (t)
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Definition of SLEκ in (H, 0,∞)

κ ≥ 0 and (B(t))t≥0 is a standard Brownian motion.

Solve Loewner equation with driving function W =
√
κB

ġt(z) =
2

gt(z)−W (t)
, τz = sup{t ≥ 0 : gt(z) well-defined}.

Define Kt := {z ∈ H : τz ≤ t}.
Let η be the curve generating (Kt)t≥0.

Kt = H \ {unbounded component of H \ η([0, t])},
η is well-defined: Rohde-Schramm’05, Lawler-Schramm-Werner’04.

Definition (The Schramm-Loewner evolution in (H, 0,∞))

η is an SLEκ in (H, 0,∞).

(B(t))t≥0 (gt)t≥0 (Kt)t≥0 (η(t))t≥0
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Definition of SLEκ in (D, a, b)

0
a

b

f

η̃ η

D

Definition (The Schramm-Loewner evolution)

Let η̃ be an SLEκ in (H, 0,∞).

Then η := f (η̃) is an SLEκ in (D, a, b).

Note that f is not unique since f ◦ φr also sends (H, 0,∞) to
(D, a, b) if φr (z) := rz for r > 0.

SLEκ in (D, a, b) is still well-defined by scale invariance in law of
SLEκ in (H, 0,∞) (next slide).
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Scale invariance in law of SLEκ

Exercise (Scale invariance of SLEκ)

Let η be an SLEκ in (H, 0,∞) and let r > 0.

Prove that t 7→ rη(t/r2) has the law of an SLEκ in (H, 0,∞).

Hint: Let η̃(t) = rη(t/r2) and argue that mapping out fcn g̃t of η̃ satisfy

g̃t(z) = rgt/r2(z/r), ˙̃g t(z) = ∂t
(
rgt/r2(z/r)

)
=

2

g̃t(z)− rW (t/r2)
.

0

z 7→ rz

0

0 0

gt/r2 g̃t

z 7→ rz

η|[0,t/r2]
η̃|[0,t]
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Conformal invariance and domain Markov property

Probability measure µD,a,b on curves η modulo time reparametrization
in (D, a, b) for each simply connected domain D ⊂ C, a, b ∈ ∂D.1

b

aD

η

1Identify η and η ◦ φ if φ : I1 → I2 cts and strictly increasing. ∂D Martin bdy of D.
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Probability measure µD,a,b on curves η modulo time reparametrization
in (D, a, b) for each simply connected domain D ⊂ C, a, b ∈ ∂D.1

Suppose η ∼ µH,0,∞ a.s. generated by Loewner chain.

b
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η
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Conformal invariance and domain Markov property

Probability measure µD,a,b on curves η modulo time reparametrization
in (D, a, b) for each simply connected domain D ⊂ C, a, b ∈ ∂D.1

Suppose η ∼ µH,0,∞ a.s. generated by Loewner chain.

Conformal invariance (CI): If η ∼ µD,a,b then φ ◦ η has law µ
D̃,ã,b̃

.

a

b

b̃

ã

φ

D D̃

η
φ ◦ η

Conformal invariance

1Identify η and η ◦ φ if φ : I1 → I2 cts and strictly increasing. ∂D Martin bdy of D.
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Conformal invariance and domain Markov property

Probability measure µD,a,b on curves η modulo time reparametrization
in (D, a, b) for each simply connected domain D ⊂ C, a, b ∈ ∂D.1

Suppose η ∼ µH,0,∞ a.s. generated by Loewner chain.

Conformal invariance (CI): If η ∼ µD,a,b then φ ◦ η has law µ
D̃,ã,b̃

.

