Schramm-Loewner evolutions and imaginary geometry

Nina Holden

Institute for Theoretical Studies, ETH Zürich

August 4, 2020

Outline

- Lecture 1: Definition and basic properties of SLE, examples
- Lecture 2: Basic properties of SLE
- Lecture 3: Imaginary geometry

References:

Conformally invariant processes in the plane by Lawler Lectures on Schramm-Loewner evolution by Berestycki and Norris Imaginary geometry I by Miller and Sheffield

Simple random walk

Donsker's theorem: Simple random walk converges to Brownian motion.

Loop-erased random walk (LERW)

- Lawler-Schramm-Werner'04: Loop-erased random walk $\Rightarrow \mathrm{SLE}_{2}$. Illustration by P. Nolin

Critical percolation on the triangular lattice

Smirnov'01: Critical percolation on the triangular lattice $\Rightarrow S L E_{6}$

Critical percolation on the triangular lattice

Smirnov'01: Critical percolation on the triangular lattice $\Rightarrow \mathrm{SLE}_{6}$

Uniform spanning tree (UST)

\mathbb{Z}^{2} restricted to a box

Uniform spanning tree (UST)

Uniform spanning tree (UST)

Uniform spanning tree (UST)

UST with wired $a b$ boundary arc

Uniform spanning tree (UST)

Peano curve

Uniform spanning tree (UST)

Peano curve

Lawler-Schramm-Werner'04: Peano curve of the UST \Rightarrow SLE $_{8}$

Conformal maps

Definition (Conformal map)

f is conformal if f is bijective and f^{\prime} exists.

$$
f(z)=f_{1}\left(z_{1}, z_{2}\right)+i f_{2}\left(z_{1}, z_{2}\right), \quad z=z_{1}+i z_{2}
$$

Lemma (Cauchy-Riemann equations)
If f is conformal then

$$
\partial_{1} f_{1}=\partial_{2} f_{2}, \quad \partial_{2} f_{1}=-\partial_{1} f_{2}
$$

Conformal invariance of planar Brownian motion

Theorem

- Let W be a planar Brownian motion started from 0.
- Define $\tau_{D}:=\inf \{t \geq 0: W(t) \notin D\}$ for $D \subset \mathbb{C}$ a domain s.t. $0 \in D$.
- Let $f: D \rightarrow \widetilde{D}$ be a conformal map fixing the origin.
- Then $\widetilde{W}:=\left.f \circ W\right|_{\left[0, \tau_{D}\right]}$ has the law of a planar Brownian motion run until first leaving \widetilde{D}, modulo time reparametrization. ${ }^{\text {a }}$

[^0]

Conformal invariance of planar Brownian motion

Conformal invariance of Brownian motion: proof sketch

Theorem

$\widetilde{W}:=\left.f \circ W\right|_{\left[0, \tau_{D}\right]}$ has the law of a planar Brownian motion run until first leaving \widetilde{D}, modulo time reparametrization.

Write $\widetilde{W}(t)=\widetilde{W}_{1}(t)+i \widetilde{W}_{2}(t)$.
Exercise: Show that Itô's formula and the Cauchy-Riemann equations give

- $\widetilde{W}_{1}, \widetilde{W}_{2}$ are local martingales.
- $\left\langle\widetilde{W}_{1}\right\rangle_{t}=\left\langle\widetilde{W}_{2}\right\rangle_{t}$ and this function is a.s. strictly increasing in t.
- $\left\langle\widetilde{W}_{1}, \widetilde{W}_{2}\right\rangle \equiv 0$.

These properties characterize a planar Brownian motion modulo time change (see e.g. Revuz-Yor).

Riemann mapping theorem

> Theorem (Riemann mapping theorem)
> If D is a non-empty simply connected open proper subset of \mathbb{C} then there exists a conformal map $f: D \rightarrow \mathbb{D}$.

Riemann mapping theorem

Theorem (Riemann mapping theorem)

If D is a non-empty simply connected open proper subset of \mathbb{C} then there exists a conformal map $f: D \rightarrow \mathbb{D}$.

Three degrees of freedom.

Mapping out function

- $\eta:[0, \infty) \rightarrow \mathbb{H}$ curve in \mathbb{H} from 0 to ∞.

Mapping out function

- $\eta:[0, \infty) \rightarrow \mathbb{H}$ curve in \mathbb{H} from 0 to ∞.
- $K_{t}=\mathbb{H} \backslash\{$ unbounded component of $\mathbb{H} \backslash \eta([0, t])\}$.

Mapping out function

- $\eta:[0, \infty) \rightarrow \mathbb{H}$ curve in \mathbb{H} from 0 to ∞.
- $K_{t}=\mathbb{H} \backslash\{$ unbounded component of $\mathbb{H} \backslash \eta([0, t])\}$.
- $g_{t}: \mathbb{H} \backslash K_{t} \rightarrow \mathbb{H}, g_{t}(\infty)=\infty$.

Mapping out function

- $\eta:[0, \infty) \rightarrow \mathbb{H}$ curve in \mathbb{H} from 0 to ∞.
- $K_{t}=\mathbb{H} \backslash\{$ unbounded component of $\mathbb{H} \backslash \eta([0, t])\}$.
- $g_{t}: \mathbb{H} \backslash K_{t} \rightarrow \mathbb{H}$, $g_{t}(\infty)=\infty$.
- $g_{t}(z)=a_{1} z+a_{0}+a_{-1} z^{-1}+\ldots$ for $a_{1}, a_{0}, \cdots \in \mathbb{R}$ near $z=\infty$ - Show $\widetilde{g}_{t}(z):=-1 / g_{t}\left(-z^{-1}\right)=\widetilde{a}_{1} z+\widetilde{a}_{2} z^{2}+\ldots$ by Schwarz reflection.

Mapping out function

- $\eta:[0, \infty) \rightarrow \mathbb{H}$ curve in \mathbb{H} from 0 to ∞.
- $K_{t}=\mathbb{H} \backslash\{$ unbounded component of $\mathbb{H} \backslash \eta([0, t])\}$.
- $g_{t}: \mathbb{H} \backslash K_{t} \rightarrow \mathbb{H}$, $g_{t}(\infty)=\infty$.
- $g_{t}(z)=a_{1} z+a_{0}+a_{-1} z^{-1}+\ldots$ for $a_{1}, a_{0}, \cdots \in \mathbb{R}$ near $z=\infty$ - Show $\widetilde{g}_{t}(z):=-1 / g_{t}\left(-z^{-1}\right)=\widetilde{a}_{1} z+\widetilde{a}_{2} z^{2}+\ldots$ by Schwarz reflection.

Mapping out function

- $\eta:[0, \infty) \rightarrow \mathbb{H}$ curve in \mathbb{H} from 0 to ∞.
- $K_{t}=\mathbb{H} \backslash\{$ unbounded component of $\mathbb{H} \backslash \eta([0, t])\}$.
- $g_{t}: \mathbb{H} \backslash K_{t} \rightarrow \mathbb{H}, g_{t}(\infty)=\infty$.
- $g_{t}(z)=a_{1} z+a_{0}+a_{-1} z^{-1}+\ldots$ for $a_{1}, a_{0}, \cdots \in \mathbb{R}$ near $z=\infty$
- Show $\widetilde{g}_{t}(z):=-1 / g_{t}\left(-z^{-1}\right)=\widetilde{a}_{1} z+\widetilde{a}_{2} z^{2}+\ldots$ by Schwarz reflection.
- Fix g_{t} by choosing $a_{1}=1, a_{0}=0$.

