Schramm-Loewner evolutions and imaginary geometry

Nina Holden

Institute for Theoretical Studies, ETH Zürich

August 6, 2020

N. Holden (ETH-ITS Zürich)

SLE and imaginary geometry

August 6, 2020 1 / 18

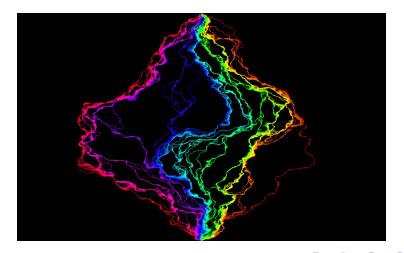
- Lecture 1: Definition and basic properties of SLE, examples
- Lecture 2: Basic properties of SLE
- Lecture 3: Imaginary geometry (today)

References:

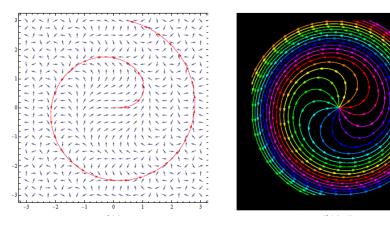
Conformally invariant processes in the plane by Lawler Lectures on Schramm-Loewner evolution by Berestycki and Norris Imaginary geometry I: Interacting SLEs by Miller and Sheffield

Note: Many of today's figures are from Miller and Sheffield's papers

• Framework for constructing natural couplings of multiple SLEs



• Framework for constructing natural couplings of multiple SLEs



$$\eta$$
 satisfying $\eta'(t)=e^{ih(\eta(t))}$, $h(z)=|z|^2$ Flow lines of $e^{i(h(\eta(t))+ heta)}$

N. Holden (ETH-ITS Zürich)

- Framework for constructing natural couplings of multiple SLEs
- An SLE_{κ} for $\kappa \in (0, 4)$ is a flow line η satisfying

$$\eta'(t)=e^{ih(\eta(t))/\chi},\qquad t>0,\ \eta(0)=z$$

where $\chi = 2/\sqrt{\kappa} - \sqrt{\kappa}/2$ and *h* is the Gaussian free field.

- Framework for constructing natural couplings of multiple SLEs
- An SLE_κ for $\kappa \in (0,4)$ is a flow line η satisfying

$$\eta'(t)=e^{ih(\eta(t))/\chi},\qquad t>0,\,\eta(0)=z$$

where $\chi = 2/\sqrt{\kappa} - \sqrt{\kappa}/2$ and *h* is the Gaussian free field.

• This definition is only a heuristic since *h* is a **generalized function** (distribution) rather than a true function.

- Framework for constructing natural couplings of multiple SLEs
- An SLE_{κ} for $\kappa \in (0,4)$ is a flow line η satisfying

$$\eta'(t)=e^{ih(\eta(t))/\chi},\qquad t>0,\,\eta(0)=z$$

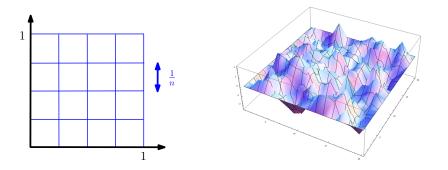
where $\chi = 2/\sqrt{\kappa} - \sqrt{\kappa}/2$ and *h* is the Gaussian free field.

- This definition is only a heuristic since *h* is a **generalized function** (distribution) rather than a true function.
- Theory developed by Dubédat and Miller-Sheffield.

The discrete Gaussian free field

• Hamiltonian H(f) quantifies deviation of f from being harmonic

$$H(f) = \frac{1}{2} \sum_{x \sim y} (f(x) - f(y))^2, \qquad f: \frac{1}{n} \mathbb{Z}^2 \cap [0, 1]^2 \rightarrow \mathbb{R}.$$



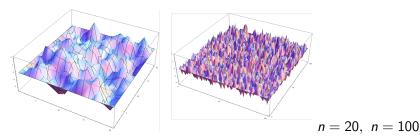
The discrete Gaussian free field

• Hamiltonian H(f) quantifies deviation of f from being harmonic

$$H(f) = \frac{1}{2} \sum_{x \sim y} (f(x) - f(y))^2, \qquad f: \frac{1}{n} \mathbb{Z}^2 \cap [0, 1]^2 \rightarrow \mathbb{R}.$$

- Discrete Gaussian free field
 - $h_n|_{\partial[0,1]^2} = g$ for given boundary data g,
 - prob. density rel. to prod. of Lebesgue measure prop. to

