Schramm-Loewner evolutions and imaginary geometry

Nina Holden

Institute for Theoretical Studies, ETH Zürich

August 4, 2020

N. Holden (ETH-ITS Zürich)

SLE and imaginary geometry

August 4, 2020 1 / 39

- Lecture 1: Definition and basic properties of SLE, examples
- Lecture 2: Basic properties of SLE
- Lecture 3: Imaginary geometry

References:

Conformally invariant processes in the plane by Lawler Lectures on Schramm-Loewner evolution by Berestycki and Norris Imaginary geometry I by Miller and Sheffield

(日)

э

Image: A math a math

э

(日)

э

Donsker's theorem: Simple random walk converges to Brownian motion.

N. Holden (ETH-ITS Zürich)

< 行

< 行

< A

 \bullet Lawler-Schramm-Werner'04: Loop-erased random walk \Rightarrow SLE_2. Illustration by P. Nolin

Critical percolation on the triangular lattice

Smirnov'01: Critical percolation on the triangular lattice \Rightarrow SLE_6

Critical percolation on the triangular lattice

Smirnov'01: Critical percolation on the triangular lattice \Rightarrow SLE₆

N. Holden (ETH-ITS Zürich)

 \mathbb{Z}^2 restricted to a box

N. Holden (ETH-ITS Zürich)

SLE and imaginary geometry

Image: Image:

UST with wired *ab* boundary arc

N. Holden (ETH-ITS Zürich)

Peano curve

Peano curve

Lawler-Schramm-Werner'04: Peano curve of the UST \Rightarrow SLE₈

N. Holden (ETH-ITS Zürich)

SLE and imaginary geometry

Image: A matrix

Conformal maps

Definition (Conformal map)

f is conformal if f is bijective and f' exists.

$$f(z) = f_1(z_1, z_2) + if_2(z_1, z_2), \qquad z = z_1 + iz_2$$

Lemma (Cauchy-Riemann equations)

If f is conformal then

$$\partial_1 f_1 = \partial_2 f_2, \qquad \partial_2 f_1 = -\partial_1 f_2.$$

N. Holden (ETH-ITS Zürich)

Conformal invariance of planar Brownian motion

Theorem

- Let W be a planar Brownian motion started from 0.
- Define $\tau_D := \inf\{t \ge 0 : W(t) \notin D\}$ for $D \subset \mathbb{C}$ a domain s.t. $0 \in D$.
- Let $f: D \to \widetilde{D}$ be a conformal map fixing the origin.

^aWe identify $w_1 : I_1 \to \mathbb{C}$ and $w_2 : I_2 \to \mathbb{C}$ (with $I_1, I_2 \subset \mathbb{R}$ intervals) if there is an increasing bijection $\phi : I_1 \to I_2$ such that $w_1 = w_2 \circ \phi$.

Conformal invariance of planar Brownian motion

Conformal invariance of Brownian motion: proof sketch

Theorem

 $\widetilde{W} := f \circ W|_{[0,\tau_D]}$ has the law of a planar Brownian motion run until first leaving \widetilde{D} , modulo time reparametrization.

Write $\widetilde{W}(t) = \widetilde{W}_1(t) + i\widetilde{W}_2(t)$.

Exercise: Show that Itô's formula and the Cauchy-Riemann equations give

- W_1, W_2 are local martingales.
- $\langle \widetilde{W}_1 \rangle_t = \langle \widetilde{W}_2 \rangle_t$ and this function is a.s. strictly increasing in t.
- $\langle W_1, W_2 \rangle \equiv 0.$

These properties characterize a planar Brownian motion modulo time change (see e.g. Revuz-Yor).

N. Holden (ETH-ITS Zürich)

Riemann mapping theorem

Theorem (Riemann mapping theorem)

If D is a non-empty simply connected open proper subset of \mathbb{C} then there exists a conformal map $f : D \to \mathbb{D}$.

Riemann mapping theorem

Theorem (Riemann mapping theorem)

If D is a non-empty simply connected open proper subset of \mathbb{C} then there exists a conformal map $f : D \to \mathbb{D}$.

Three degrees of freedom.

• $\eta: [0,\infty) \to \mathbb{H}$ curve in \mathbb{H} from 0 to ∞ .

N. Holden (ETH-ITS Zürich)

SLE and imaginary geometry

- $\eta: [0,\infty) \to \mathbb{H}$ curve in \mathbb{H} from 0 to ∞ .
- $K_t = \mathbb{H} \setminus \{ \text{unbounded component of } \mathbb{H} \setminus \eta([0, t]) \}.$

- $\eta: [0,\infty) \to \mathbb{H}$ curve in \mathbb{H} from 0 to ∞ .
- $K_t = \mathbb{H} \setminus \{ \text{unbounded component of } \mathbb{H} \setminus \eta([0, t]) \}.$
- $g_t : \mathbb{H} \setminus K_t \to \mathbb{H}, g_t(\infty) = \infty.$

- $\eta: [0,\infty) \to \mathbb{H}$ curve in \mathbb{H} from 0 to ∞ .
- $K_t = \mathbb{H} \setminus \{ \text{unbounded component of } \mathbb{H} \setminus \eta([0, t]) \}.$
- $g_t : \mathbb{H} \setminus K_t \to \mathbb{H}, \ g_t(\infty) = \infty.$
- $g_t(z) = a_1z + a_0 + a_{-1}z^{-1} + \ldots$ for $a_1, a_0, \dots \in \mathbb{R}$ near $z = \infty$
 - Show $\widetilde{g}_t(z) := -1/g_t(-z^{-1}) = \widetilde{a}_1 z + \widetilde{a}_2 z^2 + \ldots$ by Schwarz reflection.

- $\eta: [0,\infty) \to \mathbb{H}$ curve in \mathbb{H} from 0 to ∞ .
- $K_t = \mathbb{H} \setminus \{ \text{unbounded component of } \mathbb{H} \setminus \eta([0, t]) \}.$
- $g_t : \mathbb{H} \setminus K_t \to \mathbb{H}, g_t(\infty) = \infty.$
- $g_t(z) = a_1z + a_0 + a_{-1}z^{-1} + \ldots$ for $a_1, a_0, \dots \in \mathbb{R}$ near $z = \infty$
 - Show $\widetilde{g}_t(z) := -1/g_t(-z^{-1}) = \widetilde{a}_1 z + \widetilde{a}_2 z^2 + \dots$ by Schwarz reflection.