Mapping out function

- $\eta:[0, \infty) \rightarrow \mathbb{H}$ curve in \mathbb{H} from 0 to ∞.
- $K_{t}=\mathbb{H} \backslash\{$ unbounded component of $\mathbb{H} \backslash \eta([0, t])\}$.
- $g_{t}: \mathbb{H} \backslash K_{t} \rightarrow \mathbb{H}, g_{t}(\infty)=\infty$.
- $g_{t}(z)=a_{1} z+a_{0}+a_{-1} z^{-1}+\ldots$ for $a_{1}, a_{0}, \cdots \in \mathbb{R}$ near $z=\infty$
- Show $\widetilde{g}_{t}(z):=-1 / g_{t}\left(-z^{-1}\right)=\widetilde{a}_{1} z+\widetilde{a}_{2} z^{2}+\ldots$ by Schwarz reflection.
- Fix g_{t} by choosing $a_{1}=1, a_{0}=0$.
- g_{t} is the mapping out function of the hull K_{t}.

Mapping out function

- $\eta:[0, \infty) \rightarrow \mathbb{H}$ curve in \mathbb{H} from 0 to ∞.
- $K_{t}=\mathbb{H} \backslash\{$ unbounded component of $\mathbb{H} \backslash \eta([0, t])\}$.
- $g_{t}: \mathbb{H} \backslash K_{t} \rightarrow \mathbb{H}, g_{t}(\infty)=\infty$.
- $g_{t}(z)=a_{1} z+a_{0}+a_{-1} z^{-1}+\ldots$ for $a_{1}, a_{0}, \cdots \in \mathbb{R}$ near $z=\infty$ - Show $\widetilde{g}_{t}(z):=-1 / g_{t}\left(-z^{-1}\right)=\widetilde{a}_{1} z+\widetilde{a}_{2} z^{2}+\ldots$ by Schwarz reflection.
- Fix g_{t} by choosing $a_{1}=1, a_{0}=0$.
- g_{t} is the mapping out function of the hull K_{t}.
- Remark: Any compact \mathbb{H}-hull K (i.e., a bounded subset of \mathbb{H} s.t. $\mathbb{H} \backslash K$ is open and simply connected) can be associated with a mapping out function $g: \mathbb{H} \backslash K \rightarrow \mathbb{H}$.

Half-plane capacity

Recall: $g_{t}(z)=z+a_{-1} z^{-1}+a_{-2} z^{-2}+\ldots$ hcap $\left(K_{t}\right):=a_{-1}$ is the "size" of K_{t}.

Lemma (additivity)

$\operatorname{hcap}\left(K_{t+s}\right)=\operatorname{hcap}\left(K_{t}\right)+\operatorname{hcap}\left(g_{t}\left(K_{t+s} \backslash K_{t}\right)\right)$.

Half-plane capacity

Recall: $g_{t}(z)=z+a_{-1} z^{-1}+a_{-2} z^{-2}+\ldots$ hcap $\left(K_{t}\right):=a_{-1}$ is the "size" of K_{t}.
Lemma (additivity)
$\operatorname{hcap}\left(K_{t+s}\right)=\operatorname{hcap}\left(K_{t}\right)+\operatorname{hcap}\left(g_{t}\left(K_{t+s} \backslash K_{t}\right)\right)$.

Lemma (scaling)

$\operatorname{hcap}\left(r K_{t}\right)=r^{2} \operatorname{hcap}\left(K_{t}\right)$

Observe that $\widetilde{g}_{t}(z):=r g_{t}(z / r)$ is the mapping out function of $r K_{t}$ and that

$$
\tilde{g}_{t}(z)=z+r^{2} \operatorname{hcap}\left(K_{t}\right) z^{-1}+\ldots
$$

Half-plane capacity

Recall: $g_{t}(z)=z+a_{-1} z^{-1}+a_{-2} z^{-2}+\ldots$ hcap $\left(K_{t}\right):=a_{-1}$ is the "size" of K_{t}.

Lemma (additivity)
$\operatorname{hcap}\left(K_{t+s}\right)=\operatorname{hcap}\left(K_{t}\right)+\operatorname{hcap}\left(g_{t}\left(K_{t+s} \backslash K_{t}\right)\right)$.

Lemma (scaling)

$\operatorname{hcap}\left(r K_{t}\right)=r^{2} \operatorname{hcap}\left(K_{t}\right)$
Convention: Parametrize η such that hcap $\left(K_{t}\right)=2 t$.

Driving function and Loewner equation

η simple curve in ($\mathbb{H}, 0, \infty$) parametrized by half-plane capacity.

Definition (Driving function)

$$
W(t):=g_{t}(\eta(t))
$$

Proposition (Loewner equation)

$$
\text { If } \tau_{z}=\inf \left\{t \geq 0: z \in K_{t}\right\} \text { then }
$$

$$
\dot{g}_{t}(z)=\frac{2}{g_{t}(z)-W(t)} \text { for } t \in\left[0, \tau_{z}\right), \quad g_{0}(z)=z \in \mathbb{H}
$$

Schramm's idea

- Key idea: study W instead of η.
- If η describes the conjectural scaling limit of certain discrete models, then W must be a multiple of a Brownian motion!

Definition of SLE_{k} in $(\mathbb{H}, 0, \infty)$

- $\kappa \geq 0$ and $(B(t))_{t \geq 0}$ is a standard Brownian motion.
- Solve Loewner equation with driving function $W=\sqrt{\kappa} B$

$$
\dot{g}_{t}(z)=\frac{2}{g_{t}(z)-W(t)}, \quad \tau_{z}=\sup \left\{t \geq 0: g_{t}(z) \text { well-defined }\right\}
$$

- Define $K_{t}:=\left\{z \in \mathbb{H}: \tau_{z} \leq t\right\}$.
- Let η be the curve generating $\left(K_{t}\right)_{t \geq 0}$.
- $K_{t}=\mathbb{H} \backslash\{$ unbounded component of $\mathbb{H} \backslash \eta([0, t])\}$,
- η is well-defined: Rohde-Schramm'05, Lawler-Schramm-Werner'04.

Definition (The Schramm-Loewner evolution in ($\mathbb{H}, 0, \infty)$)

η is an $\operatorname{SLE}_{\kappa}$ in $(\mathbb{H}, 0, \infty)$.

$$
(B(t))_{t \geq 0} \rightarrow\left(g_{t}\right)_{t \geq 0} \rightarrow\left(K_{t}\right)_{t \geq 0} \rightarrow(\eta(t))_{t \geq 0}
$$

Definition of SLE_{k} in (D, a, b)

Definition (The Schramm-Loewner evolution)

- Let $\tilde{\eta}$ be an $\operatorname{SLE}_{\kappa}$ in ($\left.\mathbb{H}, 0, \infty\right)$.
- Then $\eta:=f(\widetilde{\eta})$ is an $\operatorname{SLE}_{\kappa}$ in (D, a, b).
- Note that f is not unique since $f \circ \phi_{r}$ also sends $(\mathbb{H}, 0, \infty)$ to (D, a, b) if $\phi_{r}(z):=r z$ for $r>0$.
- $\operatorname{SLE}_{\kappa}$ in (D, a, b) is still well-defined by scale invariance in law of SLE_{κ} in $(\mathbb{H}, 0, \infty)$ (next slide).

Scale invariance in law of SLE $_{\kappa}$

Exercise (Scale invariance of $S L E_{\kappa}$)

- Let η be an $S L E_{\kappa}$ in $(\mathbb{H}, 0, \infty)$ and let $r>0$.
- Prove that $t \mapsto r \eta\left(t / r^{2}\right)$ has the law of an $S L E_{\kappa}$ in $(\mathbb{H}, 0, \infty)$.