Domain Markov property (DMP): Conditioned on η|[0,τ ] for
stopping time τ , the rest of the curve η|[τ,∞) has law µD\Kτ ,η(t),b.

a

b

b̃

ã

φ

D D̃

η
φ ◦ η

a

b

D
Kτ = η([0, τ ])

η([τ,∞))

Conformal invariance Domain Markov
property

1Identify η and η ◦ φ if φ : I1 → I2 cts and strictly increasing. ∂D Martin bdy of D.
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Conformal invariance and domain Markov property

Probability measure µD,a,b on curves η modulo time reparametrization
in (D, a, b) for each simply connected domain D ⊂ C, a, b ∈ ∂D.1

Suppose η ∼ µH,0,∞ a.s. generated by Loewner chain.

Conformal invariance (CI): If η ∼ µD,a,b then φ ◦ η has law µ
D̃,ã,b̃

.

Domain Markov property (DMP): Conditioned on η|[0,τ ] for
stopping time τ , the rest of the curve η|[τ,∞) has law µD\Kτ ,η(t),b.

Theorem (Schramm’00)

The following statements are equivalent:

µD,a,b satisfies (CI) and (DMP).

There is a κ ≥ 0 such that µD,a,b is the law of SLEκ.

1Identify η and η ◦ φ if φ : I1 → I2 cts and strictly increasing. ∂D Martin bdy of D.
N. Holden (ETH-ITS Zürich) SLE and imaginary geometry August 4, 2020 19 / 39



Conformal invariance of percolation

b̃

⇓ ⇓

ã

b̃

b

a

b

a

ã

D̃
D

µD,a,b µD̃,ã,b̃
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Conformal invariance of percolation

b̃

⇓ ⇓

ã

b̃

b

a

b

a

ã

D̃
D

µD,a,b µD̃,ã,b̃
φ

Conformal invariance: If η ∼ µD,a,b then φ ◦ η has law µ
D̃,ã,b̃

.
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Outline

Lecture 1: Definition and basic properties of SLE, examples

Lecture 2: Basic properties of SLE (today)

Lecture 3: Imaginary geometry

References:
Conformally invariant processes in the plane by Lawler
Lectures on Schramm-Loewner evolution by Berestycki and Norris
Imaginary geometry I by Miller and Sheffield

Key message today: The Loewner equation allows us to analyze SLE using
stochastic calculus.
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Domain Markov property of percolation

a

b
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Domain Markov property of percolation

Conditioned on η|[0,25], the rest of the percolation interface has the law of
a percolation interface in (D \ K25, η(25), b).

a

b

η(25)

D

D \K25

K25
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Domain Markov property of the self-avoiding walk

Number of length n self-avoiding paths on Z2 from (0, 0): µn(1+o(1)).

(0, 0)
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Domain Markov property of the self-avoiding walk

Number of length n self-avoiding paths on Z2 from (0, 0): µn(1+o(1)).

µ ∈ [2.62, 2.68] is the connective constant of Z2.

(0, 0)
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Domain Markov property of the self-avoiding walk

Number of length n self-avoiding paths on Z2 from (0, 0): µn(1+o(1)).

µ ∈ [2.62, 2.68] is the connective constant of Z2.

The self-avoiding walk (SAW): W random path s.t. for w a
self-avoiding path on discrete approximation (Dm, am, bm) to (D, a, b),

P[W = w ] = cµ−|w |,

where |w | is the length of w and c is a renormalizing constant.

am

bm

W

D
(0, 0)

1
m
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Domain Markov property of the self-avoiding walk

Number of length n self-avoiding paths on Z2 from (0, 0): µn(1+o(1)).

µ ∈ [2.62, 2.68] is the connective constant of Z2.

The self-avoiding walk (SAW): W random path s.t. for w a
self-avoiding path on discrete approximation (Dm, am, bm) to (D, a, b),

P[W = w ] = cµ−|w |,

where |w | is the length of w and c is a renormalizing constant.

Conjecture: W⇒ SLE8/3.

am

bm

W

D
(0, 0)

1
m
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Domain Markov property of the self-avoiding walk

Number of length n self-avoiding paths on Z2 from (0, 0): µn(1+o(1)).