N. Holden (ETH-ITS Zürich)

- $\eta: [0,\infty) \to \mathbb{H}$ curve in \mathbb{H} from 0 to ∞ .
- $K_t = \mathbb{H} \setminus \{ \text{unbounded component of } \mathbb{H} \setminus \eta([0, t]) \}.$

•
$$g_t:\mathbb{H}\setminus K_t
ightarrow\mathbb{H},\ g_t(\infty)=\infty$$

- $g_t(z) = a_1 z + a_0 + a_{-1} z^{-1} + \dots$ for $a_1, a_0, \dots \in \mathbb{R}$ near $z = \infty$
 - Show $\widetilde{g}_t(z) := -1/g_t(-z^{-1}) = \widetilde{a}_1 z + \widetilde{a}_2 z^2 + \dots$ by Schwarz reflection.
- Fix g_t by choosing $a_1 = 1, a_0 = 0$.

- $\eta: [0,\infty) \to \mathbb{H}$ curve in \mathbb{H} from 0 to ∞ .
- $K_t = \mathbb{H} \setminus \{ \text{unbounded component of } \mathbb{H} \setminus \eta([0, t]) \}.$

•
$$g_t:\mathbb{H}\setminus \mathcal{K}_t
ightarrow\mathbb{H},\ g_t(\infty)=\infty.$$

- $g_t(z) = a_1 z + a_0 + a_{-1} z^{-1} + ...$ for $a_1, a_0, \dots \in \mathbb{R}$ near $z = \infty$
 - Show $\widetilde{g}_t(z) := -1/g_t(-z^{-1}) = \widetilde{a}_1 z + \widetilde{a}_2 z^2 + \dots$ by Schwarz reflection.
- Fix g_t by choosing $a_1 = 1, a_0 = 0$.
- g_t is the mapping out function of the hull K_t .

- $\eta: [0,\infty) \to \mathbb{H}$ curve in \mathbb{H} from 0 to ∞ .
- $K_t = \mathbb{H} \setminus \{ \text{unbounded component of } \mathbb{H} \setminus \eta([0, t]) \}.$

•
$$g_t: \mathbb{H} \setminus K_t \to \mathbb{H}, \ g_t(\infty) = \infty$$

- g_t(z) = a₁z + a₀ + a₋₁z⁻¹ + ... for a₁, a₀, ··· ∈ ℝ near z = ∞
 Show g̃_t(z) := -1/g_t(-z⁻¹) = ã₁z + ã₂z² + ... by Schwarz reflection.
- Fix g_t by choosing $a_1 = 1, a_0 = 0$.
- g_t is the mapping out function of the hull K_t .
- Remark: Any compact ℍ-hull K (i.e., a bounded subset of ℍ s.t. ℍ \ K is open and simply connected) can be associated with a mapping out function g : ℍ \ K → ℍ.

Half-plane capacity

Recall:
$$g_t(z) = z + a_{-1}z^{-1} + a_{-2}z^{-2} + \dots$$

hcap $(K_t) := a_{-1}$ is the "size" of K_t .

Lemma (additivity)

 $hcap(K_{t+s}) = hcap(K_t) + hcap(g_t(K_{t+s} \setminus K_t)).$

Half-plane capacity

Recall:
$$g_t(z) = z + a_{-1}z^{-1} + a_{-2}z^{-2} + \dots$$

hcap $(K_t) := a_{-1}$ is the "size" of K_t .

Lemma (additivity)

 $hcap(K_{t+s}) = hcap(K_t) + hcap(g_t(K_{t+s} \setminus K_t)).$

Lemma (scaling)

 $hcap(rK_t) = r^2 hcap(K_t)$

Observe that $\tilde{g}_t(z) := rg_t(z/r)$ is the mapping out function of rK_t and that

$$\widetilde{g}_t(z) = z + r^2 \operatorname{hcap}(K_t) z^{-1} + \dots$$

э

Half-plane capacity

Recall:
$$g_t(z) = z + a_{-1}z^{-1} + a_{-2}z^{-2} + \dots$$

hcap $(K_t) := a_{-1}$ is the "size" of K_t .

Lemma (additivity)

 $hcap(K_{t+s}) = hcap(K_t) + hcap(g_t(K_{t+s} \setminus K_t)).$

Lemma (scaling)

 $hcap(rK_t) = r^2 hcap(K_t)$

Convention: Parametrize η such that $hcap(K_t) = 2t$.

- 20

Driving function and Loewner equation

 η simple curve in $(\mathbb{H},0,\infty)$ parametrized by half-plane capacity.

Definition (Driving function)

 $W(t) := g_t(\eta(t))$

Proposition (Loewner equation)

If $\tau_z = \inf\{t \ge 0 : z \in K_t\}$ then

$$\dot{g}_t(z)=rac{2}{g_t(z)-W(t)} ext{ for } t\in [0, au_z), \qquad g_0(z)=z\in \mathbb{H}.$$

Schramm's idea

- Key idea: study W instead of η .
- If η describes the conjectural scaling limit of certain discrete models, then W must be a multiple of a Brownian motion!

Definition of SLE_{κ} in $(\mathbb{H}, 0, \infty)$

- $\kappa \geq 0$ and $(B(t))_{t\geq 0}$ is a standard Brownian motion.
- Solve Loewner equation with driving function $W=\sqrt{\kappa}B$

$$\dot{g}_t(z) = rac{2}{g_t(z) - W(t)}, \qquad au_z = \sup\{t \ge 0 \ : \ g_t(z) \ ext{well-defined}\}.$$

• Define
$$K_t := \{z \in \mathbb{H} : \tau_z \leq t\}.$$

- Let η be the curve generating $(K_t)_{t\geq 0}$.
 - $K_t = \mathbb{H} \setminus \{ \text{unbounded component of } \mathbb{H} \setminus \eta([0, t]) \},$
 - η is well-defined: Rohde-Schramm'05, Lawler-Schramm-Werner'04.

Definition (The Schramm-Loewner evolution in $(\mathbb{H}, 0, \infty)$)

 η is an SLE_{κ} in $(\mathbb{H}, 0, \infty)$.

Definition of SLE_{κ} in (D, a, b)

Definition (The Schramm-Loewner evolution)

- Let $\tilde{\eta}$ be an SLE_{κ} in $(\mathbb{H}, 0, \infty)$.
- Then $\eta := f(\tilde{\eta})$ is an SLE_{κ} in (D, a, b).
- Note that f is not unique since f ∘ φ_r also sends (𝔄, 0, ∞) to (D, a, b) if φ_r(z) := rz for r > 0.
- SLE_κ in (D, a, b) is still well-defined by scale invariance in law of SLE_κ in (Ⅲ, 0, ∞) (next slide).

