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t Bases SamplingIlgonthms
G N E finite connectedgraph

TCG set of spawningtrees of G
connected subgraphs of G
containing every

vertex and
no cycles

Uniform spanning thee Uniform
random element

of TCG
Turns out to be a

very interesting object
with

connections to
many

other tops

A statBtral mechanics model that is both
non trivial and crelatively tractable

Schramm

Development of SLE Lawler Schrammand
Werner

3d scalin limits Kozma
G Angel Gayden Hernandez Torres

Shiraishi



Sampley algorithms

1 MCMC G N E finite
Define a Markov drain XT on V T as follows

X is a random walk
Given Tn and Xn Xun define Tnt by
adding 9Xn Xn then breaking the cyclexant

Tn Tut
E w w
s f Breathyk
U X at Xvi
1 in xnM

ntl

S

tfRn Xm CTn Tna Tn

MarkovChamTreeTheorem
TL UST is the unique stationery measure

farythe OST chain

stationary measure for SRW



2 Aldous Broder Algorithm
Connected

V E finite Xn no
random

walk on G

ear X oriented edge crossed by X as it
enters u for first tirenot defined for u Xo

AB X ear XIE u 03
reversal

Thm Broder 1989 Aldous 1990 G finite connected
X random walk started at u Then ABCXI
is distributed as a OSTof G oriented towards u

Proof sketch XD nez doubly a

SRW X o
TL

Each last edge used to exit u before time n

en v first edge used to enter v after time u

Defined fr v f Xn



I 1
Observation

Xn edu VF XD evolves as 051

Stationary MCTT
Chain

4 by construction

Xn ends XD TI OST
f by reversibility

aXn each Vt XD

Corollary Paths in the 05T are distributed

as loop erased random walks

LERW Let X Xn either have Nsa
or be transient visit each vetex at most

finitely often

O Ent It Sup iz en Xi Xen
Stop when Xen Xn



LEN Xo Xa Xen
erase loops chronologically as they
are created

t F

et E

In AB X path Xo V

is equal to LE Xiu

hitting
timetreversal



f
XoHh

Fact Lawler LECH 49 LECH'T

Corollary
B p w.no hold

3 Wilson's Algorithm
Enumerate No Vi if

To 943,0
Guen Tu let X be a random walk

started at Van e stopped when
it hits vertex set of Tn

Tnt Union of Tn with loop erasure of X



Thin Wilson TN UST

V

o

vo.ve Apply corollary

again
Conditional disk of

f v path frm Vio
P is LERW

LERW
in Glp

Same thing as LERW in Gfrank top



y

Markov
properly of 051

Conditional distr of T UST Given
A ET Tn 13 0
E A U ST of 9

9delete B contract A

There is also a strong spatial Markov
property

Say that a rancher set k EE
defined an same probability space as T

B a local set if
KEW is measwable wa o Thr

f WEE

E g K path connecting u and v



Conditional on K and TIK
T n ko 0 COST of

G

T closed
openedges edges
ink in K

Wilson's algorithm follows by earlier
corollary

t induction 1

2 Infinite volume limits and the
connectivity1dBconnectivity transition

G locally finite connected
grapheeg zagtall degreesfinite

Vn nzz
exhaustion of V by finiteconnected sets

n
E Van E Un Un V



Gn subgraph
induced by Vn

Git Contract V Un to a single vertex On

T G n

v

GE
x

tree Uniform Spanning Forest
in the limit

Weak limit of OSTs ofGg
Wired Uniform Spanning Forest

Weak limit of 05Ts of 6

Both limits existand one independent of the exhaustion
Pemantle 91



Them For Bd FUS F WUSF
Generally FUSF WOSF F nonconstanthumour h V R

Wilson's
algorithm

rooted sat'FiEifiiEijt
In particular if

Benjamin Lyons Peres Schramm Gisanameable
transitivegraph then
FOSF WUSF

G infinite transient f 24 K 3 T
G CagleyTFOSF W

Fo empty forest
with no vertices of7 T3

edges ECM HEdrosecidl defy
2

Given Fn let X be a random walk
started at Unt and stopped when it hits vertex
set of Fn running forever if this never
happens