µ ∈ [2.62, 2.68] is the connective constant of Z2.

The self-avoiding walk (SAW): W random path s.t. for w a
self-avoiding path on discrete approximation (Dm, am, bm) to (D, a, b),

P[W = w ] = cµ−|w |,

where |w | is the length of w and c is a renormalizing constant.

Conjecture: W⇒ SLE8/3.

Exercise: Given W|[0,k] the remaining path has the law of a SAW in
(Dm \W([0, k]),W(k), bm).

am

bm

W(k)

D
(0, 0)
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SLE satisfies (CI) and (DMP)

(CI): follows from the definition of SLEκ on general domains (D, a, b).

0
a

b

f

η̃ η

D
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SLE satisfies (CI) and (DMP)

(CI): follows from the definition of SLEκ on general domains (D, a, b).

(DMP): sufficient to verify for (H, 0,∞) and parametrization by
half-plane capacity.

0

η(τ)

Kτ

Want to prove: η|[τ,∞) has the law of an SLEκ in (H \ Kτ , η(τ),∞).
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SLE satisfies (CI) and (DMP)

(CI): follows from the definition of SLEκ on general domains (D, a, b).
(DMP): sufficient to verify for (H, 0,∞) and parametrization by
half-plane capacity.

Centered mapping out functions g̃t(z) := gt(z)−W (t) satisfy

. dg̃t(z) =
2

g̃t(z)
− dW (t), g̃0(z) = z . (CL)

Exercise: Centered mapping out functions (g̃τ,t)t≥0 of η̂τ satisfy
g̃τ+t = g̃τ,t ◦ g̃τ .
Exercise: Use previous exercise to argue that (g̃τ,t)t≥0 satisfies (CL)

w/driving function (W (τ + t)−W (τ))t≥0
d
= (W (t))t≥0.

The last exercise implies that η̂τ has the law of an SLEκ in (H, 0,∞).

0

g̃τ g̃τ,t

g̃τ+t
0 0

η(τ)

η(τ + t)
η̂τ
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(CI) and (DMP) imply that η is an SLE

Suppose (µD,a,b)D,a,b satisfies (CI) and (DMP). Let η ∼ µH,0,∞ be
param. by half-plane capacity; let W denote the driving fcn of η.
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param. by half-plane capacity; let W denote the driving fcn of η.

(CI) ⇒ scale invariance ⇒ (W (t))t≥0
d
= (rW (t/r2))t≥0.

0

z 7→ rz

0

0 0

gt/r2 g̃t

z 7→ rz

η|[0,t/r2]
η̃|[0,t]

Let η̃(t) := rη(t/r2). Then η
d
= η̃. Mapping out fcn (g̃t)t≥0 of η̃ satisfy:

g̃t(z) = rgt/r2(z/r), ˙̃g t(z) = ∂t
(
rgt/r2(z/r)

)
=

2

g̃t(z)− rW (t/r2)
.
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Suppose (µD,a,b)D,a,b satisfies (CI) and (DMP). Let η ∼ µH,0,∞ be
param. by half-plane capacity; let W denote the driving fcn of η.

(CI) ⇒ scale invariance ⇒ (W (t))t≥0
d
= (rW (t/r2))t≥0.

(DMP)

0

η(s)

Ks

(DMP): η|[s,∞) has law µH\Ks ,η(s),∞.
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Suppose (µD,a,b)D,a,b satisfies (CI) and (DMP). Let η ∼ µH,0,∞ be
param. by half-plane capacity; let W denote the driving fcn of η.

(CI) ⇒ scale invariance ⇒ (W (t))t≥0
d
= (rW (t/r2))t≥0.

(DMP) ⇒ (W (t))t≥0 has i.i.d. increments.

By (DMP), η̂s
d
= η and η̂s is independent of η|[0,s].

The centered mapping out fcn (g̃s,t)t≥0 of η̂s satisfy the centered
Loewner equation w/driving function (W (s + t)−W (s))t≥0.