 $\exp(-H(h_n)).$



The discrete Gaussian free field

• Hamiltonian H(f) quantifies deviation of f from being harmonic

$$H(f) = \frac{1}{2} \sum_{x \sim y} (f(x) - f(y))^2, \qquad f: \frac{1}{n} \mathbb{Z}^2 \cap [0, 1]^2 \to \mathbb{R}.$$

- Discrete Gaussian free field
 - $h_n|_{\partial[0,1]^2} = g$ for given boundary data g,
 - prob. density rel. to prod. of Lebesgue measure prop. to

 $\exp(-H(h_n)).$

• If g also denotes the discrete harmonic extension of the boundary data and $z, w \in (0, 1)^2$ are fixed,

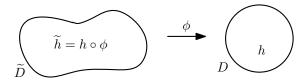
$$h_n(z) \sim \mathcal{N}(g(z), \log n + O(1)),$$

 $\operatorname{Cov}(h_n(z), h_n(w)) = \log |z - w|^{-1} + O(1)$

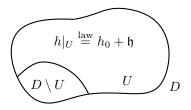
• The **Gaussian free field** (GFF) *h* is the limit of h_n when $n \to \infty$.

- The **Gaussian free field** (GFF) *h* is the limit of h_n when $n \to \infty$.
- The GFF is a random distribution (generalized function).

- The **Gaussian free field** (GFF) *h* is the limit of h_n when $n \to \infty$.
- The GFF is a random distribution (generalized function).
- Conformally invariant: $\tilde{h} = h \circ \phi$ has the law of a GFF in \tilde{D} .



- The **Gaussian free field** (GFF) *h* is the limit of h_n when $n \to \infty$.
- The GFF is a random distribution (generalized function).
- Conformally invariant: $\tilde{h} = h \circ \phi$ has the law of a GFF in \tilde{D} .
- Domain Markov property: For $U \subset D$ open, conditioned on $h|_{D \setminus U}$ the law of $h|_U$ is that of $h_0 + \mathfrak{h}$, where
 - h_0 is a zero-boundary GFF in U and
 - \mathfrak{h} is the harmonic extension of $h|_{\partial U}$ to U.



- The **Gaussian free field** (GFF) *h* is the limit of h_n when $n \to \infty$.
- The GFF is a random distribution (generalized function).
- Conformally invariant: $\widetilde{h} = h \circ \phi$ has the law of a GFF in \widetilde{D} .
- Domain Markov property: For $U \subset D$ open, conditioned on $h|_{D \setminus U}$ the law of $h|_U$ is that of $h_0 + \mathfrak{h}$, where
 - h_0 is a zero-boundary GFF in U and
 - \mathfrak{h} is the harmonic extension of $h|_{\partial U}$ to U.
- The GFF is uniquely characterized by conformal invariance and domain Markov property, plus a moment assumption (Berestycki-Powell-Ray'20).

Flow lines of the Gaussian free field

Goal: solve $\eta'(t) = e^{ih(\eta(t))/\chi}$, $\chi > 0$.

- (日)

Flow lines of the Gaussian free field

Goal: solve $\eta'(t) = e^{ih(\eta(t))/\chi}$, $\chi > 0$.

Natural approach which we will **not** take:

- Let h_{ϵ} be a regularized version of h.
- Solve $\eta'(t) = e^{ih_{\epsilon}(\eta(t))/\chi}$.
- Send $\epsilon \rightarrow 0$ and argue that η converges.

Flow lines of the Gaussian free field

Goal: solve $\eta'(t) = e^{ih(\eta(t))/\chi}$, $\chi > 0$.

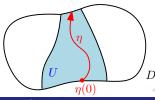
Natural approach which we will **not** take:

- Let h_{ϵ} be a regularized version of h.
- Solve $\eta'(t) = e^{ih_{\epsilon}(\eta(t))/\chi}$.
- Send $\epsilon \rightarrow$ 0 and argue that η converges.

Instead we ask: Inspired by the case when h is smooth, which properties is it natural to require that η satisfies?

Examples:

- Locality: To determine whether $\eta \subset U$ it is sufficient to observe $h|_U$.
- Coordinate changes (next slide).