Scale invariance in law of SLE $_{\kappa}$

Exercise (Scale invariance of SLE_{κ})

- Let η be an $S L E_{\kappa}$ in $(\mathbb{H}, 0, \infty)$ and let $r>0$.
- Prove that $t \mapsto r \eta\left(t / r^{2}\right)$ has the law of an $\operatorname{SLE}_{\kappa}$ in $(\mathbb{H}, 0, \infty)$.

Hint: Let $\widetilde{\eta}(t)=r \eta\left(t / r^{2}\right)$ and argue that mapping out fcn \widetilde{g}_{t} of $\widetilde{\eta}$ satisfy

$$
\widetilde{g}_{t}(z)=r g_{t / r^{2}}(z / r), \quad \dot{\tilde{g}}_{t}(z)=\partial_{t}\left(r g_{t / r^{2}}(z / r)\right)=\frac{2}{\widetilde{g}_{t}(z)-r W\left(t / r^{2}\right)}
$$

$$
z \mapsto r z
$$

Conformal invariance and domain Markov property

- Probability measure $\mu_{D, a, b}$ on curves η modulo time reparametrization in (D, a, b) for each simply connected domain $D \subset \mathbb{C}$, $a, b \in \partial D .{ }^{1}$

${ }^{1}$ Identify η and $\eta \circ \phi$ if $\phi: I_{1} \rightarrow I_{2}$ cts and strictly increasing. ∂D Martin bdy of D.

Conformal invariance and domain Markov property

- Probability measure $\mu_{D, a, b}$ on curves η modulo time reparametrization in (D, a, b) for each simply connected domain $D \subset \mathbb{C}$, $a, b \in \partial D .^{1}$
- Suppose $\eta \sim \mu_{\mathbb{H}, 0, \infty}$ a.s. generated by Loewner chain.

${ }^{1}$ Identify η and $\eta \circ \phi$ if $\phi: I_{1} \rightarrow I_{2}$ cts and strictly increasing. ∂D Martin bdy of D.

Conformal invariance and domain Markov property

- Probability measure $\mu_{D, a, b}$ on curves η modulo time reparametrization in (D, a, b) for each simply connected domain $D \subset \mathbb{C}$, $a, b \in \partial D .{ }^{1}$
- Suppose $\eta \sim \mu_{\mathbb{H}, 0, \infty}$ a.s. generated by Loewner chain.
- Conformal invariance (CI): If $\eta \sim \mu_{D, a, b}$ then $\phi \circ \eta$ has law $\mu_{\widetilde{D}, \widetilde{a}, \widetilde{b}}$.

Conformal invariance
${ }^{1}$ Identify η and $\eta \circ \phi$ if $\phi: I_{1} \rightarrow I_{2}$ cts and strictly increasing. ∂D Martin bdy of D. aल

Conformal invariance and domain Markov property

- Probability measure $\mu_{D, a, b}$ on curves η modulo time reparametrization in (D, a, b) for each simply connected domain $D \subset \mathbb{C}$, $a, b \in \partial D .{ }^{1}$
- Suppose $\eta \sim \mu_{\mathbb{H}, 0, \infty}$ a.s. generated by Loewner chain.
- Conformal invariance (CI): If $\eta \sim \mu_{D, a, b}$ then $\phi \circ \eta$ has law $\mu_{\widetilde{D}, \widetilde{a}, \widetilde{b}}$.
- Domain Markov property (DMP): Conditioned on $\left.\eta\right|_{[0, \tau]}$ for stopping time τ, the rest of the curve $\left.\eta\right|_{[\tau, \infty)}$ has law $\mu_{D \backslash K_{\tau}, \eta(t), b}$.

Conformal invariance

Domain Markov property
${ }^{1}$ Identify η and $\eta \circ \phi$ if $\phi: I_{1} \rightarrow I_{2}$ cts and strictly increasing. ∂D Martin bdy of D.

Conformal invariance and domain Markov property

- Probability measure $\mu_{D, a, b}$ on curves η modulo time reparametrization in (D, a, b) for each simply connected domain $D \subset \mathbb{C}$, $a, b \in \partial D .{ }^{1}$
- Suppose $\eta \sim \mu_{\mathbb{H}, 0, \infty}$ a.s. generated by Loewner chain.
- Conformal invariance (CI): If $\eta \sim \mu_{D, a, b}$ then $\phi \circ \eta$ has law $\mu_{\widetilde{D}, \tilde{a}, \widetilde{b}}$.
- Domain Markov property (DMP): Conditioned on $\left.\eta\right|_{[0, \tau]}$ for stopping time τ, the rest of the curve $\left.\eta\right|_{[\tau, \infty)}$ has law $\mu_{D \backslash K_{\tau}, \eta(t), b}$.

Theorem (Schramm'00)

The following statements are equivalent:

- $\mu_{D, a, b}$ satisfies (CI) and (DMP).
- There is a $\kappa \geq 0$ such that $\mu_{D, a, b}$ is the law of $S L E_{\kappa}$.
${ }^{1}$ Identify η and $\eta \circ \phi$ if $\phi: I_{1} \rightarrow I_{2}$ cts and strictly increasing. ∂D Martin bdy of D.

Conformal invariance of percolation

Conformal invariance of percolation

Conformal invariance: If $\eta \sim \mu_{D, a, b}$ then $\phi \circ \eta$ has law $\mu_{\widetilde{D}, \widetilde{a}, \widetilde{b}}$.

Outline

- Lecture 1: Definition and basic properties of SLE, examples
- Lecture 2: Basic properties of SLE (today)
- Lecture 3: Imaginary geometry

References:

Conformally invariant processes in the plane by Lawler Lectures on Schramm-Loewner evolution by Berestycki and Norris Imaginary geometry I by Miller and Sheffield

Key message today: The Loewner equation allows us to analyze SLE using stochastic calculus.

Domain Markov property of percolation

Domain Markov property of percolation

Conditioned on $\left.\eta\right|_{[0,25]}$, the rest of the percolation interface has the law of a percolation interface in ($\left.D \backslash K_{25}, \eta(25), b\right)$.

Domain Markov property of the self-avoiding walk

- Number of length n self-avoiding paths on \mathbb{Z}^{2} from $(0,0): \mu^{n(1+o(1))}$.

Domain Markov property of the self-avoiding walk

- Number of length n self-avoiding paths on \mathbb{Z}^{2} from $(0,0): \mu^{n(1+o(1))}$. - $\mu \in[2.62,2.68]$ is the connective constant of \mathbb{Z}^{2}.

Domain Markov property of the self-avoiding walk

- Number of length n self-avoiding paths on \mathbb{Z}^{2} from $(0,0): \mu^{n(1+o(1))}$.
- $\mu \in[2.62,2.68]$ is the connective constant of \mathbb{Z}^{2}.
- The self-avoiding walk (SAW): \mathfrak{W} random path s.t. for w a self-avoiding path on discrete approximation $\left(D_{m}, a_{m}, b_{m}\right)$ to (D, a, b),

$$
\mathbb{P}[\mathfrak{W}=w]=c \mu^{-|w|},
$$

where $|w|$ is the length of w and c is a renormalizing constant.

Domain Markov property of the self-avoiding walk

- Number of length n self-avoiding paths on \mathbb{Z}^{2} from $(0,0): \mu^{n(1+o(1))}$.
- $\mu \in[2.62,2.68]$ is the connective constant of \mathbb{Z}^{2}.
- The self-avoiding walk (SAW): \mathfrak{W} random path s.t. for w a self-avoiding path on discrete approximation $\left(D_{m}, a_{m}, b_{m}\right)$ to (D, a, b),

$$
\mathbb{P}[\mathfrak{W}=w]=c \mu^{-|w|},
$$

where $|w|$ is the length of w and c is a renormalizing constant.

- Conjecture: $\mathfrak{W J} \Rightarrow S L E_{8 / 3}$.