Combining the above, (W (s + t)−W (s))t≥0
d
= (W (t))t≥0 and is

independent of W |[0,s].

0

g̃s g̃s,t

g̃s+t

0 0

η(s)

η(s+ t) η̂s
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(CI) and (DMP) imply that η is an SLE

Suppose (µD,a,b)D,a,b satisfies (CI) and (DMP). Let η ∼ µH,0,∞ be
param. by half-plane capacity; let W denote the driving fcn of η.

(CI) ⇒ scale invariance ⇒ (W (t))t≥0
d
= (rW (t/r2))t≥0.

(DMP) ⇒ (W (t))t≥0 has i.i.d. increments.

(CI) + (DMP) ⇒ W =
√
κB for some κ ≥ 0.
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Phases of SLE

Rohde-Schramm’05: SLEκ has the following phases:

κ ∈ [0, 4]: The curve is simple.

κ ∈ (4, 8): The curve is self-intersecting and has zero Lebesgue measure.

κ ≥ 8: The curve fills space.

κ ∈ [0, 4] κ ∈ (4, 8) κ ≥ 8

Figures by P. Nolin, W. Werner, and J. Miller
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Phase transition at κ = 4

Lemma

If κ ∈ [0, 4] then η is a.s. simple (i.e., η(t1) 6= η(t2) for t1 6= t2).

If κ > 4 then η is a.s. not simple.

We will deduce the lemma from the following result, where

τx = inf{t ≥ 0 : x ∈ K t} for x > 0.

Lemma

If κ ∈ [0, 4] then τx =∞ a.s.

If κ > 4 then τx <∞ a.s.

x0 0 x = η(τx)

η(τx)

ηη

N. Holden (ETH-ITS Zürich) SLE and imaginary geometry August 4, 2020 27 / 39



Phase transition at κ = 4

Recall τx = inf{t ≥ 0 : x ∈ K t} for x > 0.

Lemma

If κ ∈ [0, 4] then τx =∞ a.s.

If κ > 4 then τx <∞ a.s.

w.l.o.g. x = 1; ġt(1) =
2

gt(1)−
√
κB(t)

, gt(1) = 1,
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If κ > 4 then τx <∞ a.s.

w.l.o.g. x = 1; ġt(1) =
2

gt(1)−
√
κB(t)

, gt(1) = 1,

Y (t) = κ−1/2(gt(1)−
√
κB(t)),

10 0

η gt

√
κB(t)

√
κY (t)
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N. Holden (ETH-ITS Zürich) SLE and imaginary geometry August 4, 2020 28 / 39



Phase transition at κ = 4

Recall τx = inf{t ≥ 0 : x ∈ K t} for x > 0.

Lemma

If κ ∈ [0, 4] then τx =∞ a.s.

If κ > 4 then τx <∞ a.s.

w.l.o.g. x = 1; ġt(1) =
2

gt(1)−
√
κB(t)

, gt(1) = 1,

Y (t) = κ−1/2(gt(1)−
√
κB(t)),

τ1 = inf{t ≥ 0 : Y (t) = 0},

dY (t) =
2

κY (t)
dt − dB(t), so Y (t) is a

(4

κ
+ 1
)

-dim. Bessel process.

10 0

η gt

√
κB(t)

√
κY (t)

dim ∈ (1, 2)
κ ∈ (4,∞)

dim ≥ 2
κ ∈ (0, 4]

Y (t)
Y (t)
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Phase transition at κ = 4

Lemma

If κ ∈ [0, 4] then η is a.s. simple
(i.e., η(t1) 6= η(t2) for t1 6= t2).

If κ > 4 then η is a.s. not
simple.

τx = inf{t ≥ 0 : x ∈ K t}, x > 0.

Lemma

If κ ∈ [0, 4] then τx =∞ a.s.

If κ > 4 then τx <∞ a.s.