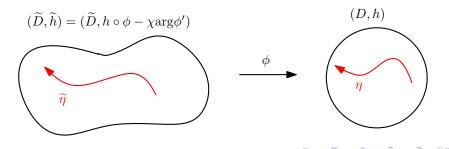
Coordinate change

Suppose h is smooth and η solves

$$\eta'(t) = e^{ih(\eta(t))/\chi}.$$

Then $\widetilde{\eta}(t) := \phi^{-1}(\eta(t))$ solves

 $\widetilde{\eta}'(t) = e^{i\widetilde{h}(\widetilde{\eta}(t))/\chi}, \qquad \widetilde{h}(z) := h(\phi(z)) - \chi \arg \phi'(z).$



N. Holden (ETH-ITS Zürich)

Coordinate change

Suppose h is smooth and η solves

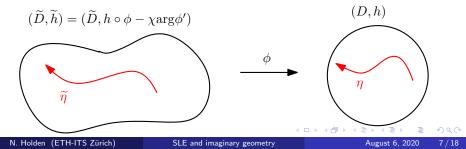
$$\eta'(t) = e^{ih(\eta(t))/\chi}.$$

Then $\widetilde{\eta}(t) := \phi^{-1}(\eta(t))$ solves

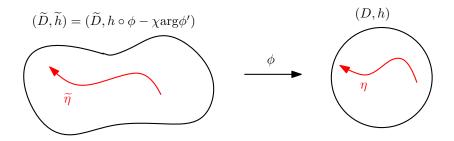
$$\widetilde{\eta}'(t) = e^{i \widetilde{h}(\widetilde{\eta}(t))/\chi}, \qquad \widetilde{h}(z) := h(\phi(z)) - \chi \arg \phi'(z).$$

Proof by chain rule with $\psi = \phi^{-1}$:

$$\widetilde{\eta}'(t) = rac{d}{dt}(\psi\circ\eta(t)) = \psi'(\eta(t))\eta'(t) = \psi'(\eta(t))e^{ih(\eta(t))/\chi} = e^{i\widetilde{h}(\eta(t))/\chi}.$$



Coordinate change



We say that (D, h) and $(\widetilde{D}, \widetilde{h})$ are **equivalent**.

 $(D,h) \stackrel{\phi}{\equiv} (\widetilde{D},\widetilde{h}).$

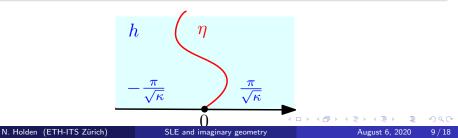
Note! The equivalence relation also makes sense for h not smooth.

Theorem (Dubédat'09, Miller-Sheffield'16)

- For κ > 0, the GFF h determines a curve η with the law of an SLE_κ on (ℍ, 0, ∞) such that the following hold.
- **2** Locality: The event $\eta \cap U = \emptyset$ determined by $h|_{\mathbb{H} \setminus U}$ for $U \subset \mathbb{H}$ open.
- Coordinate change and domain Markov property: For any stopping time τ for η define h^τ such that the following holds

$$(\mathbb{H}\setminus {\mathcal K}_{ au}, h|_{\mathbb{H}\setminus {\mathcal K}_{ au}})\stackrel{g_{ au}}{\equiv} (\mathbb{H}, h^{ au}).$$

Then the conditional law of h^{τ} given $\eta|_{[0,\tau]}$ is equal to the law of h.

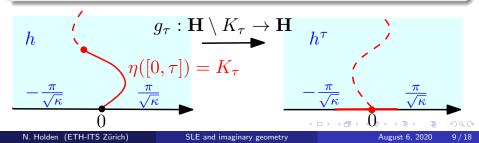


Theorem (Dubédat'09, Miller-Sheffield'16)

- For κ > 0, the GFF h determines a curve η with the law of an SLE_κ on (ℍ, 0, ∞) such that the following hold.
- **2** Locality: The event $\eta \cap U = \emptyset$ determined by $h|_{\mathbb{H} \setminus U}$ for $U \subset \mathbb{H}$ open.
- Coordinate change and domain Markov property: For any stopping time τ for η define h^τ such that the following holds

$$(\mathbb{H}\setminus \mathcal{K}_{ au},h|_{\mathbb{H}\setminus \mathcal{K}_{ au}})\stackrel{g_{ au}}{\equiv}(\mathbb{H},h^{ au}).$$

Then the conditional law of h^{τ} given $\eta|_{[0,\tau]}$ is equal to the law of h.