Let Fn Fn U LECX
Then F Una Fn WUSF



ConnectivityIDisconnectivity

Key observation When
running

Wilson's

algorithm a new component is formed exactly
when XM does not hit Fn

Tha Pemanthe 91 The USE ofBd is
connected when dE4 and has so

many
components when I 4

Thin Erdos Taylor 604 Two simple
random walks an odd intersect infinitely often
as when d c 4 and at most finitely often
a s when d 4



High dimensional part of Erdos Taylor is
easy

X Y random walks started at x y t Dd

E l n m o.o Xi Yuk

Fm Eeza pixel puja
Enzo Pnm Xy KH Pk Xy

Classical estimate pkcx.gl
un ta e

E l n m zo X Yuh k IlX yH
d 4

when do 4

Also shows that this expectation is infinite
when d E 4



Low dimension part X Y both start at 0

IN I oen.me N Xi Yu31

Calculation we ust did showsthat

EIN Em pn.mio.nu YogId

In particular E Inn when de4

On the otherhand letting gnlxiys E.p.my

EIN E gnloxlgncxystgnloiybncy.in

q

E gnloixigncxyitgncayisncaxi

4EG.iox5gn lay5 4 In



Paley Zygmunt

Rl Inst EI n z I it
Since EIN co as N soo Fatou implies

RCI ol z knsup PICINZEEIN 246
Hewitt Savage 0 1 law implies I 03 is
a O 1 event D

High d pot of Pemanthe
start k RWs all far away fromeach other Then none of these
walks intersect each other whp

USF has at least K components

whp



Low d part
transient

Tha Lyons Peres Schramm LettyY
be randan walks on somegraph

Then

RCYNLECXHOlzzta.PL 4M 01
Moreover if X andY intersect i o a s

then so do Yard LECX

Exercise Let A C 23 be an co connected

set Prove that SRW on 423
intersects A infinitely often almost surely



3 One endedness via interlacement
Aldous Broder

A tree is said to be one ended

if it does not contain a bi infinite simple path

Thm BLPS Every tree in the USE
of Rd is one ended a s for every dq

2

We'll provethed 3 Case
There are now

many proofs
available

applying
at different levels of generality
Iwill show an unpublished proof that leads

naturally to the critical exponent calculations
in high d

NB OrientedWUSF Orient the UST ofGE
towards on before taking
limit

Oriented version of Wilson's algorithm



tune Enuff Yoteotientfedaspaath
O tr emanating from it

called

Ein the future of a

ry ve future of a
past of 0 u c past of v

Future distributed as LERW

by Wilson
One endedness Evey vortex

has

finite past
Critical exponents E g
R 1Past zn z n

k

R Past reaches distance r E r s

ftp.jlllahaere much more to say
about



3.1 The Interlacement Aldous Broder
algorithm

Random interlacements

Introduced by Santman

Poissonian soup of doubly infiniterandom
walk trajectories

Let 6 be an a locally finite graph
Foreach N E N EM E ta let

Wcn m set of transient paths in 6
indexed by thin

visits each vertex at
most finitely often

WE me
WH m set of all transient paths



TheIopdoggonI
For each K EV finite letWk E W
be set of paths hitting k

For each w EW k let wk
be the portion

of W between first and last visits to k
The topology on W is generated by the subbasis

of open sets

we W we Wk w Wh kwefwY.fm't

stronger than
This is to the product topology

This topology makes W into a Polish space

First and last hitting times local times at
vertices evaluation at a time all continuous



W Wlr where w wz if 3K St Whit WzCitKl Vi

W is equipped with the quotient topology
which makes it a Polish spae

Elements of W are called trajectories

The random interlacement process is a Poisson

point process on W
xq
time



Intensity
For each WE War ml define w C Wtm n

to be the reversal of w w Ci Wti

For each KEV finite define a measure Qk
W

barbitrary
Borel subsets of W

IVft
Qklwk.ggEA who EB was u

the
kkkguipulXEA.IE

a
RyuHEB

lawof512W
positive

hitting time

at V and A BEN Borel



I W W projection

WE IT Nk trajectories visiting K

Thin Sznitman Texeira Go locally finite
transient Then there exists a unique

locally finite measure Q an W such that

Q fAnW Qk it CAD
forevery AEW and KEV finite

Q interlacement
intensitymeasure

Deff The random interlacement process on G is

the Poisson point process on W 42 with

intensity
Lebesgue



The limiting construction

G V E n locally finite transient

UVn exhaustion by finite sets

Got defined as before w boundaryvertexon

Take an intensity degon
Poisson

point process on Rl

For each time t in the process let
Wt be a random walk exarsen from
On to itself which we consider as an