Scale invariance in law of SLE_κ

Exercise (Scale invariance of SLE_{κ})

- Let η be an SLE_{κ} in $(\mathbb{H}, 0, \infty)$ and let r > 0.
- Prove that $t \mapsto r\eta(t/r^2)$ has the law of an SLE_{κ} in $(\mathbb{H}, 0, \infty)$.

Scale invariance in law of SLE_{κ}

Exercise (Scale invariance of SLE_{κ})

- Let η be an SLE_{κ} in $(\mathbb{H}, 0, \infty)$ and let r > 0.
- Prove that $t \mapsto r\eta(t/r^2)$ has the law of an SLE_{κ} in $(\mathbb{H}, 0, \infty)$.

Hint: Let $\tilde{\eta}(t) = r\eta(t/r^2)$ and argue that mapping out fcn \tilde{g}_t of $\tilde{\eta}$ satisfy $\tilde{g}_t(z) = rg_{t/r^2}(z/r), \qquad \dot{\tilde{g}}_t(z) = \partial_t (rg_{t/r^2}(z/r)) = \frac{2}{\tilde{g}_t(z) - rW(t/r^2)}.$

 Probability measure μ_{D,a,b} on curves η modulo time reparametrization in (D, a, b) for each simply connected domain D ⊂ C, a, b ∈ ∂D.¹

¹Identify η and $\eta \circ \phi$ if $\phi : I_1 \to I_2$ cts and strictly increasing. ∂D Martin bdy of $D \circ \circ \circ$

- Probability measure μ_{D,a,b} on curves η modulo time reparametrization in (D, a, b) for each simply connected domain D ⊂ C, a, b ∈ ∂D.¹
- Suppose $\eta \sim \mu_{\mathbb{H},0,\infty}$ a.s. generated by Loewner chain.

¹Identify η and $\eta \circ \phi$ if $\phi : I_1 \to I_2$ cts and strictly increasing. ∂D Martin bdy of $D_{\odot \lhd \odot}$

- Probability measure μ_{D,a,b} on curves η modulo time reparametrization in (D, a, b) for each simply connected domain D ⊂ C, a, b ∈ ∂D.¹
- Suppose $\eta \sim \mu_{\mathbb{H},0,\infty}$ a.s. generated by Loewner chain.
- Conformal invariance (CI): If $\eta \sim \mu_{D,a,b}$ then $\phi \circ \eta$ has law $\mu_{\widetilde{D},\widetilde{a},\widetilde{b}}$.

Conformal invariance

¹Identify η and $\eta \circ \phi$ if $\phi : I_1 \to I_2$ cts and strictly increasing. ∂D Martin bdy of $D_{\bigcirc \bigcirc \bigcirc}$

N. Holden (ETH-ITS Zürich)

SLE and imaginary geometry

August 4, 2020 19 / 39

- Probability measure μ_{D,a,b} on curves η modulo time reparametrization in (D, a, b) for each simply connected domain D ⊂ C, a, b ∈ ∂D.¹
- Suppose $\eta \sim \mu_{\mathbb{H},\mathbf{0},\infty}$ a.s. generated by Loewner chain.
- Conformal invariance (CI): If $\eta \sim \mu_{D,a,b}$ then $\phi \circ \eta$ has law $\mu_{\widetilde{D},\widetilde{a},\widetilde{b}}$.
- Domain Markov property (DMP): Conditioned on η|_[0,τ] for stopping time τ, the rest of the curve η|_{[τ,∞)} has law μ_{D\K_τ,η(t),b}.

¹Identify η and $\eta \circ \phi$ if $\phi : I_1 \to I_2$ cts and strictly increasing. ∂D Martin bdy of $D_{\bigcirc \bigcirc \bigcirc \bigcirc}$

N. Holden (ETH-ITS Zürich)

SLE and imaginary geometry

August 4, 2020 19 / 39

- Probability measure μ_{D,a,b} on curves η modulo time reparametrization in (D, a, b) for each simply connected domain D ⊂ C, a, b ∈ ∂D.¹
- Suppose $\eta \sim \mu_{\mathbb{H},\mathbf{0},\infty}$ a.s. generated by Loewner chain.
- Conformal invariance (CI): If $\eta \sim \mu_{D,a,b}$ then $\phi \circ \eta$ has law $\mu_{\widetilde{D},\widetilde{a},\widetilde{b}}$.
- Domain Markov property (DMP): Conditioned on η|_[0,τ] for stopping time τ, the rest of the curve η|_{[τ,∞)} has law μ_{D\K_τ,η(t),b}.

Theorem (Schramm'00)

The following statements are equivalent:

- $\mu_{D,a,b}$ satisfies (CI) and (DMP).
- There is a $\kappa \geq 0$ such that $\mu_{D,a,b}$ is the law of SLE_{κ} .

¹Identify η and $\eta \circ \phi$ if $\phi : I_1 \to I_2$ cts and strictly increasing. ∂D Martin bdy of D_{OQQ}

Conformal invariance of percolation

э

Conformal invariance of percolation

Conformal invariance: If $\eta \sim \mu_{D,a,b}$ then $\phi \circ \eta$ has law $\mu_{\widetilde{D},\widetilde{a},\widetilde{b}}$.

- Lecture 1: Definition and basic properties of SLE, examples
- Lecture 2: Basic properties of SLE (today)
- Lecture 3: Imaginary geometry

References:

Conformally invariant processes in the plane by Lawler Lectures on Schramm-Loewner evolution by Berestycki and Norris Imaginary geometry I by Miller and Sheffield

Key message today: The Loewner equation allows us to analyze SLE using stochastic calculus.

Domain Markov property of percolation

N. Holden (ETH-ITS Zürich)

SLE and imaginary geometry

August 4, 2020 22 / 39

Conditioned on $\eta|_{[0,25]}$, the rest of the percolation interface has the law of a percolation interface in $(D \setminus K_{25}, \eta(25), b)$.

• Number of length *n* self-avoiding paths on \mathbb{Z}^2 from (0,0): $\mu^{n(1+o(1))}$.

- Number of length *n* self-avoiding paths on \mathbb{Z}^2 from (0,0): $\mu^{n(1+o(1))}$.
- $\mu \in [2.62, 2.68]$ is the connective constant of \mathbb{Z}^2 .

- Number of length *n* self-avoiding paths on \mathbb{Z}^2 from (0,0): $\mu^{n(1+o(1))}$.
- $\mu \in [2.62, 2.68]$ is the connective constant of \mathbb{Z}^2 .
- The self-avoiding walk (SAW): \mathfrak{W} random path s.t. for w a self-avoiding path on discrete approximation (D_m, a_m, b_m) to (D, a, b),

$$\mathbb{P}[\mathfrak{W}=w]=c\mu^{-|w|},$$

where |w| is the length of w and c is a renormalizing constant.