Theorem (Dubédat'09, Miller-Sheffield'16)

- For κ > 0, the GFF h determines a curve η with the law of an SLE_κ on (ℍ, 0, ∞) such that the following hold.
- **2** Locality: The event $\eta \cap U = \emptyset$ determined by $h|_{\mathbb{H}\setminus U}$ for $U \subset \mathbb{H}$ open.
- Coordinate change and domain Markov property: For any stopping time τ for η define h^τ such that the following holds

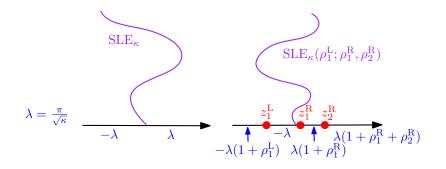
$$\mathbb{E}[\mathbb{H}\setminus \mathcal{K}_{ au},h|_{\mathbb{H}\setminus \mathcal{K}_{ au}})\stackrel{g_{ au}}{\equiv}(\mathbb{H},h^{ au}).$$

Then the conditional law of h^{τ} given $\eta|_{[0,\tau]}$ is equal to the law of h.

Proof idea:

- Construct a coupling (h, η) satisfying variants of 2. and 3.
- **2** Prove that in this coupling h determines η .

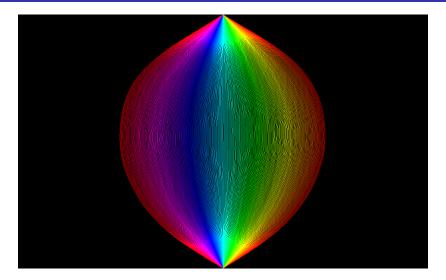
Flow lines with piecewise constant boundary data: $SLE_{\kappa}(\rho)$



- SLE_κ(<u>ρ</u>) with <u>ρ</u> = (ρ^L₁,..., ρ^L_{n_L}; ρ^R₁,..., ρ^R_{n_R}) are variants of SLE_κ with force points at (z^L₁,..., z^L_{n_L}; z^R₁,..., z^R_{n_R}) which are either repulsive (ρ^L_j, ρ^R_j > 0) or attractive (ρ^L_j, ρ^R_j < 0).
- Can also be defined easily with Loewner chains by modifying the driving function.

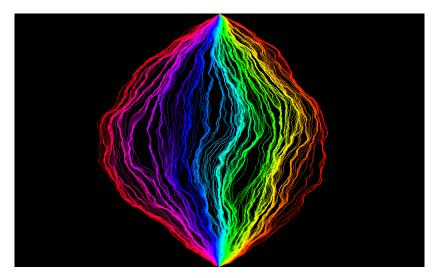
N. Holden (ETH-ITS Zürich)

August 6, 2020 10 / 18



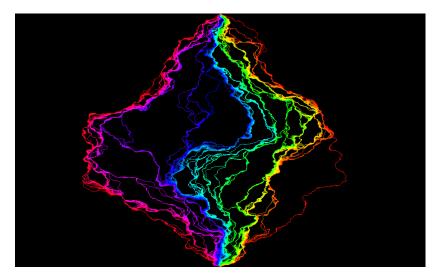
Flow lines of $e^{i(h/\chi+\theta)}$ for $\theta \in [-\pi/2,\pi/2]$, $\kappa = 1 \not= 4096$

N. Holden (ETH-ITS Zürich)



Flow lines of
$$e^{i(h/\chi+ heta)}$$
 for $heta\in [-\pi/2,\pi/2]$, $\kappa=1/16$,

N. Holden (ETH-ITS Zürich)

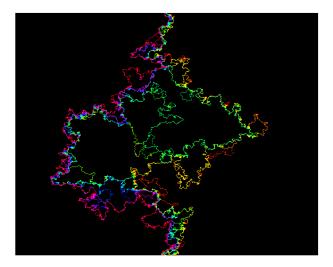


Flow lines of
$$e^{i(h/\chi+\theta)}$$
 for $\theta \in [-\pi/2, \pi/2]_{\mathbb{H}} = \pi/2$

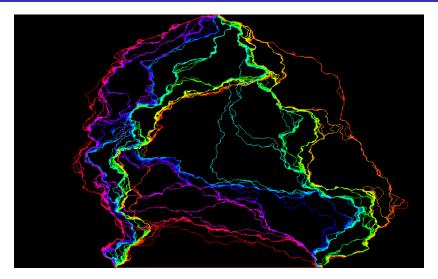
N. Holden (ETH-ITS Zürich)