0

g̃t
η(t1) = η(t2)

η(t)

0

g̃tη(t)

κ > 4

κ ∈ [0, 4]
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Locality of SLE6

Proposition

η SLE6 in (D, x , y). Set τ := inf{t ≥ 0 : η(t) ∈ arc(ỹ , y)}.
Define η̃ and τ̃ in the same way for (D, x , ỹ).

Then η|[0,τ ]
d
= η̃|[0,τ̃ ].

D

η(τ)

ỹ
y

x
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Locality of SLE6

Proposition

η SLE6 in (D, x , y). Set τ := inf{t ≥ 0 : η(t) ∈ arc(ỹ , y)}.
Define η̃ and τ̃ in the same way for (D, x , ỹ).

Then η|[0,τ ]
d
= η̃|[0,τ̃ ].

y

η

L

Want to prove: If η is an SLE6 in (H, 0,∞) then η has the law of an SLE6

in (H, 0, y) until hitting L.
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Locality of SLE6: Proof sketch

Φ

gt

Φt := g∗t ◦ Φ ◦ g−1
t

y
g∗t Φ(∞)

η η∗

W (t) W ∗(t)

L∗L

η SLE6 in (H, 0,∞); gt mapping out function; W driving function.

Φ conformal map sending (H, 0, y) to (H, 0,∞).

η∗(t) := Φ(η(t)); g∗t map. out fcn; W ∗(t) = Φt(W (t)) driving fcn.

ġ∗t (z) =
b′(t)

g∗t (z)−W ∗(t)
, b(t) = hcap(η∗([0, t])).

Want to show: η∗ law of SLE6 in (H, 0,∞) until hitting L∗.

Equivalently, W ∗(t) =
√

6B∗(b(t)/2) for B∗ std Brownian motion.

Find dW ∗ by Itô’s formula; prove and use Φ̇t(W (t)) = −3Φ′′t (W (t)).
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Restriction property

Definition

Let µD,x ,y for D ⊂ C simply connected and x , y ∈ ∂D be a family of
probability measures on curves η in D from x to y .

Let η ∼ µD,x ,y for some (D, x , y) and let U ⊂ D be simply connected
s.t. x , y ∈ ∂U.

The measures µD,x ,y satisfy the restriction property if η conditioned
to stay in U has the law of a curve sampled from µU,x ,y .

For which κ ≥ 0 does SLEκ satisfy the restriction property?

Dx

y

U

η
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Restriction property of discrete models

Does the loop-erased random walk satisfy the restriction property?

N. Holden (ETH-ITS Zürich) SLE and imaginary geometry August 4, 2020 33 / 39



Restriction property of discrete models

Does the loop-erased random walk satisfy the restriction property?

Let Ŵ be a simple random walk on discrete approximation
(Dm, am, bm) to (D, a, b).

am

bm

D

Ŵ 1
m
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Restriction property of discrete models

Does the loop-erased random walk satisfy the restriction property?

Let Ŵ be a simple random walk on discrete approximation
(Dm, am, bm) to (D, a, b).

The loop-erased random walk (LERW) W is loop-erasure of Ŵ.

am

bm

D

W

Ŵ
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Restriction property of discrete models

Does the loop-erased random walk satisfy the restriction prop.? NO

Let Ŵ be a simple random walk on discrete approximation
(Dm, am, bm) to (D, a, b).

The loop-erased random walk (LERW) W is loop-erasure of Ŵ.

Let Um ⊂ Dm be connected s.t. am, bm ∈ Um.

am

bm

D

W

Ŵ
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Restriction property of discrete models

Does the loop-erased random walk satisfy the restriction prop.? NO

Let Ŵ be a simple random walk on discrete approximation
(Dm, am, bm) to (D, a, b).

The loop-erased random walk (LERW) W is loop-erasure of Ŵ.

Let Um ⊂ Dm be connected s.t. am, bm ∈ Um.