- Number of length *n* self-avoiding paths on \mathbb{Z}^2 from (0,0): $\mu^{n(1+o(1))}$.
- $\mu \in [2.62, 2.68]$ is the **connective constant** of \mathbb{Z}^2 .
- The self-avoiding walk (SAW): \mathfrak{W} random path s.t. for w a self-avoiding path on discrete approximation (D_m, a_m, b_m) to (D, a, b),

$$\mathbb{P}[\mathfrak{W}=w]=c\mu^{-|w|},$$

where |w| is the length of w and c is a renormalizing constant. • Conjecture: $\mathfrak{W} \Rightarrow SLE_{8/3}$.

- Number of length *n* self-avoiding paths on \mathbb{Z}^2 from (0,0): $\mu^{n(1+o(1))}$.
- $\mu \in [2.62, 2.68]$ is the connective constant of \mathbb{Z}^2 .
- The self-avoiding walk (SAW): \mathfrak{W} random path s.t. for w a self-avoiding path on discrete approximation (D_m, a_m, b_m) to (D, a, b),

$$\mathbb{P}[\mathfrak{W}=w]=c\mu^{-|w|},$$

where |w| is the length of w and c is a renormalizing constant.

- Conjecture: $\mathfrak{W} \Rightarrow SLE_{8/3}$.
- Exercise: Given $\mathfrak{W}|_{[0,k]}$ the remaining path has the law of a SAW in $(D_m \setminus \mathfrak{W}([0,k]), \mathfrak{W}(k), b_m)$.

SLE satisfies (CI) and (DMP)

• (CI): follows from the definition of SLE_{κ} on general domains (D, a, b).

SLE satisfies (CI) and (DMP)

- (CI): follows from the definition of SLE_{κ} on general domains (D, a, b).
- (DMP): sufficient to verify for $(\mathbb{H},0,\infty)$ and parametrization by half-plane capacity.

Want to prove: $\eta|_{[\tau,\infty)}$ has the law of an SLE_{κ} in $(\mathbb{H} \setminus \mathcal{K}_{\tau}, \eta(\tau), \infty)$.

SLE satisfies (CI) and (DMP)

- (CI): follows from the definition of SLE_{κ} on general domains (D, a, b).
- (DMP): sufficient to verify for $(\mathbb{H}, 0, \infty)$ and parametrization by half-plane capacity.
 - Centered mapping out functions $\widetilde{g}_t(z) := g_t(z) W(t)$ satisfy

$$d\widetilde{g}_t(z) = \frac{2}{\widetilde{g}_t(z)} - dW(t), \qquad \widetilde{g}_0(z) = z.$$
(CL)

- Exercise: Centered mapping out functions $(\widetilde{g}_{\tau,t})_{t\geq 0}$ of $\widehat{\eta}^{\tau}$ satisfy $\widetilde{g}_{\tau+t} = \widetilde{g}_{\tau,t} \circ \widetilde{g}_{\tau}$.
- Exercise: Use previous exercise to argue that $(\tilde{g}_{\tau,t})_{t\geq 0}$ satisfies (CL) w/driving function $(W(\tau + t) W(\tau))_{t\geq 0} \stackrel{d}{=} (W(t))_{t\geq 0}$.
- The last exercise implies that $\hat{\eta}^{\tau}$ has the law of an SLE_{κ} in $(\mathbb{H}, 0, \infty)$.

N. Holden (ETH-ITS Zürich)

SLE and imaginary geometry

August 4, 2020 24 / 39

Suppose (μ_{D,a,b})_{D,a,b} satisfies (CI) and (DMP). Let η ~ μ_{ℍ,0,∞} be param. by half-plane capacity; let W denote the driving fcn of η.

- Suppose (μ_{D,a,b})_{D,a,b} satisfies (CI) and (DMP). Let η ~ μ_{ℍ,0,∞} be param. by half-plane capacity; let W denote the driving fcn of η.
- (CI) \Rightarrow scale invariance $\Rightarrow (W(t))_{t\geq 0} \stackrel{d}{=} (rW(t/r^2))_{t\geq 0}$.

Let $\tilde{\eta}(t) := r\eta(t/r^2)$. Then $\eta \stackrel{d}{=} \tilde{\eta}$. Mapping out fcn $(\tilde{g}_t)_{t\geq 0}$ of $\tilde{\eta}$ satisfy: $\tilde{g}_t(z) = rg_{t/r^2}(z/r), \qquad \dot{\tilde{g}}_t(z) = \partial_t (rg_{t/r^2}(z/r)) = \frac{2}{\tilde{g}_t(z) - rW(t/r^2)}.$

- Suppose (μ_{D,a,b})_{D,a,b} satisfies (CI) and (DMP). Let η ~ μ_{ℍ,0,∞} be param. by half-plane capacity; let W denote the driving fcn of η.
- (CI) \Rightarrow scale invariance $\Rightarrow (W(t))_{t\geq 0} \stackrel{d}{=} (rW(t/r^2))_{t\geq 0}$.
- (DMP)

(DMP): $\eta|_{[s,\infty)}$ has law $\mu_{\mathbb{H}\setminus K_s,\eta(s),\infty}$.

- Suppose (μ_{D,a,b})_{D,a,b} satisfies (CI) and (DMP). Let η ~ μ_{ℍ,0,∞} be param. by half-plane capacity; let W denote the driving fcn of η.
- (CI) \Rightarrow scale invariance $\Rightarrow (W(t))_{t\geq 0} \stackrel{d}{=} (rW(t/r^2))_{t\geq 0}$.
- (DMP) $\Rightarrow (W(t))_{t\geq 0}$ has i.i.d. increments.
 - By (DMP), $\hat{\eta}^{s} \stackrel{d}{=} \eta$ and $\hat{\eta}^{s}$ is independent of $\eta|_{[0,s]}$.
 - The centered mapping out fcn $(\tilde{g}_{s,t})_{t\geq 0}$ of $\hat{\eta}^s$ satisfy the centered Loewner equation w/driving function $(W(s+t) W(s))_{t\geq 0}$.
 - Combining the above, $(W(s+t) W(s))_{t \ge 0} \stackrel{d}{=} (W(t))_{t \ge 0}$ and is independent of $W|_{[0,s]}$.