Domain Markov property of the self-avoiding walk

- Number of length n self-avoiding paths on \mathbb{Z}^{2} from $(0,0): \mu^{n(1+o(1))}$.
- $\mu \in[2.62,2.68]$ is the connective constant of \mathbb{Z}^{2}.
- The self-avoiding walk (SAW): \mathfrak{W} random path s.t. for w a self-avoiding path on discrete approximation $\left(D_{m}, a_{m}, b_{m}\right)$ to (D, a, b),

$$
\mathbb{P}[\mathfrak{W}=w]=c \mu^{-|w|},
$$

where $|w|$ is the length of w and c is a renormalizing constant.

- Conjecture: $\mathfrak{W J} \Rightarrow S L E_{8 / 3}$.
- Exercise: Given $\left.\mathfrak{W}\right|_{[0, k]}$ the remaining path has the law of a SAW in $\left(D_{m} \backslash \mathfrak{W}([0, k]), \mathfrak{W}(k), b_{m}\right)$.

SLE satisfies (CI) and (DMP)

- (Cl): follows from the definition of $\operatorname{SLE}_{\kappa}$ on general domains (D, a, b).

SLE satisfies (CI) and (DMP)

- (CI): follows from the definition of $\operatorname{SLE}_{\kappa}$ on general domains (D, a, b).
- (DMP): sufficient to verify for $(\mathbb{H}, 0, \infty)$ and parametrization by half-plane capacity.

Want to prove: $\left.\eta\right|_{[\tau, \infty)}$ has the law of an $\operatorname{SLE}_{\kappa}$ in $\left(\mathbb{H} \backslash K_{\tau}, \eta(\tau), \infty\right)$.

SLE satisfies (CI) and (DMP)

- (CI): follows from the definition of $\operatorname{SLE}_{\kappa}$ on general domains (D, a, b).
- (DMP): sufficient to verify for $(\mathbb{H}, 0, \infty)$ and parametrization by half-plane capacity.
- Centered mapping out functions $\widetilde{g}_{t}(z):=g_{t}(z)-W(t)$ satisfy

$$
\begin{equation*}
d \widetilde{g}_{t}(z)=\frac{2}{\widetilde{g}_{t}(z)}-d W(t), \quad \widetilde{g}_{0}(z)=z \tag{CL}
\end{equation*}
$$

- Exercise: Centered mapping out functions $\left(\widetilde{g}_{\tau, t}\right)_{t \geq 0}$ of $\widehat{\eta}^{\top}$ satisfy $\widetilde{g}_{\tau+t}=\widetilde{g}_{\tau, t} \circ \widetilde{g}_{\tau}$.
- Exercise: Use previous exercise to argue that $\left(\widetilde{g}_{\tau, t}\right)_{t \geq 0}$ satisfies (CL) $\mathrm{w} /$ driving function $(W(\tau+t)-W(\tau))_{t \geq 0} \stackrel{d}{=}(W(t))_{t \geq 0}$.
- The last exercise implies that $\widehat{\eta}^{\tau}$ has the law of an $\operatorname{SLE}_{\kappa}$ in $(\mathbb{H}, 0, \infty)$.

(CI) and (DMP) imply that η is an SLE

- Suppose $\left(\mu_{D, a, b}\right)_{D, a, b}$ satisfies (CI) and (DMP). Let $\eta \sim \mu_{\mathbb{H}, 0, \infty}$ be param. by half-plane capacity; let W denote the driving fcn of η.

(CI) and (DMP) imply that η is an SLE

- Suppose $\left(\mu_{D, a, b}\right)_{D, a, b}$ satisfies (CI) and (DMP). Let $\eta \sim \mu_{\mathbb{H}, 0, \infty}$ be param. by half-plane capacity; let W denote the driving fcn of η.
- $(\mathrm{Cl}) \Rightarrow$ scale invariance $\Rightarrow(W(t))_{t \geq 0} \stackrel{d}{=}\left(r W\left(t / r^{2}\right)\right)_{t \geq 0}$.

$z \mapsto r z$

Let $\widetilde{\eta}(t):=r \eta\left(t / r^{2}\right)$. Then $\eta \stackrel{d}{=} \widetilde{\eta}$. Mapping out fcn $\left(\widetilde{g}_{t}\right)_{t \geq 0}$ of $\widetilde{\eta}$ satisfy:

$$
\widetilde{g}_{t}(z)=r g_{t / r^{2}}(z / r), \quad \dot{\widetilde{g}}_{t}(z)=\partial_{t}\left(r g_{t / r^{2}}(z / r)\right)=\frac{2}{\widetilde{g}_{t}(z)-r W\left(t / r^{2}\right)}
$$

(CI) and (DMP) imply that η is an SLE

- Suppose $\left(\mu_{D, a, b}\right)_{D, a, b}$ satisfies (CI) and (DMP). Let $\eta \sim \mu_{\mathbb{H}, 0, \infty}$ be param. by half-plane capacity; let W denote the driving fcn of η.
- $(\mathrm{CI}) \Rightarrow$ scale invariance $\Rightarrow(W(t))_{t \geq 0} \stackrel{d}{=}\left(r W\left(t / r^{2}\right)\right)_{t \geq 0}$.
- (DMP)

(DMP): $\left.\eta\right|_{[s, \infty)}$ has law $\mu_{\mathbb{H} \backslash K_{s}, \eta(s), \infty}$.

(CI) and (DMP) imply that η is an SLE

- Suppose $\left(\mu_{D, a, b}\right)_{D, a, b}$ satisfies (CI) and (DMP). Let $\eta \sim \mu_{\mathbb{H}, 0, \infty}$ be param. by half-plane capacity; let W denote the driving fcn of η.
- $(\mathrm{CI}) \Rightarrow$ scale invariance $\Rightarrow(W(t))_{t \geq 0} \stackrel{d}{=}\left(r W\left(t / r^{2}\right)\right)_{t \geq 0}$.
- (DMP) $\Rightarrow(W(t))_{t \geq 0}$ has i.i.d. increments.
- By (DMP), $\widehat{\eta}^{s} \stackrel{d}{=} \eta$ and $\widehat{\eta}^{s}$ is independent of $\left.\eta\right|_{[0, s]}$.
- The centered mapping out fcn $\left(\widetilde{g}_{s, t}\right)_{t \geq 0}$ of $\widehat{\eta}^{s}$ satisfy the centered Loewner equation $w /$ driving function $(W(s+t)-W(s))_{t \geq 0}$.
- Combining the above, $(W(s+t)-W(s))_{t \geq 0} \stackrel{d}{=}(W(t))_{t \geq 0}$ and is independent of $\left.W\right|_{[0, s]}$.

(CI) and (DMP) imply that η is an SLE

- Suppose $\left(\mu_{D, a, b}\right)_{D, a, b}$ satisfies (CI) and (DMP). Let $\eta \sim \mu_{\mathbb{H}, 0, \infty}$ be param. by half-plane capacity; let W denote the driving fcn of η.
- $(\mathrm{CI}) \Rightarrow$ scale invariance $\Rightarrow(W(t))_{t \geq 0} \stackrel{d}{=}\left(r W\left(t / r^{2}\right)\right)_{t \geq 0}$.
- (DMP) $\Rightarrow(W(t))_{t \geq 0}$ has i.i.d. increments.
- $(\mathrm{Cl})+(\mathrm{DMP}) \Rightarrow W=\sqrt{\kappa} B$ for some $\kappa \geq 0$.

Phases of SLE

Rohde-Schramm'05: SLE $_{\kappa}$ has the following phases:

- $\kappa \in[0,4]$: The curve is simple.
- $\kappa \in(4,8)$: The curve is self-intersecting and has zero Lebesgue measure.
- $\kappa \geq 8$: The curve fills space.