element of W



Get a randan set

In Wt t E W x R

Prof In converges weakly to the randominterlacement process on G

In other wads
Take doubly a SRW on Gi
Breakup into excursions from the boundary

Apply Passonian time change Scale
time in such a way

that we

get a non degenerate limit

Interlacement a local
picture of SRW

on the time scale
that it covers the
graph



The interlacement Aldous Broder algorithm

G CV E so locally finite transitive
graph

transient

1 random interlacement process on G

For each ve V and E R

Otcul First timeafter time t that v
is hit by a

trajectory Wow

etch Oriented edge traversed by Wga
as it enters u for the first time

Then LH 2015

ABHI etch vets
is distributed as the oriented wired uniform

spanning forest for each te R



ABT In USTof Gn
by usual Aldous Broder

STP ABHI I ABHI
Although ABE W xR 90,1 is
not continuous its has enough continuity properties
to
prove this by standard

arguments portmanteau
theorem

ABHI Deetz is a stairway

ergodic stochastically
continuous Markov process

with stationary measure OWUSE

This dynamical viewpoint will be of central
importance to our analysis of the WBF in

high dimensions



Tiepast of a vertex evolves in a nice way
undwtfdg.name

Ft ABHI Pt in pastof Vin Fe
As t decreases new trajectories arrive and overwrite

what was there previously

i

t
i



Its t
vertices hit in Est

Lemma If Vf Ies t then

Pslv component of V in Pth Its.tt

teettheufumeV Iduktafgttukfftlhku.EUhi

Ot FtCali is decreasing in i

Fsu and Fela agree until theyreach a vertex with os v Ct

After this step every
element of Fsln

has Os et

x
h

k
k



Interlacement
hitting probabilities the

capacity
Let K E V be finite The set of times
in which K is visited by an interlacement

trajectory is a Poisson process with intensity

Q WIE Q K W

Dega Ruthie o

k

This
quantity is known as the

sapacIy or conductance to infinity of K

Q WEI CapCk Ee K a

The theory of electrical networks gives
many ways

to compute 1 estimate this
quantity



Eg Newtonian
capacity for'ffalantffrey 737

Cap K
t

gy
The Greensfunction gcuit zopncu.us

int 2 LeftMatias Tea PIE

For 724 guy a Hxyn
dt2

Capek
t
F ftp.jkllx yH

d

Ball is worst case

Cap K Ik I
dYd

cf isoperimetricalequality 10kt Htt



Quantitative one endedness on 29 d 3

Pe N n Vermes in the past of u with
intrinsic distance at most a

t the graph metre or Ft

dptcv.nl PewM Pewn t

theorem Let dz3 and consider the OSF
of Rd Then

RcdPoco n 0 E Claffid aid

Corollary Evey tree is one ended a s

Similar theorem due to Lyons Morris Sc
qg

Suboptimal result with simple proof



The mass transport principle

If F 724 24 top satisfies

F X y
FLEEytZ t x y z then

FLO XI EF exo

E g EIOP.com1 1 for all n

Foxy Rly c OPocxin
2 Flo X LF IdPoco nd

2 x ol Et IE x oeopocx.MX L

Only one such x n steps

o

in the future of 0



Proof Theory
Ole

RCOP.com01LEPl0ol0lEEltPCOoL07sE OPoloMH0
Second term If

pp
Pe Om 0 and I a eodesic

µ
OO
701310in that is not it Ieo.es

Bg lemma

µ
Po om 0 and F a eodesic
OO
sopolon that is not in Ife

c E u utopians path from u to
0 not in Tree o

EE 2
utopian

E Kap
0

ooh



E e
CE nd

nd
L

Etf u uc OP.com

Fo and I ee o independent hitting contollecdapabyay

So R dPoco n O e CE f e
een

Take E C n
d H

tog n C large
claim a

This proof can be made to work for e.g all
transient

transitive graphs recovering
a result of Lyons Morris and

Schramm

To improve this inequality we will need a

better understanding of the Capacity of LERW

R Past n 21 Er.ru Ertz
0



4 Critical exponents for d 4

41 bigpicture
General picture for critical stat mech models

Tails of interesting random variables governed
by power laws Exponent should depend on