- Suppose (μ_{D,a,b})_{D,a,b} satisfies (CI) and (DMP). Let η ~ μ_{ℍ,0,∞} be param. by half-plane capacity; let W denote the driving fcn of η.
- (CI) \Rightarrow scale invariance $\Rightarrow (W(t))_{t\geq 0} \stackrel{d}{=} (rW(t/r^2))_{t\geq 0}$.
- (DMP) $\Rightarrow (W(t))_{t\geq 0}$ has i.i.d. increments.
- (CI) + (DMP) $\Rightarrow W = \sqrt{\kappa}B$ for some $\kappa \ge 0$.

Rohde-Schramm'05: SLE_{κ} has the following phases:

- $\kappa \in [0, 4]$: The curve is simple.
- $\kappa \in (4,8)$: The curve is self-intersecting and has zero Lebesgue measure.
- $\kappa \geq$ 8: The curve fills space.

Figures by P. Nolin, W. Werner, and J. Miller

Rohde-Schramm'05: SLE $_{\kappa}$ has the following phases:

- $\kappa \in [0, 4]$: The curve is simple.
- $\kappa \in (4,8)$: The curve is self-intersecting and has zero Lebesgue measure.
- $\kappa \geq 8$: The curve fills space.

Figures by P. Nolin, W. Werner, and J. Miller

Rohde-Schramm'05: SLE $_{\kappa}$ has the following phases:

- $\kappa \in [0, 4]$: The curve is simple.
- $\kappa \in (4,8)$: The curve is self-intersecting and has zero Lebesgue measure.
- $\kappa \geq 8$: The curve fills space.

Figures by P. Nolin, W. Werner, and J. Miller

Rohde-Schramm'05: SLE $_{\kappa}$ has the following phases:

- $\kappa \in [0, 4]$: The curve is simple.
- $\kappa \in (4,8)$: The curve is self-intersecting and has zero Lebesgue measure.
- $\kappa \geq 8$: The curve fills space.

Figures by P. Nolin, W. Werner, and J. Miller
Rohde-Schramm'05: SLE $_{\kappa}$ has the following phases:

- $\kappa \in [0, 4]$: The curve is simple.
- $\kappa \in (4,8)$: The curve is self-intersecting and has zero Lebesgue measure.
- $\kappa \geq 8$: The curve fills space.

Figures by P. Nolin, W. Werner, and J. Miller

Rohde-Schramm'05: SLE $_{\kappa}$ has the following phases:

- $\kappa \in [0, 4]$: The curve is simple.
- $\kappa \in (4,8)$: The curve is self-intersecting and has zero Lebesgue measure.
- $\kappa \geq 8$: The curve fills space.

Figures by P. Nolin, W. Werner, and J. Miller

Rohde-Schramm'05: SLE $_{\kappa}$ has the following phases:

- $\kappa \in [0, 4]$: The curve is simple.
- $\kappa \in (4,8)$: The curve is self-intersecting and has zero Lebesgue measure.
- $\kappa \geq 8$: The curve fills space.

 $\kappa \in [0,4]$

 $\kappa \in (4,8)$

Figures by P. Nolin, W. Werner, and J. Miller

Rohde-Schramm'05: SLE_{κ} has the following phases:

- $\kappa \in [0, 4]$: The curve is simple.
- $\kappa \in (4,8)$: The curve is self-intersecting and has zero Lebesgue measure.
- $\kappa \geq 8$: The curve fills space.

Figures by P. Nolin, W. Werner, and J. Miller

Lemma

• If
$$\kappa \in [0,4]$$
 then η is a.s. simple (i.e., $\eta(t_1) \neq \eta(t_2)$ for $t_1 \neq t_2$).

• If
$$\kappa > 4$$
 then η is a.s. not simple.

We will deduce the lemma from the following result, where

$$\tau_x = \inf\{t \ge 0 : x \in \overline{K}_t\} \text{ for } x > 0.$$

Lemma

• If
$$\kappa \in [0,4]$$
 then $au_{\mathsf{X}} = \infty$ a.s.

• If $\kappa > 4$ then $\tau_x < \infty$ a.s.

э

Recall
$$\tau_x = \inf\{t \ge 0 : x \in \overline{K}_t\}$$
 for $x > 0$.

Lemma

- If $\kappa \in [0, 4]$ then $\tau_x = \infty$ a.s.
- If $\kappa > 4$ then $\tau_x < \infty$ a.s.

w.l.o.g.
$$x = 1;$$
 $\dot{g}_t(1) = \frac{2}{g_t(1) - \sqrt{\kappa}B(t)},$ $g_t(1) = 1,$

Recall
$$\tau_x = \inf\{t \ge 0 : x \in \overline{K}_t\}$$
 for $x > 0$.

Lemma

- If $\kappa \in [0, 4]$ then $\tau_x = \infty$ a.s.
- If $\kappa > 4$ then $\tau_x < \infty$ a.s.

w.l.o.g.
$$x = 1;$$
 $\dot{g}_t(1) = \frac{2}{g_t(1) - \sqrt{\kappa}B(t)},$ $g_t(1) = 1,$
 $Y(t) = \kappa^{-1/2}(g_t(1) - \sqrt{\kappa}B(t)),$

Recall
$$\tau_x = \inf\{t \ge 0 : x \in \overline{K}_t\}$$
 for $x > 0$.

Lemma

- If $\kappa \in [0, 4]$ then $\tau_x = \infty$ a.s.
- If $\kappa > 4$ then $\tau_x < \infty$ a.s.

w.l.o.g.
$$x = 1;$$
 $\dot{g}_t(1) = \frac{2}{g_t(1) - \sqrt{\kappa}B(t)},$ $g_t(1) = 1,$
 $Y(t) = \kappa^{-1/2}(g_t(1) - \sqrt{\kappa}B(t)),$
 $\tau_1 = \inf\{t \ge 0 : Y(t) = 0\},$

э

э.

Recall
$$\tau_x = \inf\{t \ge 0 : x \in \overline{K}_t\}$$
 for $x > 0$.