“LERW in (Dm, am, bm) conditioned to stay in Um” 6= “LERW in

(Um, am, bm)”, since the latter requires Ŵ ⊂ Um (not just W ⊂ Um).

am

bm

D

W

Ŵ
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Restriction property of discrete models

Does the loop-erased random walk satisfy the restriction prop.? NO

Does the self-avoiding walk satisfy the restriction property?

The self-avoiding walk (SAW) W is s.t. for any fixed self-avoiding path
w on discrete approximation (Dm, am, bm) to (D, a, b),

P[W = w ] = cµ−|w |,

where µ is the connective constant, |w | is the length of w , and c is a
renormalizing constant.

am

bm

W

D
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Restriction property of discrete models

Does the loop-erased random walk satisfy the restriction prop.? NO

Does the self-avoiding walk satisfy the restriction property? YES

The self-avoiding walk (SAW) W is s.t. for any fixed self-avoiding path
w on discrete approximation (Dm, am, bm) to (D, a, b),

P[W = w ] = cµ−|w |,

where µ is the connective constant, |w | is the length of w , and c is a
renormalizing constant.

“SAW in (Dm, am, bm) cond. to stay in Um”
d
= “SAW in (Um, am, bm)”

am

bm

W

D
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Restriction property of SLE8/3

Proposition

η SLE8/3 in (H, 0,∞); K ⊂ H s.t. H \ K simply conn., 0,∞ 6∈ K .

Then η cond. on η ∩ K = ∅ has the law of SLE8/3 in (H \ K , 0,∞).

K

η

0
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Restriction property of SLE8/3

Proposition

η SLE8/3 in (H, 0,∞); K ⊂ H s.t. H \ K simply conn., 0,∞ 6∈ K .

Then η cond. on η ∩ K = ∅ has the law of SLE8/3 in (H \ K , 0,∞).

Proposition equivalent to the following for K ′ ⊃ K

. P[η∩K ′ = ∅ | η∩K = ∅] = P[η∩ g̃K (K ′) = ∅], (A)

since RHS = P[η̂ ∩ K ′ = ∅] for η̂ an SLE8/3 in (H \ K , 0,∞).

K

K ′
η g̃K = z + a+O(z−1)

0 0

g̃K(K ′)
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Then η cond. on η ∩ K = ∅ has the law of SLE8/3 in (H \ K , 0,∞).

Proposition equivalent to the following for K ′ ⊃ K

. P[η∩K ′ = ∅ | η∩K = ∅] = P[η∩ g̃K (K ′) = ∅], (A)

since RHS = P[η̂ ∩ K ′ = ∅] for η̂ an SLE8/3 in (H \ K , 0,∞).

Key identity (proof omitted here): P[η ∩ K = ∅] = g̃ ′K (0)5/8.

K

K ′
η g̃K = z + a+O(z−1)

0 0

g̃K(K ′)
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Restriction property of SLE8/3

Proposition

η SLE8/3 in (H, 0,∞); K ⊂ H s.t. H \ K simply conn., 0,∞ 6∈ K .

Then η cond. on η ∩ K = ∅ has the law of SLE8/3 in (H \ K , 0,∞).

Proposition equivalent to the following for K ′ ⊃ K
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since RHS = P[η̂ ∩ K ′ = ∅] for η̂ an SLE8/3 in (H \ K , 0,∞).

Key identity (proof omitted here): P[η ∩ K = ∅] = g̃ ′K (0)5/8.
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Then η cond. on η ∩ K = ∅ has the law of SLE8/3 in (H \ K , 0,∞).

Proposition equivalent to the following for K ′ ⊃ K

. P[η∩K ′ = ∅ | η∩K = ∅] = P[η∩ g̃K (K ′) = ∅], (A)

since RHS = P[η̂ ∩ K ′ = ∅] for η̂ an SLE8/3 in (H \ K , 0,∞).