Figures by P. Nolin, W. Werner, and J. Miller

Phases of SLE

Rohde-Schramm'05: SLE $_{\kappa}$ has the following phases:

- $\kappa \in[0,4]$: The curve is simple.
- $\kappa \in(4,8)$: The curve is self-intersecting and has zero Lebesgue measure.
- $\kappa \geq 8$: The curve fills space.

$$
\kappa \in[0,4]
$$

$$
\kappa \in(4,8)
$$

$\kappa \geq 8$

Figures by P. Nolin, W. Werner, and J. Miller

Phases of SLE

Rohde-Schramm'05: SLE $_{\kappa}$ has the following phases:

- $\kappa \in[0,4]$: The curve is simple.
- $\kappa \in(4,8)$: The curve is self-intersecting and has zero Lebesgue measure.
- $\kappa \geq 8$: The curve fills space.

$$
\kappa \in[0,4]
$$

$\kappa \in(4,8)$

$\kappa \geq 8$

Figures by P. Nolin, W. Werner, and J. Miller

Phases of SLE

Rohde-Schramm'05: SLE $_{\kappa}$ has the following phases:

- $\kappa \in[0,4]$: The curve is simple.
- $\kappa \in(4,8)$: The curve is self-intersecting and has zero Lebesgue measure.
- $\kappa \geq 8$: The curve fills space.

$$
\kappa \in[0,4]
$$

$\kappa \in(4,8)$

$\kappa \geq 8$

Figures by P. Nolin, W. Werner, and J. Miller

Phases of SLE

Rohde-Schramm'05: SLE $_{\kappa}$ has the following phases:

- $\kappa \in[0,4]$: The curve is simple.
- $\kappa \in(4,8)$: The curve is self-intersecting and has zero Lebesgue measure.
- $\kappa \geq 8$: The curve fills space.

$$
\kappa \in[0,4]
$$

$$
\kappa \in(4,8)
$$

$\kappa \geq 8$

Figures by P. Nolin, W. Werner, and J. Miller

Phases of SLE

Rohde-Schramm'05: SLE $_{\kappa}$ has the following phases:

- $\kappa \in[0,4]$: The curve is simple.
- $\kappa \in(4,8)$: The curve is self-intersecting and has zero Lebesgue measure.
- $\kappa \geq 8$: The curve fills space.

$$
\kappa \in[0,4]
$$

$$
\kappa \in(4,8)
$$

$\kappa \geq 8$

Figures by P. Nolin, W. Werner, and J. Miller

Phases of SLE

Rohde-Schramm'05: SLE $_{\kappa}$ has the following phases:

- $\kappa \in[0,4]$: The curve is simple.
- $\kappa \in(4,8)$: The curve is self-intersecting and has zero Lebesgue measure.
- $\kappa \geq 8$: The curve fills space.

$$
\kappa \in[0,4]
$$

$$
\kappa \in(4,8)
$$

$\kappa \geq 8$

Figures by P. Nolin, W. Werner, and J. Miller

Phases of SLE

Rohde-Schramm'05: SLE $_{\kappa}$ has the following phases:

- $\kappa \in[0,4]$: The curve is simple.
- $\kappa \in(4,8)$: The curve is self-intersecting and has zero Lebesgue measure.
- $\kappa \geq 8$: The curve fills space.

$$
\begin{equation*}
\kappa \in[0,4] \tag{4,8}
\end{equation*}
$$

$$
\kappa \geq 8
$$

Figures by P. Nolin, W. Werner, and J. Miller

Phase transition at $\kappa=4$

Lemma

- If $\kappa \in[0,4]$ then η is a.s. simple (i.e., $\eta\left(t_{1}\right) \neq \eta\left(t_{2}\right)$ for $t_{1} \neq t_{2}$).
- If $\kappa>4$ then η is a.s. not simple.

We will deduce the lemma from the following result, where

$$
\tau_{x}=\inf \left\{t \geq 0: x \in \bar{K}_{t}\right\} \text { for } x>0
$$

Lemma

- If $\kappa \in[0,4]$ then $\tau_{x}=\infty$ a.s.
- If $\kappa>4$ then $\tau_{x}<\infty$ a.s.

Phase transition at $\kappa=4$

Recall $\tau_{x}=\inf \left\{t \geq 0: x \in \bar{K}_{t}\right\}$ for $x>0$.
Lemma

- If $\kappa \in[0,4]$ then $\tau_{x}=\infty$ a.s.
- If $\kappa>4$ then $\tau_{x}<\infty$ a.s.

$$
\text { w.l.o.g. } x=1 ; \quad \dot{g}_{t}(1)=\frac{2}{g_{t}(1)-\sqrt{\kappa} B(t)}, \quad g_{t}(1)=1,
$$

Phase transition at $\kappa=4$

Recall $\tau_{x}=\inf \left\{t \geq 0: x \in \bar{K}_{t}\right\}$ for $x>0$.

Lemma

- If $\kappa \in[0,4]$ then $\tau_{x}=\infty$ a.s.
- If $\kappa>4$ then $\tau_{x}<\infty$ a.s.

$$
\begin{aligned}
& \text { w.l.o.g. } x=1 ; \quad \dot{g}_{t}(1)=\frac{2}{g_{t}(1)-\sqrt{\kappa} B(t)}, \quad g_{t}(1)=1, \\
& Y(t)=\kappa^{-1 / 2}\left(g_{t}(1)-\sqrt{\kappa} B(t)\right),
\end{aligned}
$$

Phase transition at $\kappa=4$

Recall $\tau_{x}=\inf \left\{t \geq 0: x \in \bar{K}_{t}\right\}$ for $x>0$.

Lemma

- If $\kappa \in[0,4]$ then $\tau_{x}=\infty$ a.s.
- If $\kappa>4$ then $\tau_{x}<\infty$ a.s.

$$
\begin{aligned}
& \text { w.l.o.g. } x=1 ; \quad \dot{g}_{t}(1)=\frac{2}{g_{t}(1)-\sqrt{\kappa} B(t)}, \quad g_{t}(1)=1, \\
& Y(t)=\kappa^{-1 / 2}\left(g_{t}(1)-\sqrt{\kappa} B(t)\right), \\
& \tau_{1}=\inf \{t \geq 0: Y(t)=0\},
\end{aligned}
$$

Phase transition at $\kappa=4$

Recall $\tau_{x}=\inf \left\{t \geq 0: x \in \bar{K}_{t}\right\}$ for $x>0$.

Lemma

- If $\kappa \in[0,4]$ then $\tau_{x}=\infty$ a.s.
- If $\kappa>4$ then $\tau_{x}<\infty$ a.s.

$$
\begin{aligned}
& \text { w.l.o.g. } x=1 ; \quad \dot{g}_{t}(1)=\frac{2}{g_{t}(1)-\sqrt{\kappa} B(t)}, \quad g_{t}(1)=1, \\
& Y(t)=\kappa^{-1 / 2}\left(g_{t}(1)-\sqrt{\kappa} B(t)\right), \\
& \tau_{1}=\inf \{t \geq 0: Y(t)=0\},
\end{aligned}
$$

$$
d Y(t)=\frac{2}{\kappa Y(t)} d t-d B(t), \text { so } Y(t) \text { is a }\left(\frac{4}{\kappa}+1\right) \text {-dim. Bessel process. }
$$

Phase transition at $\kappa=4$

Lemma

- If $\kappa \in[0,4]$ then η is a.s. simple (i.e., $\eta\left(t_{1}\right) \neq \eta\left(t_{2}\right)$ for $t_{1} \neq t_{2}$).
- If $\kappa>4$ then η is a.s. not simple.

$$
\tau_{x}=\inf \left\{t \geq 0: x \in \bar{K}_{t}\right\}, x>0
$$

Lemma

- If $\kappa \in[0,4]$ then $\tau_{x}=\infty$ a.s.

$$
\begin{aligned}
& \kappa>4
\end{aligned}
$$

- If $\kappa>4$ then $\tau_{x}<\infty$ a.s.