Lemma

- If $\kappa \in [0, 4]$ then $\tau_x = \infty$ a.s.
- If $\kappa > 4$ then $\tau_x < \infty$ a.s.

w.l.o.g.
$$x = 1$$
; $\dot{g}_t(1) = \frac{2}{g_t(1) - \sqrt{\kappa}B(t)}$, $g_t(1) = 1$,
 $Y(t) = \kappa^{-1/2}(g_t(1) - \sqrt{\kappa}B(t))$,
 $\tau_1 = \inf\{t \ge 0 : Y(t) = 0\}$,
 $dY(t) = \frac{2}{\kappa Y(t)}dt - dB(t)$, so $Y(t)$ is a $\left(\frac{4}{\kappa} + 1\right)$ -dim. Bessel process.
 $\eta = \frac{g_t}{\sqrt{\kappa}Y(t)}$
 $dim \in (1,2)$ $dim \ge 2$
 $\kappa \in (4,\infty)$, $\kappa \in [0,4]_{\mathbb{R}}$

Lemma

- If κ ∈ [0,4] then η is a.s. simple (i.e., η(t₁) ≠ η(t₂) for t₁ ≠ t₂).
- If $\kappa > 4$ then η is a.s. not simple.

$$\tau_x = \inf\{t \ge 0 : x \in \overline{K}_t\}, \, x > 0.$$

Lemma

• If
$$\kappa \in [0, 4]$$
 then $\tau_x = \infty$ a.s.

• If
$$\kappa > 4$$
 then $\tau_x < \infty$ a.s.

$$\eta(t_1) = \eta(t_2)$$

$$\kappa > 4$$

Locality of SLE₆

Proposition

- η SLE₆ in (D, x, y). Set $\tau := \inf\{t \ge 0 : \eta(t) \in \operatorname{arc}(\widetilde{y}, y)\}$.
- Define $\tilde{\eta}$ and $\tilde{\tau}$ in the same way for (D, x, \tilde{y}) .
- Then $\eta|_{[0,\tau]} \stackrel{d}{=} \widetilde{\eta}|_{[0,\widetilde{\tau}]}$.

Locality of SLE₆

Proposition

- η SLE₆ in (D, x, y). Set $\tau := \inf\{t \ge 0 : \eta(t) \in \operatorname{arc}(\widetilde{y}, y)\}$.
- Define $\tilde{\eta}$ and $\tilde{\tau}$ in the same way for (D, x, \tilde{y}) .
- Then $\eta|_{[0,\tau]} \stackrel{d}{=} \widetilde{\eta}|_{[0,\widetilde{\tau}]}$.

Locality of SLE₆

Proposition

- η SLE₆ in (D, x, y). Set $\tau := \inf\{t \ge 0 : \eta(t) \in \operatorname{arc}(\widetilde{y}, y)\}$.
- Define $\tilde{\eta}$ and $\tilde{\tau}$ in the same way for (D, x, \tilde{y}) .
- Then $\eta|_{[0,\tau]} \stackrel{d}{=} \widetilde{\eta}|_{[0,\widetilde{\tau}]}$.

Want to prove: If η is an SLE₆ in $(\mathbb{H}, 0, \infty)$ then η has the law of an SLE₆ in $(\mathbb{H}, 0, y)$ until hitting L.

• η SLE₆ in (\mathbb{H} , 0, ∞); g_t mapping out function; W driving function.

η SLE₆ in (ℍ, 0, ∞); g_t mapping out function; W driving function.
Φ conformal map sending (ℍ, 0, y) to (ℍ, 0, ∞).

η SLE₆ in (ℍ, 0, ∞); g_t mapping out function; W driving function.
Φ conformal map sending (ℍ, 0, y) to (ℍ, 0, ∞).

• $\eta^*(t) := \Phi(\eta(t)); g_t^*$ map. out fcn; $W^*(t) = \Phi_t(W(t))$ driving fcn.

$$\dot{g}_t^*(z) = rac{b'(t)}{g_t^*(z) - W^*(t)}, \qquad b(t) = hcap(\eta^*([0, t])).$$

η SLE₆ in (ℍ, 0, ∞); g_t mapping out function; W driving function.
Φ conformal map sending (ℍ, 0, y) to (ℍ, 0, ∞).

• $\eta^*(t) := \Phi(\eta(t)); g_t^*$ map. out fcn; $W^*(t) = \Phi_t(W(t))$ driving fcn.

$$\dot{g}_t^*(z) = rac{b'(t)}{g_t^*(z) - W^*(t)}, \qquad b(t) = hcap(\eta^*([0, t])).$$

• Want to show: η^* law of SLE₆ in $(\mathbb{H}, 0, \infty)$ until hitting L^* .

η SLE₆ in (ℍ, 0, ∞); g_t mapping out function; W driving function.
Φ conformal map sending (ℍ, 0, y) to (ℍ, 0, ∞).

• $\eta^*(t) := \Phi(\eta(t)); g_t^*$ map. out fcn; $W^*(t) = \Phi_t(W(t))$ driving fcn.

$$\dot{g}_t^*(z) = rac{b'(t)}{g_t^*(z) - W^*(t)}, \qquad b(t) = hcap(\eta^*([0, t])).$$

- Want to show: η^* law of SLE₆ in $(\mathbb{H}, 0, \infty)$ until hitting L^* .
- Equivalently, $W^*(t) = \sqrt{6}B^*(b(t)/2)$ for B^* std Brownian motion.

η SLE₆ in (ℍ, 0, ∞); g_t mapping out function; W driving function.
Φ conformal map sending (ℍ, 0, y) to (ℍ, 0, ∞).

• $\eta^*(t) := \Phi(\eta(t)); g_t^*$ map. out fcn; $W^*(t) = \Phi_t(W(t))$ driving fcn.

$$\dot{g}_t^*(z) = rac{b'(t)}{g_t^*(z) - W^*(t)}, \qquad b(t) = hcap(\eta^*([0, t])).$$

• Want to show: η^* law of SLE₆ in $(\mathbb{H}, 0, \infty)$ until hitting L^* .

- Equivalently, $W^*(t) = \sqrt{6}B^*(b(t)/2)$ for B^* std Brownian motion.
- Find dW^* by Itô's formula; prove and use $\dot{\Phi}_t(W(t)) = -3\Phi_t''(W(t))$.

Restriction property

Definition

- Let µ_{D,x,y} for D ⊂ C simply connected and x, y ∈ ∂D be a family of probability measures on curves η in D from x to y.
- Let η ~ μ_{D,x,y} for some (D, x, y) and let U ⊂ D be simply connected s.t. x, y ∈ ∂U.
- The measures μ_{D,x,y} satisfy the restriction property if η conditioned to stay in U has the law of a curve sampled from μ_{U,x,y}.

For which $\kappa \geq 0$ does SLE $_{\kappa}$ satisfy the restriction property?

• Does the loop-erased random walk satisfy the restriction property?

• Does the loop-erased random walk satisfy the restriction property?

• Let $\widehat{\mathfrak{W}}$ be a simple random walk on discrete approximation (D_m, a_m, b_m) to (D, a, b).

• Does the loop-erased random walk satisfy the restriction property?