dimension but not chore of lattre

Eg
critical percolation

Ppc 1Cluster of origin I z n a n lo tout

There is an upper central
dimension above

what the exponents stabilize at Chear
meanfield values

Mean field c same behaviour as an

complete graph binary tree
terminology comes from field theories litekingmodel



Mean field behaviour means that having a local interactor

e REIT behave
similarly to e B'Fox hits

For percolation do 6

njeXg n
5191 de

n odd 3Ed E5
Rpflkoknt fnn

hzlognddt.io
1 2 understood fr site perc or triangular lattre

Smirnov Lawler Schramm Werner Kersten

dumb Han Slade 90

3 Ed a 6
totally open

For the UST da 4



Theorem H 2018 tf dis
R Ol lo n 0 In

Theorem HdSousi 2020T when d 4

R dPoco n 0 k
s

Can derive other related exponents
once these are known

d 4 relies on analysis of 4d LERW
due to Lawler

lfenlasteddreuesults an scaling limit of 051of
Peres Revelle 2004 des
Schweinsberg 2009 d 4

In both cases there is convergence to the CRT
but the scaling is different in4d



y

Ideas from our high d proof havealso been
used to analyze the diameter of the 05h
or finite high d graphs by Michael Nachmas

Shalev 4019

Lower bounds in high dimensions

Tate de5 and let I be the interlacement
process on 429

Thm R dPoco n 0 z En

0 is hit by a unique trajectory in o E
with probability Y In

With constant probability the parts ofthe trajectory before and after hitting 0 are

disjoint
By Erdos Taylor Needs d 5

Boa weART
Becomes O

S PART

BEpggmgyes.in



If this were the only trajectory
the past of 0 would be infinite

If we apply Aldous Broder to
W we get a tree in which the pastof 0
B infinite

let me
be an infinite simple path

in the past of 0 in ABN

One can prove that q is unique
and is distributed as a conditioned LERW
but we won't need this for now

The forest Fo includes the part of
N up until the first vertex that
fyfifitedw.by

a
trajectory that arrived

By the splitting property of Poisson
processes the first n steps of n



are not hit by any earlier trajectorywith prob at least

e
En Cap First n steps of 2 z d so

Cap A EadeganRaetiaat
IAI

So we've shown that in high dimensions

R d Poco n 0 I 0 hit in to In3 z c o

and hence

R OPoco.nl 0 In as claimed 4

Same
strategy gives

correct answer in
23 24 but is more difficult to implement
rigorously

Two competing effects

Capacity of a step LERWgrows subliary
Probability two randan walks don't interfettays



In 4d
capacity of a step LERW K

y yes
Lawler
PCsRW avoids an ustep LERW K Hogg s

Take E k 5

get
RCOPoco.nl 0 EdoEBdgtnyis

dogn
s

To do this properly one needs to know
not just the typical order of the capacity
but to have good enough concentration that
the large capacity bad event has negligible probability