Locality of SLE ${ }_{6}$

Proposition

- $\eta S L E_{6} \operatorname{in}(D, x, y)$. Set $\tau:=\inf \{t \geq 0: \eta(t) \in \operatorname{arc}(\tilde{y}, y)\}$.
- Define $\widetilde{\eta}$ and $\widetilde{\tau}$ in the same way for (D, x, \widetilde{y}).
- Then $\left.\left.\eta\right|_{[0, \tau]} \stackrel{\text { d }}{=} \widetilde{\eta}\right|_{[0, \tilde{\tau}]}$.

Locality of SLE $_{6}$

Proposition

- $\eta S L E_{6}$ in (D, x, y). Set $\tau:=\inf \{t \geq 0: \eta(t) \in \operatorname{arc}(\widetilde{y}, y)\}$.
- Define $\widetilde{\eta}$ and $\widetilde{\tau}$ in the same way for (D, x, \widetilde{y}).
- Then $\left.\left.\eta\right|_{[0, \tau]} \stackrel{d}{=} \widetilde{\eta}\right|_{[0, \tau]}$.

Locality of SLE ${ }_{6}$

Proposition

- $\eta S L E_{6} \operatorname{in}(D, x, y)$. Set $\tau:=\inf \{t \geq 0: \eta(t) \in \operatorname{arc}(\tilde{y}, y)\}$.
- Define $\widetilde{\eta}$ and $\widetilde{\tau}$ in the same way for (D, x, \widetilde{y}).
- Then $\left.\left.\eta\right|_{[0, \tau]} \stackrel{\text { d }}{=} \widetilde{\eta}\right|_{[0, \tilde{\tau}]}$.

Want to prove: If η is an SLE_{6} in $(\mathbb{H}, 0, \infty)$ then η has the law of an SLE_{6} in $(\mathbb{H}, 0, y)$ until hitting L.

Locality of SLE $_{6}$: Proof sketch

$$
\Phi_{t}:=g_{t}^{*} \circ \Phi \circ g_{t}^{-1}
$$

- $\eta \mathrm{SLE}_{6}$ in $(\mathbb{H}, 0, \infty) ; g_{t}$ mapping out function; W driving function.

Locality of SLE $_{6}$: Proof sketch

$$
\Phi_{t}:=g_{t}^{*} \circ \Phi \circ g_{t}^{-1}
$$

- $\eta \mathrm{SLE}_{6}$ in $(\mathbb{H}, 0, \infty) ; g_{t}$ mapping out function; W driving function.
- Φ conformal map sending $(\mathbb{H}, 0, y)$ to $(\mathbb{H}, 0, \infty)$.

Locality of SLE $_{6}$: Proof sketch

- $\eta \mathrm{SLE}_{6}$ in $(\mathbb{H}, 0, \infty) ; g_{t}$ mapping out function; W driving function.
- Φ conformal map sending $(\mathbb{H}, 0, y)$ to $(\mathbb{H}, 0, \infty)$.
- $\eta^{*}(t):=\Phi(\eta(t)) ; g_{t}^{*}$ map. out fcn; $W^{*}(t)=\Phi_{t}(W(t))$ driving fcn.

$$
\dot{g}_{t}^{*}(z)=\frac{b^{\prime}(t)}{g_{t}^{*}(z)-W^{*}(t)}, \quad b(t)=\operatorname{hcap}\left(\eta^{*}([0, t])\right)
$$

Locality of SLE $_{6}$: Proof sketch

- $\eta \mathrm{SLE}_{6}$ in $(\mathbb{H}, 0, \infty) ; g_{t}$ mapping out function; W driving function.
- Φ conformal map sending $(\mathbb{H}, 0, y)$ to $(\mathbb{H}, 0, \infty)$.
- $\eta^{*}(t):=\Phi(\eta(t)) ; g_{t}^{*}$ map. out fcn; $W^{*}(t)=\Phi_{t}(W(t))$ driving fcn.

$$
\dot{g}_{t}^{*}(z)=\frac{b^{\prime}(t)}{g_{t}^{*}(z)-W^{*}(t)}, \quad b(t)=\operatorname{hcap}\left(\eta^{*}([0, t])\right)
$$

- Want to show: η^{*} law of SLE_{6} in $(\mathbb{H}, 0, \infty)$ until hitting L^{*}.

Locality of SLE $_{6}$: Proof sketch

- $\eta \mathrm{SLE}_{6}$ in $(\mathbb{H}, 0, \infty)$; g_{t} mapping out function; W driving function.
- Φ conformal map sending $(\mathbb{H}, 0, y)$ to $(\mathbb{H}, 0, \infty)$.
- $\eta^{*}(t):=\Phi(\eta(t)) ; g_{t}^{*}$ map. out fcn; $W^{*}(t)=\Phi_{t}(W(t))$ driving fcn.

$$
\dot{g}_{t}^{*}(z)=\frac{b^{\prime}(t)}{g_{t}^{*}(z)-W^{*}(t)}, \quad b(t)=\operatorname{hcap}\left(\eta^{*}([0, t])\right)
$$

- Want to show: η^{*} law of SLE_{6} in $(\mathbb{H}, 0, \infty)$ until hitting L^{*}.
- Equivalently, $W^{*}(t)=\sqrt{6} B^{*}(b(t) / 2)$ for B^{*} std Brownian motion.

Locality of SLE $_{6}$: Proof sketch

- $\eta \mathrm{SLE}_{6}$ in ($\left.\mathbb{H}, 0, \infty\right) ; g_{t}$ mapping out function; W driving function.
- Φ conformal map sending $(\mathbb{H}, 0, y)$ to $(\mathbb{H}, 0, \infty)$.
- $\eta^{*}(t):=\Phi(\eta(t)) ; g_{t}^{*}$ map. out fcn; $W^{*}(t)=\Phi_{t}(W(t))$ driving fcn.

$$
\dot{g}_{t}^{*}(z)=\frac{b^{\prime}(t)}{g_{t}^{*}(z)-W^{*}(t)}, \quad b(t)=\operatorname{hcap}\left(\eta^{*}([0, t])\right)
$$

- Want to show: η^{*} law of SLE_{6} in $(\mathbb{H}, 0, \infty)$ until hitting L^{*}.
- Equivalently, $W^{*}(t)=\sqrt{6} B^{*}(b(t) / 2)$ for B^{*} std Brownian motion.
- Find $d W^{*}$ by Itô's formula; prove and use $\Phi_{t}(W(t))=-3 \Phi_{t}^{\prime \prime}(W(t))$.

Restriction property

Definition

- Let $\mu_{D, x, y}$ for $D \subset \mathbb{C}$ simply connected and $x, y \in \partial D$ be a family of probability measures on curves η in D from x to y.
- Let $\eta \sim \mu_{D, x, y}$ for some (D, x, y) and let $U \subset D$ be simply connected s.t. $x, y \in \partial U$.
- The measures $\mu_{D, x, y}$ satisfy the restriction property if η conditioned to stay in U has the law of a curve sampled from $\mu_{U, x, y}$.

For which $\kappa \geq 0$ does SLE $_{\kappa}$ satisfy the restriction property?

Restriction property of discrete models

- Does the loop-erased random walk satisfy the restriction property?

