Critical percolation

Gady Kozma

Online Open Probability School, 2020

Percolation - definitions

Examine the graph $\mathbb{Z}^{d}, d \geq 2$.

Percolation - definitions

Examine the graph $\mathbb{Z}^{d}, d \geq 2$. For a $p \in[0,1]$ keep every edge with probability p and delete it with probability $1-p$, independently for each edge.

Percolation - definitions

Examine the graph $\mathbb{Z}^{d}, d \geq 2$. For a $p \in[0,1]$ keep every edge with probability p and delete it with probability $1-p$, independently for each edge. There exists some $p_{c} \in(0,1)$ ("the critical p ") such that for $p<p_{c}$ all components ("clusters") of the resulting graph are finite, while for $p>p_{c}$ there is a unique infinite cluster.

Percolation - definitions

Examine the graph $\mathbb{Z}^{d}, d \geq 2$. For a $p \in[0,1]$ keep every edge with probability p and delete it with probability $1-p$, independently for each edge. There exists some $p_{c} \in(0,1)$ ("the critical p ") such that for $p<p_{c}$ all components ("clusters") of the resulting graph are finite, while for $p>p_{c}$ there is a unique infinite cluster. The behaviour at and near p_{c} is not well understood, except if $d=2$ or $d>6$.

Percolation - definitions

Examine the graph $\mathbb{Z}^{d}, d \geq 2$. For a $p \in[0,1]$ keep every edge with probability p and delete it with probability $1-p$, independently for each edge. There exists some $p_{c} \in(0,1)$ ("the critical p ") such that for $p<p_{c}$ all components ("clusters") of the resulting graph are finite, while for $p>p_{c}$ there is a unique infinite cluster. The behaviour at and near p_{c} is not well understood, except if $d=2$ or $d>6$.

This minicourse will focus on recent advances around this problem, with particular emphasis on the growing understanding of the importance of the Aizenman-Kesten-Newman argument. (but we will only get to it in the second hour)

Theorem

$\mathbb{E}_{p_{c}}(|\mathscr{C}(0)|)=\infty$.

Theorem

$\mathbb{E}_{p_{c}}(|\mathscr{C}(0)|)=\infty$.
Proof.
Fix p and denote $\chi=\mathbb{E}_{p}(|\mathscr{C}(0)|)$. Let

$$
\varepsilon<\frac{1}{4 d \chi}
$$

Theorem

$\mathbb{E}_{p_{c}}(|\mathscr{C}(0)|)=\infty$.

Proof.

Fix p and denote $\chi=\mathbb{E}_{p}(|\mathscr{C}(0)|)$. Let

$$
\varepsilon<\frac{1}{4 d \chi}
$$

We will show that at $p+\varepsilon$ there is no infinite cluster.

Theorem

$\mathbb{E}_{p_{c}}(|\mathscr{C}(0)|)=\infty$.
Proof.
Fix p and denote $\chi=\mathbb{E}_{p}(|\mathscr{C}(0)|)$. Let

$$
\varepsilon<\frac{1}{4 d \chi}
$$

We will show that at $p+\varepsilon$ there is no infinite cluster. Consider $p+\varepsilon$ percolation as if we take p-percolation and then "sprinkle" each edge with probability ε.

Theorem

$\mathbb{E}_{p_{c}}(|\mathscr{C}(0)|)=\infty$.

Proof.

Fix p and denote $\chi=\mathbb{E}_{p}(|\mathscr{C}(0)|)$. Let

$$
\varepsilon<\frac{1}{4 d \chi}
$$

We will show that at $p+\varepsilon$ there is no infinite cluster. Consider $p+\varepsilon$ percolation as if we take p-percolation and then "sprinkle" each edge with probability ε. For a vertex x and a sequence of directed edges e_{1}, \ldots, e_{n}, denote by $E_{x, e_{1}, \ldots, e_{n}}$ the event that 0 is connected to x by a path γ_{1} in p-percolation from 0 to e_{1}^{-}

Theorem

$\mathbb{E}_{p_{c}}(|\mathscr{C}(0)|)=\infty$.