Upper bounds when des
Want to prove Q n R dPoco n t 0 E En

Suffices to prove inducequality
Q 2n E En t E QCn

T c th
Similarly a last time f OG

Q 2h E R Oo o E E t

UE OPe lo n path from
E u

YingFEI YI'I

O v

It insteps



Bound by High capacity and how capacity
terms

UE OPe Con path from
E u no

Faith

E e
Eon E u utopecois

and opeCain 03

v

Q n by mass

transport

E u UE dPe Con Ope Cain 0
and cap corn

a son

HA
opo co n and firstR n steps of future

have Capton



Suppose we can show that if 8 is sufficientlysmall then
y e ly Q LM

Then we get
Q 2n e CE t e

Eon
Q n t

g Q CN
Iog 8Take 8 small E

7 Done



Th
capasity of SRW LERW

Cap A 2 degas Rukia o

X first n steps of
random walk

on Rd

How does Cap grow

adf.iq nE I.non nterseanm
probabilities

E Cap Xn

2dm R Yafferoesfinehit Xm uz my



Erdos Taylor
LFCap Xn K h when dz5
Lawler

E Cap Xn K Fon when D 4

Asselah Shapira Sansi Good concentration

in both cases

Eranegotaguormenut giving
lower bound of

Cap A int Ee Effi Magnus treason

FittEea5am 181nFIs

Cap Xn z
t Xm o men312

75 Xi Xj



One can compute that

sc
iiofEniEgq.y.E2ChtDI

lMHlpm 0,07

Until Em pm 90

Info
II E

nu d 3

Gives lower bound of the correctorder for the capacity
in each case



What about LERW

Earlier this theorem was transientmentioned

The Lyons Peres Schramm LettyY
be randan walks on somegraph

Then

R Y n LE CX 0 z
6 PICKX 0

Moreover if X andY intersect i o a s

then so do Y and LECX

With Perla we show that essentially the same

proof gives
the following

Thou HdSasi Let 6 be a transientgraph and
let X be a random walk an G Then

LFCap LECK z E Cap Xn Vnot



In 4d Lawler shows that

ILE Xn I e dong is Whp

So Cap First n steps of LERW

Cap CLE xn dogs x donde

This statement is only an expectation We
show that it holds with high probability also
There is concentration

In high dimensions it is a much easier
matter to get that the capacity ofthe
LERW is linear with high probability



There is still a problem
HA opo co n and first

steps
of future

have Capton

These events aren't independent

If they were we could take 5 suffSmall and get
tx E t Qcn as required

Not a problem if
R Cap a step LERW Isn K In

This should work when do 4 might not
fer d 5



Tetiform spanjingforest

Introduced by Jarai Redly

GIN Identify V and Q in G1
v WUSF is weak limitof OSTs of Gn

oriented towards Q u

Stochastic domination
property Lyons

Morris

Condition on futures of
Schramm

y Ug Uh y Uk in WOSF or v WD

t conditional distribution of the
part of the past of that does not belong
to the revealed forest is stochastically dominated

by the component of X in the x WUSF

Plays an analogue role to BK inequality
in percolation



In particular if we define
Qo n R o WUSE has intrinsic radius

at least a J

Then Q n s Q o Cns Vn

There are analogues of
Wilson

interlacement Aldous Broder for the v WBF

Wilson same as before but take
Fo EU3,0

v wired interlacement includes trajectories
V

I
V 5

X u

doubly as singly as

If finite
Otherwise similar to before



Qoan E R o co se t still OCE

at ope coin path from
E U u to v in Fe not hit in to er

n
AND ope yn 0

All forests ninnterlagmew we

Split into high capacity and
I larascaphagonzeams

E e
Eon E u utopian

and opeCain 03

v

E Q Ch E Eu ueopeco.nl

by stochastic domination



E u Utope Coin Ope Cain 0
and cap corn

a son

E Q du E EU UE OPoco n and

Cape 4 Eon

New problem no mass transport

Luckily fairly simple analysis
gives

5
Et U UE OPoco n E C s

F
E Eu Ue OPoco n E Es Es

Cap C On
t so
as 880



Problems For de 4
Q.cn Qin

This makes things much harder

E
g in Gd Qa a dogg

Qdn a doggy's

In 3d the powers are different

In 2d Qd n is bounded below

Connection to sandpile model Janie Reeky
Past of 0 Sandpile

Avalanche E
Component of o

m W USF in O WUSF
T 4
In high din these have the same asymptotes

so

we can obtain good understanding ofthe sandpit
For de 4 there is a gap



Open problem Is

Qcn Z in every
dimension

Would
give 13 39 where B is the

dimension of3d LERW

Numerically 1321.62400
Wilson

Rigorously 143543 Lawler

It is known that Qo n z Ent n