Restriction property of discrete models

- Does the loop-erased random walk satisfy the restriction property?
- Let $\widehat{\mathfrak{W}}$ be a simple random walk on discrete approximation $\left(D_{m}, a_{m}, b_{m}\right)$ to ($\left.D, a, b\right)$.

Restriction property of discrete models

- Does the loop-erased random walk satisfy the restriction property?
- Let $\widehat{\mathfrak{W}}$ be a simple random walk on discrete approximation $\left(D_{m}, a_{m}, b_{m}\right)$ to (D, a, b).
- The loop-erased random walk (LERW) \mathfrak{W} is loop-erasure of $\widehat{\mathfrak{W}}$.

Restriction property of discrete models

- Does the loop-erased random walk satisfy the restriction prop.? NO
- Let $\widehat{\mathfrak{W}}$ be a simple random walk on discrete approximation $\left(D_{m}, a_{m}, b_{m}\right)$ to (D, a, b).
- The loop-erased random walk (LERW) \mathfrak{W} is loop-erasure of $\widehat{\mathfrak{W}}$.
- Let $U_{m} \subset D_{m}$ be connected s.t. $a_{m}, b_{m} \in U_{m}$.

Restriction property of discrete models

- Does the loop-erased random walk satisfy the restriction prop.? NO
- Let $\widehat{\mathfrak{W}}$ be a simple random walk on discrete approximation $\left(D_{m}, a_{m}, b_{m}\right)$ to (D, a, b).
- The loop-erased random walk (LERW) \mathfrak{W} is loop-erasure of $\widehat{\mathfrak{W}}$.
- Let $U_{m} \subset D_{m}$ be connected s.t. $a_{m}, b_{m} \in U_{m}$.
- "LERW in (D_{m}, a_{m}, b_{m}) conditioned to stay in U_{m} " \neq "LERW in $\left(U_{m}, a_{m}, b_{m}\right)$ ", since the latter requires $\widehat{\mathfrak{W}} \subset U_{m}$ (not just $\mathfrak{W} \subset U_{m}$).

Restriction property of discrete models

- Does the loop-erased random walk satisfy the restriction prop.? NO
- Does the self-avoiding walk satisfy the restriction property?

The self-avoiding walk (SAW) \mathfrak{W} is s.t. for any fixed self-avoiding path w on discrete approximation $\left(D_{m}, a_{m}, b_{m}\right)$ to (D, a, b),

$$
\mathbb{P}[\mathfrak{W}=w]=c \mu^{-|w|},
$$

where μ is the connective constant, $|w|$ is the length of w, and c is a renormalizing constant.

Restriction property of discrete models

- Does the loop-erased random walk satisfy the restriction prop.? NO
- Does the self-avoiding walk satisfy the restriction property? YES The self-avoiding walk (SAW) \mathfrak{W} is s.t. for any fixed self-avoiding path w on discrete approximation $\left(D_{m}, a_{m}, b_{m}\right)$ to (D, a, b),

$$
\mathbb{P}[\mathfrak{W}=w]=c \mu^{-|w|},
$$

where μ is the connective constant, $|w|$ is the length of w, and c is a renormalizing constant.
"SAW in $\left(D_{m}, a_{m}, b_{m}\right)$ cond. to stay in U_{m} " $\stackrel{d}{=}$ "SAW in $\left(U_{m}, a_{m}, b_{m}\right)$ "

Restriction property of $\operatorname{SLE}_{8 / 3}$

Proposition

- $\eta S L E_{8 / 3}$ in $(\mathbb{H}, 0, \infty) ; K \subset \mathbb{H}$ s.t. $\mathbb{H} \backslash K$ simply conn., $0, \infty \notin \bar{K}$.
- Then η cond. on $\eta \cap K=\emptyset$ has the law of $S L E_{8 / 3}$ in $(\mathbb{H} \backslash K, 0, \infty)$.

Restriction property of $\mathrm{SLE}_{8 / 3}$

Proposition

- $\eta S L E_{8 / 3}$ in $(\mathbb{H}, 0, \infty) ; K \subset \mathbb{H}$ s.t. $\mathbb{H} \backslash K$ simply conn., $0, \infty \notin \bar{K}$.
- Then η cond. on $\eta \cap K=\emptyset$ has the law of $S L E_{8 / 3}$ in $(\mathbb{H} \backslash K, 0, \infty)$.
- Proposition equivalent to the following for $K^{\prime} \supset K$

$$
\begin{equation*}
\mathbb{P}\left[\eta \cap K^{\prime}=\emptyset \mid \eta \cap K=\emptyset\right]=\mathbb{P}\left[\eta \cap \widetilde{g}_{K}\left(K^{\prime}\right)=\emptyset\right] \tag{A}
\end{equation*}
$$

since $\mathrm{RHS}=\mathbb{P}\left[\widehat{\eta} \cap K^{\prime}=\emptyset\right]$ for $\widehat{\eta}$ an $\operatorname{SLE}_{8 / 3}$ in $(\mathbb{H} \backslash K, 0, \infty)$.

Restriction property of $\mathrm{SLE}_{8 / 3}$

Proposition

- $\eta S L E_{8 / 3}$ in $(\mathbb{H}, 0, \infty) ; K \subset \mathbb{H}$ s.t. $\mathbb{H} \backslash K$ simply conn., $0, \infty \notin \bar{K}$.
- Then η cond. on $\eta \cap K=\emptyset$ has the law of $S L E_{8 / 3}$ in $(\mathbb{H} \backslash K, 0, \infty)$.
- Proposition equivalent to the following for $K^{\prime} \supset K$

$$
\begin{equation*}
\mathbb{P}\left[\eta \cap K^{\prime}=\emptyset \mid \eta \cap K=\emptyset\right]=\mathbb{P}\left[\eta \cap \widetilde{g}_{K}\left(K^{\prime}\right)=\emptyset\right], \tag{A}
\end{equation*}
$$

since $\mathrm{RHS}=\mathbb{P}\left[\hat{\eta} \cap K^{\prime}=\emptyset\right]$ for $\widehat{\eta}$ an $\operatorname{SLE}_{8 / 3}$ in $(\mathbb{H} \backslash K, 0, \infty)$.

- Key identity (proof omitted here): $\mathbb{P}[\eta \cap K=\emptyset]=\widetilde{g}_{K}^{\prime}(0)^{5 / 8}$.

Restriction property of $\operatorname{SLE}_{8 / 3}$

Proposition

- $\eta S L E_{8 / 3}$ in $(\mathbb{H}, 0, \infty) ; K \subset \mathbb{H}$ s.t. $\mathbb{H} \backslash K$ simply conn., $0, \infty \notin \bar{K}$.
- Then η cond. on $\eta \cap K=\emptyset$ has the law of $S L E_{8 / 3}$ in $(\mathbb{H} \backslash K, 0, \infty)$.
- Proposition equivalent to the following for $K^{\prime} \supset K$

$$
\begin{equation*}
\mathbb{P}\left[\eta \cap K^{\prime}=\emptyset \mid \eta \cap K=\emptyset\right]=\mathbb{P}\left[\eta \cap \widetilde{g}_{K}\left(K^{\prime}\right)=\emptyset\right] \tag{A}
\end{equation*}
$$

since $\mathrm{RHS}=\mathbb{P}\left[\widehat{\eta} \cap K^{\prime}=\emptyset\right]$ for $\widehat{\eta}$ an $\mathrm{SLE}_{8 / 3}$ in $(\mathbb{H} \backslash K, 0, \infty)$.

- Key identity (proof omitted here): $\mathbb{P}[\eta \cap K=\emptyset]=\widetilde{g}_{K}^{\prime}(0)^{5 / 8}$.
- This identity, Bayes' rule, and $\widetilde{g}_{K^{\prime}}=\widetilde{g}_{\tilde{g}_{K}\left(K^{\prime}\right)} \circ \widetilde{g}_{K}$ imply (A).