SLE and imaginary geometry

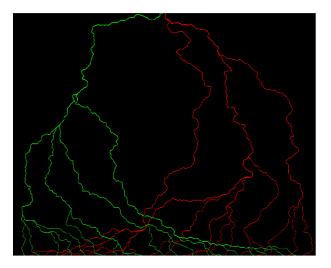
August 6, 2020 11 / 1



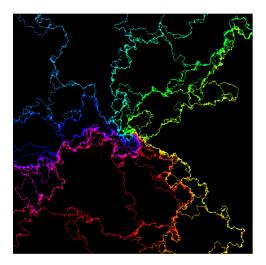
Flow lines of
$$e^{i(h/\chi+\theta)}$$
 for $\theta \in [-\pi/2, \pi/2]$, $\kappa = 2$



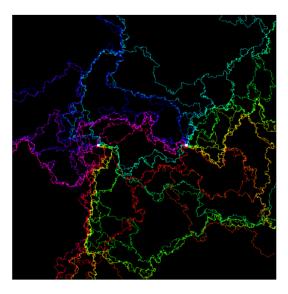
Flow lines of $e^{i(h/\chi+\theta)}$ for $\theta\in [-\pi/2,\pi/2]$, $\kappa=1/2$, two starting points



Flow lines of $e^{i(h/\chi+\theta)}$ for $\theta = \pi/4$ (green) and $\theta = -\pi/4$ (red), $\kappa = \frac{1}{2}/2$

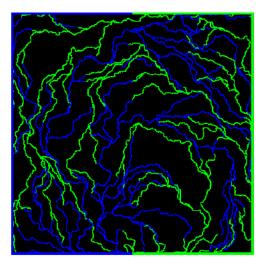


Flow lines of $e^{i(h/\chi+\theta)}$ for $heta\in[0,2\pi)$, $\kappa=4/3$, started from interior point



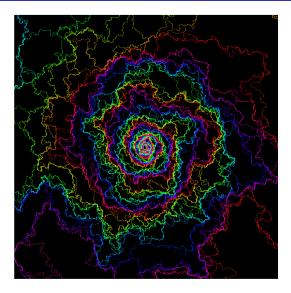
Flow lines of $e^{i(h/\chi+\theta)}$ for $\theta \in [0, 2\pi)$, $\kappa = 4/3$, started from two interior $\kappa \in 0$

N. Holden (ETH-ITS Zürich)



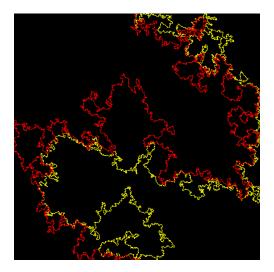
Flow lines of $e^{i(h/\chi+\theta)}$ for $\theta = \pi/2$ (blue) and $\theta = -\pi/2$ (green), $\kappa = 1/2$, started from 100 uniformly chosen points and $\kappa = 1/2$, so $\kappa = 1/2$,

N. Holden (ETH-ITS Zürich)



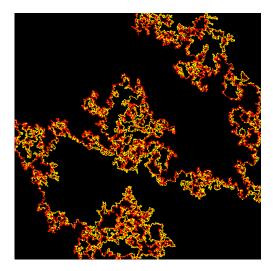
Flow lines of $e^{i(h/\chi+\theta)}$ for $\theta \in [0,2\pi)$ and $h = \mathsf{GFF}_{\theta}$, $\mathsf{Slog}|z|_{\theta}$,

N. Holden (ETH-ITS Zürich)



Flow lines of
$$e^{i(h/\chi+ heta)}$$
 for $heta=\pm\pi/2$, $\kappa=3$

Simulations



Flow lines of $e^{i(h/\chi+\theta)}$ for θ varying and piecewise constant $\pm \pi/2$, $\kappa = 3$. The union of these flow lines have the law of SLE_{16/3}!

N. Holden (ETH-ITS Zürich)

SLE and imaginary geometry

August 6, 2020 11 / 18

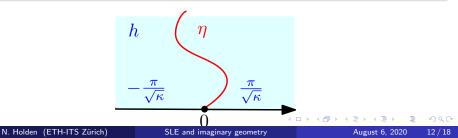
Recall: SLE as a flow line of the GFF

Theorem (Dubédat'09, Miller-Sheffield'16)

- For κ > 0, the GFF h determines a curve η with the law of an SLE_κ on (ℍ, 0, ∞) such that the following hold.
- **2** Locality: The event $\eta \cap U = \emptyset$ determined by $h|_{\mathbb{H} \setminus U}$ for $U \subset \mathbb{H}$ open.
- Coordinate change and domain Markov property: For any stopping time τ for η define h^τ such that the following holds

$$(\mathbb{H}\setminus {\mathcal K}_{ au}, h|_{\mathbb{H}\setminus {\mathcal K}_{ au}})\stackrel{g_{ au}}{\equiv} (\mathbb{H}, h^{ au}).$$

Then the conditional law of h^{τ} given $\eta|_{[0,\tau]}$ is equal to the law of h.