- Let $\widehat{\mathfrak{W}}$ be a simple random walk on discrete approximation (D_m, a_m, b_m) to (D, a, b).
- The loop-erased random walk (LERW) \mathfrak{W} is loop-erasure of $\widehat{\mathfrak{W}}$.

• Does the loop-erased random walk satisfy the restriction prop.? NO

- Let $\widehat{\mathfrak{W}}$ be a simple random walk on discrete approximation (D_m, a_m, b_m) to (D, a, b).
- The loop-erased random walk (LERW) \mathfrak{W} is loop-erasure of $\widehat{\mathfrak{W}}$.
- Let $U_m \subset D_m$ be connected s.t. $a_m, b_m \in U_m$.

• Does the loop-erased random walk satisfy the restriction prop.? NO

- Let $\widehat{\mathfrak{W}}$ be a simple random walk on discrete approximation (D_m, a_m, b_m) to (D, a, b).
- The loop-erased random walk (LERW) \mathfrak{W} is loop-erasure of $\mathfrak{\widehat{W}}$.
- Let $U_m \subset D_m$ be connected s.t. $a_m, b_m \in U_m$.
- "LERW in (D_m, a_m, b_m) conditioned to stay in U_m " \neq "LERW in (U_m, a_m, b_m) ", since the latter requires $\widehat{\mathfrak{W}} \subset U_m$ (not just $\mathfrak{W} \subset U_m$).

- Does the loop-erased random walk satisfy the restriction prop.? NO
- Does the self-avoiding walk satisfy the restriction property?

The **self-avoiding walk (SAW)** \mathfrak{W} is s.t. for any fixed self-avoiding path w on discrete approximation (D_m, a_m, b_m) to (D, a, b),

$$\mathbb{P}[\mathfrak{W}=w]=c\mu^{-|w|},$$

where μ is the connective constant, |w| is the length of w, and c is a renormalizing constant.

- Does the loop-erased random walk satisfy the restriction prop.? NO
- Does the self-avoiding walk satisfy the restriction property? YES

The **self-avoiding walk (SAW)** \mathfrak{W} is s.t. for any fixed self-avoiding path w on discrete approximation (D_m, a_m, b_m) to (D, a, b),

$$\mathbb{P}[\mathfrak{W}=w]=c\mu^{-|w|},$$

where μ is the connective constant, |w| is the length of w, and c is a renormalizing constant.

"SAW in (D_m, a_m, b_m) cond. to stay in U_m " $\stackrel{d}{=}$ "SAW in (U_m, a_m, b_m) "

Proposition

- η SLE_{8/3} in $(\mathbb{H}, 0, \infty)$; $K \subset \mathbb{H}$ s.t. $\mathbb{H} \setminus K$ simply conn., $0, \infty \notin \overline{K}$.
- Then η cond. on $\eta \cap K = \emptyset$ has the law of $SLE_{8/3}$ in $(\mathbb{H} \setminus K, 0, \infty)$.

Proposition

- η SLE_{8/3} in $(\mathbb{H}, 0, \infty)$; $K \subset \mathbb{H}$ s.t. $\mathbb{H} \setminus K$ simply conn., $0, \infty \notin \overline{K}$.
- Then η cond. on $\eta \cap K = \emptyset$ has the law of $SLE_{8/3}$ in $(\mathbb{H} \setminus K, 0, \infty)$.
- Proposition equivalent to the following for $K' \supset K$

$$\mathbb{P}[\eta \cap \mathcal{K}' = \emptyset \,|\, \eta \cap \mathcal{K} = \emptyset] = \mathbb{P}[\eta \cap \widetilde{g}_{\mathcal{K}}(\mathcal{K}') = \emptyset], \tag{A}$$

since $\mathsf{RHS} = \mathbb{P}[\widehat{\eta} \cap K' = \emptyset]$ for $\widehat{\eta}$ an $\mathsf{SLE}_{8/3}$ in $(\mathbb{H} \setminus K, 0, \infty)$.

Proposition

- η SLE_{8/3} in $(\mathbb{H}, 0, \infty)$; $K \subset \mathbb{H}$ s.t. $\mathbb{H} \setminus K$ simply conn., $0, \infty \notin \overline{K}$.
- Then η cond. on $\eta \cap K = \emptyset$ has the law of $SLE_{8/3}$ in $(\mathbb{H} \setminus K, 0, \infty)$.
- Proposition equivalent to the following for $K' \supset K$

$$\mathbb{P}[\eta \cap \mathcal{K}' = \emptyset \,|\, \eta \cap \mathcal{K} = \emptyset] = \mathbb{P}[\eta \cap \widetilde{g}_{\mathcal{K}}(\mathcal{K}') = \emptyset], \tag{A}$$

since $\mathsf{RHS} = \mathbb{P}[\widehat{\eta} \cap K' = \emptyset]$ for $\widehat{\eta}$ an $\mathsf{SLE}_{8/3}$ in $(\mathbb{H} \setminus K, 0, \infty)$.

• Key identity (proof omitted here): $\mathbb{P}[\eta \cap K = \emptyset] = \widetilde{g}'_{\mathcal{K}}(0)^{5/8}$.

Proposition

- η SLE_{8/3} in $(\mathbb{H}, 0, \infty)$; $K \subset \mathbb{H}$ s.t. $\mathbb{H} \setminus K$ simply conn., $0, \infty \notin \overline{K}$.
- Then η cond. on $\eta \cap K = \emptyset$ has the law of $SLE_{8/3}$ in $(\mathbb{H} \setminus K, 0, \infty)$.
- Proposition equivalent to the following for $K' \supset K$

$$\mathbb{P}[\eta \cap \mathcal{K}' = \emptyset \,|\, \eta \cap \mathcal{K} = \emptyset] = \mathbb{P}[\eta \cap \widetilde{g}_{\mathcal{K}}(\mathcal{K}') = \emptyset], \tag{A}$$

since $\mathsf{RHS} = \mathbb{P}[\widehat{\eta} \cap K' = \emptyset]$ for $\widehat{\eta}$ an $\mathsf{SLE}_{8/3}$ in $(\mathbb{H} \setminus K, 0, \infty)$.

- Key identity (proof omitted here): $\mathbb{P}[\eta \cap K = \emptyset] = \widetilde{g}'_{K}(0)^{5/8}$.
- This identity, Bayes' rule, and $\widetilde{g}_{K'} = \widetilde{g}_{\widetilde{g}_K(K')} \circ \widetilde{g}_K$ imply (A).