Key identity (proof omitted here): P[η ∩ K = ∅] = g̃ ′K (0)5/8.
This identity, Bayes’ rule, and g̃K ′ = g̃g̃K (K ′) ◦ g̃K imply (A).
Remark: Key identity with exponent α ≥ 5/8 represent other random
sets satisfying conformal restriction.
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Chordal, radial, and whole-plane SLE

chordal SLE radial SLE whole-plane SLE

N. Holden (ETH-ITS Zürich) SLE and imaginary geometry August 4, 2020 35 / 39



A few open questions

Convergence of discrete models, e.g.

self-avoiding walk (κ = 8/3)
universality for percolation: Z2; Voronoi tesselation (κ = 6)
Fortuin-Kastelyn model (κ ∈ (4, 8))
6-vertex model (κ = 12, general κ)

a

b
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Convergence of discrete models, e.g.
self-avoiding walk (κ = 8/3)
universality for percolation: Z2; Voronoi tesselation (κ = 6)
Fortuin-Kastelyn model (κ ∈ (4, 8))
6-vertex model (κ = 12, general κ)

Random planar map; figure due to Gwynne-Miller-Sheffield
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A few open questions

Convergence of discrete models, e.g.
self-avoiding walk (κ = 8/3)
universality for percolation: Z2; Voronoi tesselation (κ = 6)
Fortuin-Kastelyn model (κ ∈ (4, 8))
6-vertex model (κ = 12, general κ)

Scaling limit of statistical physics models in 3d, e.g.
loop-erased random walk (Kozma’07)
uniform spanning tree (Angel–Croydon–Hernandez-Torres–Shiraishi’20)
percolation

3d UST; figure by Angel–Croydon–Hernandez-Torres–Shiraishi
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Convergence of discrete models, e.g.
self-avoiding walk (κ = 8/3)
universality for percolation: Z2; Voronoi tesselation (κ = 6)
Fortuin-Kastelyn model (κ ∈ (4, 8))
6-vertex model (κ = 12, general κ)

Scaling limit of statistical physics models in 3d, e.g.
loop-erased random walk (Kozma’07)
uniform spanning tree (Angel–Croydon–Hernandez-Torres–Shiraishi’20)
percolation

Figure by Sheffield-Yadin
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A few open questions

Convergence of discrete models, e.g.
self-avoiding walk (κ = 8/3)
universality for percolation: Z2; Voronoi tesselation (κ = 6)
Fortuin-Kastelyn model (κ ∈ (4, 8))
6-vertex model (κ = 12, general κ)

Scaling limit of statistical physics models in 3d, e.g.
loop-erased random walk (Kozma’07)
uniform spanning tree (Angel–Croydon–Hernandez-Torres–Shiraishi’20)
percolation

Path properties of SLE, e.g.
Hausdorff measure of SLE

ηη

Minkowski content Hausdorff measureN. Holden (ETH-ITS Zürich) SLE and imaginary geometry August 4, 2020 36 / 39



Thanks for attending!
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Radial SLE

0 0
η(t)

ei
√
κB(t)

gt

gt : D \ Kt → D defined such that gt(0) = 0 and g ′t(0) > 0.

η parametrized such that t = log g ′t(0).

Radial Loewner equation, where B is a standard Brownian motion

ġt(z) = gt(z)
e i
√
κB(t) + gt(z)

e i
√
κB(t) − gt(z)

, g0(z) = z .
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gt : D \ Kt → D defined such that gt(0) = 0 and g ′t(0) > 0.
η parametrized such that t = log g ′t(0).
Radial Loewner equation, where B is a standard Brownian motion

ġt(z) = gt(z)
e i
√
κB(t) + gt(z)

e i
√
κB(t) − gt(z)

, g0(z) = z .

z 7→ −i log z
D

H
1

0
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Whole-plane SLE

η(t)
a b

gt

Kt = η((−∞, t])
gt(b) = 0

Conditioned on η|(−∞,t], the remainder η|(t,∞) of the curve has the law of
radial SLEκ in (C \ Kt , η(t), b).
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