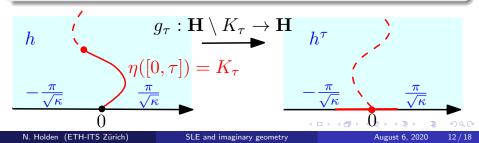
Recall: SLE as a flow line of the GFF

Theorem (Dubédat'09, Miller-Sheffield'16)

- For κ > 0, the GFF h determines a curve η with the law of an SLE_κ on (ℍ, 0, ∞) such that the following hold.
- **2** Locality: The event $\eta \cap U = \emptyset$ determined by $h|_{\mathbb{H} \setminus U}$ for $U \subset \mathbb{H}$ open.
- Coordinate change and domain Markov property: For any stopping time τ for η define h^τ such that the following holds

$$(\mathbb{H}\setminus {\mathcal K}_{ au}, h|_{\mathbb{H}\setminus {\mathcal K}_{ au}})\stackrel{g_{ au}}{\equiv} (\mathbb{H}, h^{ au}).$$

Then the conditional law of h^{τ} given $\eta|_{[0,\tau]}$ is equal to the law of h.



Recall: SLE as a flow line of the GFF

Theorem (Dubédat'09, Miller-Sheffield'16)

- For κ > 0, the GFF h determines a curve η with the law of an SLE_κ on (ℍ, 0, ∞) such that the following hold.
- **2** Locality: The event $\eta \cap U = \emptyset$ determined by $h|_{\mathbb{H}\setminus U}$ for $U \subset \mathbb{H}$ open.
- Coordinate change and domain Markov property: For any stopping time τ for η define h^τ such that the following holds

$$(\mathbb{H}\setminus K_{ au},h|_{\mathbb{H}\setminus K_{ au}})\stackrel{g_{ au}}{\equiv}(\mathbb{H},h^{ au}).$$

Then the conditional law of h^{τ} given $\eta|_{[0,\tau]}$ is equal to the law of h.

Proof idea:

- **(**) Construct a coupling (h, η) satisfying variants of 2. and 3.
- **2** Prove that in this coupling *h* determines η .

Constructing a coupling of GFF and SLE

Proposition

- **1** There is a coupling of a GFF h and an $SLE_{\kappa} \eta$ s.t. the following hold.
- Solution 2. Solution $P[\eta \cap U = \emptyset | h]$ is a function of $h|_{\mathbb{H} \setminus U}$ for $U \subset \mathbb{H}$ open.
- Coordinate change and domain Markov property: For any stopping time τ for η define h^τ such that the following holds

$$(\mathbb{H} \setminus K_{\tau}, h|_{\mathbb{H} \setminus K_{\tau}}) \stackrel{\mathsf{g}_{\tau}}{\equiv} (\mathbb{H}, h^{\tau}).$$

Then the conditional law of h^{τ} given $\eta|_{[0,\tau]}$ is equal to the law of h.

- Let η be an SLE_{κ}; let \mathfrak{h}_t denote the harmonic extension of h from $\partial(\mathbb{H} \setminus K_t)$ to $\mathbb{H} \setminus K_t$ if proposition holds.
- Loewner equation and Itô calculus give that for each fixed z ∈ H, the process h_t(z) is a local cts martingale with explicit quadratic variation.
- Same statement for (\mathfrak{h}_t, ϕ) instead of $\mathfrak{h}_t(z)$ until $K_t \cap \operatorname{supp}(\phi) \neq \emptyset$.
- $(\mathfrak{h}_{\tau} + \widetilde{h})|_{V} \stackrel{d}{=} h|_{V}$ if $K_{\tau} \cap V = \emptyset$ a.s., where \widetilde{h} is 0-bdy GFF in $\mathbb{H} \setminus K_{\tau}$.
- Extend coupling to multiple stopping times τ of η and domains V.

What are the values of h along η ?