Proposition

- η SLE_{8/3} in $(\mathbb{H}, 0, \infty)$; $K \subset \mathbb{H}$ s.t. $\mathbb{H} \setminus K$ simply conn., $0, \infty \notin \overline{K}$.
- Then η cond. on $\eta \cap K = \emptyset$ has the law of $SLE_{8/3}$ in $(\mathbb{H} \setminus K, 0, \infty)$.
- Proposition equivalent to the following for $K' \supset K$

$$\mathbb{P}[\eta \cap \mathcal{K}' = \emptyset \,|\, \eta \cap \mathcal{K} = \emptyset] = \mathbb{P}[\eta \cap \widetilde{g}_{\mathcal{K}}(\mathcal{K}') = \emptyset], \tag{A}$$

since $\mathsf{RHS} = \mathbb{P}[\widehat{\eta} \cap \mathcal{K}' = \emptyset]$ for $\widehat{\eta}$ an $\mathsf{SLE}_{8/3}$ in $(\mathbb{H} \setminus \mathcal{K}, 0, \infty)$.

- Key identity (proof omitted here): $\mathbb{P}[\eta \cap K = \emptyset] = \widetilde{g}'_{K}(0)^{5/8}$.
- This identity, Bayes' rule, and $\widetilde{g}_{K'} = \widetilde{g}_{\widetilde{g}_K(K')} \circ \widetilde{g}_K$ imply (A).
- Remark: Key identity with exponent α ≥ 5/8 represent other random sets satisfying conformal restriction.

Chordal, radial, and whole-plane SLE

A few open questions

Convergence of discrete models, e.g.

- self-avoiding walk ($\kappa = 8/3$)
- universality for percolation: \mathbb{Z}^2 ; Voronoi tesselation ($\kappa = 6$)
- Fortuin-Kastelyn model ($\kappa \in (4, 8)$)
- 6-vertex model ($\kappa = 12$, general κ)

A few open questions

• Convergence of discrete models, e.g.

- self-avoiding walk ($\kappa = 8/3$)
- universality for percolation: \mathbb{Z}^2 ; Voronoi tesselation ($\kappa = 6$)
- Fortuin-Kastelyn model ($\kappa \in (4, 8)$)
- 6-vertex model ($\kappa = 12$, general κ)

A few open questions

• Convergence of discrete models, e.g.

- self-avoiding walk ($\kappa = 8/3$)
- universality for percolation: \mathbb{Z}^2 ; Voronoi tesselation ($\kappa = 6$)
- Fortuin-Kastelyn model ($\kappa \in (4, 8)$)
- 6-vertex model ($\kappa = 12$, general κ)

Convergence of discrete models, e.g.

- self-avoiding walk ($\kappa = 8/3$)
- universality for percolation: \mathbb{Z}^2 ; Voronoi tesselation ($\kappa = 6$)
- Fortuin-Kastelyn model ($\kappa \in (4,8)$)
- 6-vertex model ($\kappa = 12$, general κ)

• Convergence of discrete models, e.g.

- self-avoiding walk ($\kappa = 8/3$)
- universality for percolation: \mathbb{Z}^2 ; Voronoi tesselation ($\kappa = 6$)
- Fortuin-Kastelyn model ($\kappa \in (4, 8)$)
- 6-vertex model ($\kappa = 12$, general κ)

Random planar map; figure due to Gwynne-Miller-Sheffield $_$,

N. Holden (ETH-ITS Zürich)

SLE and imaginary geometry

- Convergence of discrete models, e.g.
 - self-avoiding walk ($\kappa=8/3$)
 - universality for percolation: \mathbb{Z}^2 ; Voronoi tesselation ($\kappa=6$)
 - Fortuin-Kastelyn model ($\kappa \in (4,8)$)
 - 6-vertex model ($\kappa=$ 12, general κ)
- Scaling limit of statistical physics models in 3d, e.g.
 - loop-erased random walk (Kozma'07)
 - uniform spanning tree (Angel-Croydon-Hernandez-Torres-Shiraishi'20)
 - percolation

3d UST; figure by Angel-Croydon-Hernandez-Torres-Shiraishi

• Convergence of discrete models, e.g.

- self-avoiding walk ($\kappa = 8/3$)
- universality for percolation: \mathbb{Z}^2 ; Voronoi tesselation ($\kappa=6$)
- Fortuin-Kastelyn model ($\kappa \in (4,8)$)
- 6-vertex model ($\kappa=$ 12, general κ)
- Scaling limit of statistical physics models in 3d, e.g.
 - loop-erased random walk (Kozma'07)
 - uniform spanning tree (Angel-Croydon-Hernandez-Torres-Shiraishi'20)
 - percolation

Figure by Sheffield-Yadin

N. Holden (ETH-ITS Zürich)

August 4, 2020 36 / 39

- Convergence of discrete models, e.g.
 - self-avoiding walk ($\kappa = 8/3$)
 - universality for percolation: \mathbb{Z}^2 ; Voronoi tesselation ($\kappa = 6$)
 - Fortuin-Kastelyn model ($\kappa \in (4, 8)$)
 - 6-vertex model ($\kappa = 12$, general κ)
- Scaling limit of statistical physics models in 3d, e.g.
 - loop-erased random walk (Kozma'07)
 - uniform spanning tree (Angel-Croydon-Hernandez-Torres-Shiraishi'20)
 - percolation
- Path properties of SLE, e.g.
 - Hausdorff measure of SLE

Thanks for attending!

э

- $g_t: \mathbb{D} \setminus K_t \to \mathbb{D}$ defined such that $g_t(0) = 0$ and $g_t'(0) > 0$.
- η parametrized such that $t = \log g'_t(0)$.
- Radial Loewner equation, where B is a standard Brownian motion

$$\dot{g}_t(z)=g_t(z)rac{e^{i\sqrt{\kappa}B(t)}+g_t(z)}{e^{i\sqrt{\kappa}B(t)}-g_t(z)},\qquad g_0(z)=z.$$

Radial SLE

- g_t : D \ K_t → D defined such that g_t(0) = 0 and g'_t(0) > 0.
 η parametrized such that t = log g'_t(0).
- Radial Loewner equation, where B is a standard Brownian motion

$$\dot{g}_t(z) = g_t(z) rac{e^{i\sqrt{\kappa}B(t)} + g_t(z)}{e^{i\sqrt{\kappa}B(t)} - g_t(z)}, \qquad g_0(z) = z.$$

N. Holden (ETH-ITS Zürich)

Conditioned on $\eta|_{(-\infty,t]}$, the remainder $\eta|_{(t,\infty)}$ of the curve has the law of radial SLE_{κ} in $(\mathbb{C} \setminus K_t, \eta(t), b)$.