Restriction property of $\mathrm{SLE}_{8 / 3}$

Proposition

- $\eta S L E_{8 / 3}$ in $(\mathbb{H}, 0, \infty) ; K \subset \mathbb{H}$ s.t. $\mathbb{H} \backslash K$ simply conn., $0, \infty \notin \bar{K}$.
- Then η cond. on $\eta \cap K=\emptyset$ has the law of $S L E_{8 / 3}$ in $(\mathbb{H} \backslash K, 0, \infty)$.
- Proposition equivalent to the following for $K^{\prime} \supset K$

$$
\begin{equation*}
\mathbb{P}\left[\eta \cap K^{\prime}=\emptyset \mid \eta \cap K=\emptyset\right]=\mathbb{P}\left[\eta \cap \widetilde{g}_{K}\left(K^{\prime}\right)=\emptyset\right], \tag{A}
\end{equation*}
$$

since $\mathrm{RHS}=\mathbb{P}\left[\widehat{\eta} \cap K^{\prime}=\emptyset\right]$ for $\widehat{\eta}$ an $\mathrm{SLE}_{8 / 3}$ in $(\mathbb{H} \backslash K, 0, \infty)$.

- Key identity (proof omitted here): $\mathbb{P}[\eta \cap K=\emptyset]=\widetilde{g}_{K}^{\prime}(0)^{5 / 8}$.
- This identity, Bayes' rule, and $\widetilde{g}_{K^{\prime}}=\widetilde{g}_{\tilde{g}_{K}\left(K^{\prime}\right)} \circ \widetilde{g}_{K}$ imply (A).
- Remark: Key identity with exponent $\alpha \geq 5 / 8$ represent other random sets satisfying conformal restriction.

Chordal, radial, and whole-plane SLE

chordal SLE

radial SLE

whole-plane SLE

A few open questions

- Convergence of discrete models, e.g.
- self-avoiding walk $(\kappa=8 / 3)$
- universality for percolation: \mathbb{Z}^{2}; Voronoi tesselation $(\kappa=6)$
- Fortuin-Kastelyn model $(\kappa \in(4,8))$
- 6 -vertex model $(\kappa=12$, general $\kappa)$

A few open questions

- Convergence of discrete models, e.g.
- self-avoiding walk ($\kappa=8 / 3$)
- universality for percolation: \mathbb{Z}^{2}; Voronoi tesselation $(\kappa=6)$
- Fortuin-Kastelyn model $(\kappa \in(4,8))$
- 6 -vertex model ($\kappa=12$, general κ)

For each edge
\longrightarrow
we have
_ or -

A few open questions

- Convergence of discrete models, e.g.
- self-avoiding walk $(\kappa=8 / 3)$
- universality for percolation: \mathbb{Z}^{2}; Voronoi tesselation $(\kappa=6)$
- Fortuin-Kastelyn model $(\kappa \in(4,8))$
- 6 -vertex model $(\kappa=12$, general $\kappa)$

A few open questions

- Convergence of discrete models, e.g.
- self-avoiding walk ($\kappa=8 / 3$)
- universality for percolation: \mathbb{Z}^{2}; Voronoi tesselation $(\kappa=6)$
- Fortuin-Kastelyn model $(\kappa \in(4,8))$
- 6-vertex model ($\kappa=12$, general κ)

(a) 6-vertex configuration

(b) Peano curve

A few open questions

- Convergence of discrete models, e.g.
- self-avoiding walk $(\kappa=8 / 3)$
- universality for percolation: \mathbb{Z}^{2}; Voronoi tesselation $(\kappa=6)$
- Fortuin-Kastelyn model $(\kappa \in(4,8))$
- 6-vertex model $(\kappa=12$, general $\kappa)$

Random planar map; figure due to Gwynne-Miller-Sheffield

A few open questions

- Convergence of discrete models, e.g.
- self-avoiding walk ($\kappa=8 / 3$)
- universality for percolation: \mathbb{Z}^{2}; Voronoi tesselation $(\kappa=6)$
- Fortuin-Kastelyn model $(\kappa \in(4,8))$
- 6 -vertex model ($\kappa=12$, general κ)
- Scaling limit of statistical physics models in 3d, e.g.
- loop-erased random walk (Kozma'07)
- uniform spanning tree (Angel-Croydon-Hernandez-Torres-Shiraishi'20)
- percolation

3d UST; figure by Angel-Croydon-Hernandez-Torres-Shiraishi

A few open questions

- Convergence of discrete models, e.g.
- self-avoiding walk $(\kappa=8 / 3)$
- universality for percolation: \mathbb{Z}^{2}; Voronoi tesselation $(\kappa=6)$
- Fortuin-Kastelyn model $(\kappa \in(4,8))$
- 6 -vertex model ($\kappa=12$, general κ)
- Scaling limit of statistical physics models in 3d, e.g.
- loop-erased random walk (Kozma'07)
- uniform spanning tree (Angel-Croydon-Hernandez-Torres-Shiraishi'20)
- percolation

Figure by Sheffield-Yadin

A few open questions

- Convergence of discrete models, e.g.
- self-avoiding walk ($\kappa=8 / 3$)
- universality for percolation: \mathbb{Z}^{2}; Voronoi tesselation $(\kappa=6)$
- Fortuin-Kastelyn model $(\kappa \in(4,8))$
- 6 -vertex model ($\kappa=12$, general κ)
- Scaling limit of statistical physics models in 3d, e.g.
- loop-erased random walk (Kozma'07)
- uniform spanning tree (Angel-Croydon-Hernandez-Torres-Shiraishi'20)
- percolation
- Path properties of SLE, e.g.
- Hausdorff measure of SLE

Thanks for attending!

Radial SLE

- $g_{t}: \mathbb{D} \backslash K_{t} \rightarrow \mathbb{D}$ defined such that $g_{t}(0)=0$ and $g_{t}^{\prime}(0)>0$.
- η parametrized such that $t=\log g_{t}^{\prime}(0)$.
- Radial Loewner equation, where B is a standard Brownian motion

$$
\dot{g}_{t}(z)=g_{t}(z) \frac{e^{i \sqrt{\kappa} B(t)}+g_{t}(z)}{e^{i \sqrt{\kappa} B(t)}-g_{t}(z)}, \quad g_{0}(z)=z
$$

Radial SLE

- $g_{t}: \mathbb{D} \backslash K_{t} \rightarrow \mathbb{D}$ defined such that $g_{t}(0)=0$ and $g_{t}^{\prime}(0)>0$.
- η parametrized such that $t=\log g_{t}^{\prime}(0)$.
- Radial Loewner equation, where B is a standard Brownian motion

$$
\dot{g}_{t}(z)=g_{t}(z) \frac{e^{i \sqrt{\kappa} B(t)}+g_{t}(z)}{e^{i \sqrt{\kappa} B(t)}-g_{t}(z)}, \quad g_{0}(z)=z
$$

$$
z \mapsto-i \log z
$$

Whole-plane SLE

Conditioned on $\left.\eta\right|_{(-\infty, t]}$, the remainder $\left.\eta\right|_{(t, \infty)}$ of the curve has the law of radial SLE_{κ} in $\left(\mathbb{C} \backslash K_{t}, \eta(t), b\right)$.

[^0]: ${ }^{a}$ We identify $w_{1}: I_{1} \rightarrow \mathbb{C}$ and $w_{2}: I_{2} \rightarrow \mathbb{C}$ (with $I_{1}, I_{2} \subset \mathbb{R}$ intervals) if there is an increasing bijection $\phi: I_{1} \rightarrow I_{2}$ such that $w_{1}=w_{2} \circ \phi$.