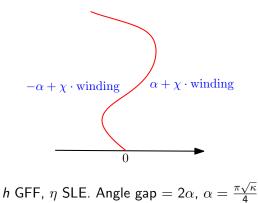
Recall: $\eta'(t) = e^{ih(\eta(t))/\chi}$. 1-----1-1/-1/1/1/1/----/// 1-/1--+/----11-21111111122-11-1 X111122211 XXX21X 1111----////////// 11-----110----/////-// 1111----/////-// 1-11-2111111122-11-1 11-11/2----/11-1 1-11-11-1111111111 +1/-1/--111111-11-/1-/1

 $h(z) = |z|^2$. On η : $h = \chi$ winding (mod $2\pi\chi$).

N. Holden (ETH-ITS Zürich)

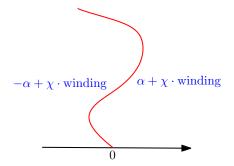
What are the values of h along η ?

Recall: $\eta'(t) = e^{ih(\eta(t))/\chi}$.



What are the values of h along η ?

Recall: $\eta'(t) = e^{ih(\eta(t))/\chi}$.

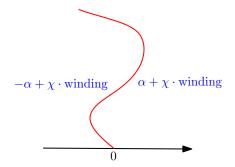


h GFF, η SLE. Angle gap = 2α , $\alpha = \frac{\pi\sqrt{\kappa}}{4}$

SLE has infinite winding, but harmonic extension of bdy data well-defined.

What are the values of h along η ?

Recall: $\eta'(t) = e^{ih(\eta(t))/\chi}$.



h GFF, η SLE. Angle gap = 2 α , $\alpha = \frac{\pi\sqrt{\kappa}}{4}$

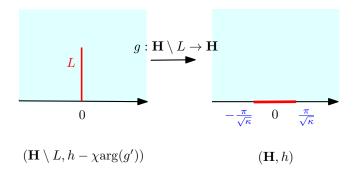
SLE has infinite winding, but harmonic extension of bdy data well-defined. Case $\kappa = 4$, $\chi = 0$: SLE₄ level lines of GFF (Schramm-Sheffield'09)

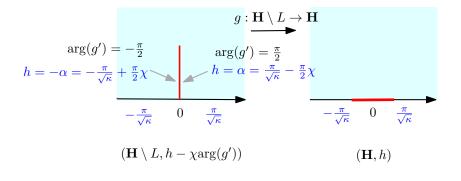
N. Holden (ETH-ITS Zürich)

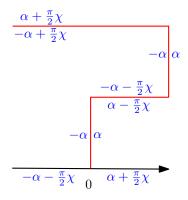
SLE and imaginary geometry

August 6, 2020 14 / 18

Domain Markov property (with L instead of η): Conditioned on L, $h^{\tau} \stackrel{d}{=} h$.



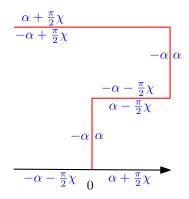




Left: $-\alpha + \chi \cdot \text{winding.}$ Right: $\alpha + \chi \cdot \text{winding.}$ Angle gap $= 2\alpha = \frac{\pi \sqrt{\kappa}}{2}$.

- 34

く伺 とく ヨ とく ヨ とう

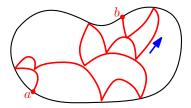


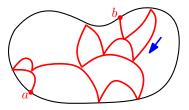
Left: $-\alpha + \chi \cdot \text{winding.}$ Right: $\alpha + \chi \cdot \text{winding.}$ Angle gap $= 2\alpha = \frac{\pi \sqrt{\kappa}}{2}$.

N. Holden (ETH-ITS Zürich)

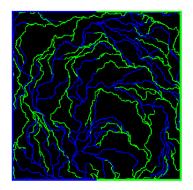
- 本間 と く ヨ と く ヨ と 二 ヨ

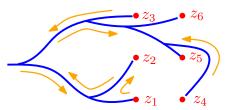
• reversibility of SLE_{κ} for $\kappa \in (4, 8)$ (Miller-Sheffield'16)





reversibility of SLE_κ for κ ∈ (4,8) (Miller-Sheffield'16)
space-filling SLE_{16/κ} for κ ∈ (0,4) (Miller-Sheffield'17)

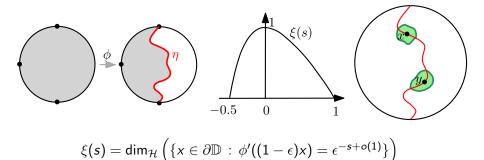




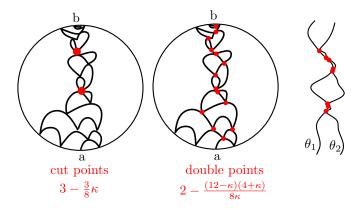
The space-filling SLE_{16/ κ} visits the points in this order: $z_1, z_2, z_5, z_4, z_6, z_3$

Left: Flow lines of $e^{i(h/\chi+\theta)}$ for $\theta = \pi/2$ (blue) and $\theta = -\pi/2$ (green), $\kappa = 1/2$, started from 100 uniformly chosen points

- reversibility of SLE_{κ} for $\kappa \in (4, 8)$ (Miller-Sheffield'16)
- space-filling SLE_{16/ κ} for $\kappa \in (0, 4)$ (Miller-Sheffield'17)
- multifractal spectrum of SLE_{κ} (Gwynne-Miller-Sun'18)

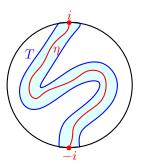


- reversibility of SLE_{κ} for $\kappa \in (4,8)$ (Miller-Sheffield'16)
- space-filling SLE_{16/ κ} for $\kappa \in (0, 4)$ (Miller-Sheffield'17)
- multifractal spectrum of SLE_{κ} (Gwynne-Miller-Sun'18)
- double and cut point dimension of SLE_{κ} (Miller-Wu'17)



N. Holden (ETH-ITS Zürich)

- reversibility of SLE_{κ} for $\kappa \in (4,8)$ (Miller-Sheffield'16)
- space-filling SLE_{16/ κ} for $\kappa \in (0, 4)$ (Miller-Sheffield'17)
- multifractal spectrum of SLE_{κ} (Gwynne-Miller-Sun'18)
- double and cut point dimension of SLE_{κ} (Miller-Wu'17)

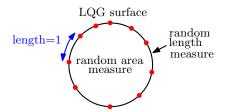


_emma

 $\mathbb{P}[\eta \subset T] > 0$ for η SLE $_{\kappa}$ on $(\mathbb{D}, -i, i)$

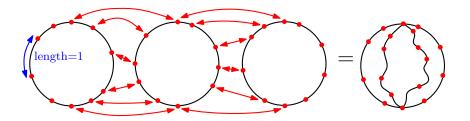
- η flow line of GFF *h* in \mathbb{D} .
- η abs. cts. w.r.t. η̃ since h|_T abs. cts.
 w.r.t. h̃ away from ∂T.

- reversibility of SLE_{κ} for $\kappa \in (4, 8)$ (Miller-Sheffield'16)
- space-filling SLE_{16/ κ} for $\kappa \in (0, 4)$ (Miller-Sheffield'17)
- multifractal spectrum of SLE_{κ} (Gwynne-Miller-Sun'18)
- double and cut point dimension of SLE_{κ} (Miller-Wu'17)
- conformal welding of Liouville quantum gravity (LQG) surfaces (Duplantier-Miller-Sheffield, ...)



- reversibility of SLE_{κ} for $\kappa \in (4,8)$ (Miller-Sheffield'16)
- space-filling SLE_{16/ κ} for $\kappa \in (0, 4)$ (Miller-Sheffield'17)
- multifractal spectrum of SLE_{κ} (Gwynne-Miller-Sun'18)
- double and cut point dimension of SLE_{κ} (Miller-Wu'17)
- conformal welding of Liouville quantum gravity (LQG) surfaces (Duplantier-Miller-Sheffield, ...)

- reversibility of SLE_{κ} for $\kappa \in (4,8)$ (Miller-Sheffield'16)
- space-filling SLE_{16/ κ} for $\kappa \in (0, 4)$ (Miller-Sheffield'17)
- multifractal spectrum of SLE_{κ} (Gwynne-Miller-Sun'18)
- double and cut point dimension of SLE_{κ} (Miller-Wu'17)
- conformal welding of Liouville quantum gravity (LQG) surfaces (Duplantier-Miller-Sheffield, ...)



- reversibility of SLE_{κ} for $\kappa \in (4, 8)$ (Miller-Sheffield'16)
- space-filling SLE_{16/ κ} for $\kappa \in (0, 4)$ (Miller-Sheffield'17)
- multifractal spectrum of SLE_κ (Gwynne-Miller-Sun'18)
- double and cut point dimension of SLE_{κ} (Miller-Wu'17)
- conformal welding of Liouville quantum gravity (LQG) surfaces (Duplantier-Miller-Sheffield, ...)

• ..

Thanks for attending!

э