Proof.

Fix p and denote $\chi=\mathbb{E}_{p}(|\mathscr{C}(0)|)$. Let

$$
\varepsilon<\frac{1}{4 d \chi}
$$

We will show that at $p+\varepsilon$ there is no infinite cluster. Consider $p+\varepsilon$ percolation as if we take p-percolation and then "sprinkle" each edge with probability ε. For a vertex x and a sequence of directed edges e_{1}, \ldots, e_{n}, denote by $E_{x, e_{1}, \ldots, e_{n}}$ the event that 0 is connected to x by a path γ_{1} in p-percolation from 0 to e_{1}^{-}then e_{1} is sprinkled, then there is a path γ_{2} from e_{1}^{+}to e_{2}^{-}then e_{2} is sprinkled and so on.

Theorem

$\mathbb{E}_{p_{c}}(|\mathscr{C}(0)|)=\infty$.

Proof.

Fix p and denote $\chi=\mathbb{E}_{p}(|\mathscr{C}(0)|)$. Let

$$
\varepsilon<\frac{1}{4 d \chi}
$$

We will show that at $p+\varepsilon$ there is no infinite cluster. Consider $p+\varepsilon$ percolation as if we take p-percolation and then "sprinkle" each edge with probability ε. For a vertex x and a sequence of directed edges e_{1}, \ldots, e_{n}, denote by $E_{x, e_{1}, \ldots, e_{n}}$ the event that 0 is connected to x by a path γ_{1} in p-percolation from 0 to e_{1}^{-}then e_{1} is sprinkled, then there is a path γ_{2} from e_{1}^{+}to e_{2}^{-}then e_{2} is sprinkled and so on. We end with a path γ_{n+1} from e_{n} to x. We require all the γ_{i} to be disjoint.

Theorem

$\mathbb{E}_{p_{c}}(|\mathscr{C}(0)|)=\infty$.

Proof.

Fix p and denote $\chi=\mathbb{E}_{p}(|\mathscr{C}(0)|)$. Let

$$
\varepsilon<\frac{1}{4 d \chi}
$$

We will show that at $p+\varepsilon$ there is no infinite cluster. Consider $p+\varepsilon$ percolation as if we take p-percolation and then "sprinkle" each edge with probability ε. For a vertex x and a sequence of directed edges e_{1}, \ldots, e_{n}, denote by $E_{x, e_{1}, \ldots, e_{n}}$ the event that 0 is connected to x by a path γ_{1} in p-percolation from 0 to e_{1}^{-}then e_{1} is sprinkled, then there is a path γ_{2} from e_{1}^{+}to e_{2}^{-}then e_{2} is sprinkled and so on. We end with a path γ_{n+1} from e_{n} to x. We require all the γ_{i} to be disjoint. Clearly $0 \leftrightarrow x$ is $p+\varepsilon$ percolation if and only if there exist some e_{1}, \ldots, e_{n} (possibly empty) such that $E_{x, e_{1}, \ldots, e_{n}}$ hold.

Theorem

$\mathbb{E}_{p_{c}}(|\mathscr{C}(0)|)=\infty$.

Theorem

$\mathbb{E}_{p_{c}}(|\mathscr{C}(0)|)=\infty$.

Proof.

$\chi=\mathbb{E}_{p}(|\mathscr{C}(0)|), \varepsilon<1 / 4 d \chi, E_{x, e_{1}, \ldots, e_{n}}$ is the event that $\exists \gamma_{i}$ from e_{i-1}^{+}to e_{i}^{-}, disjoint, and all e_{i} are sprinkled.

$$
\mathbb{P}_{p+\varepsilon}(0 \leftrightarrow x) \leq \sum_{n=0}^{\infty} \sum_{e_{1}, \ldots, e_{n}} \mathbb{P}\left(E_{x, e_{1}, \ldots, e_{n}}\right) .
$$

Theorem

$\mathbb{E}_{p_{c}}(|\mathscr{C}(0)|)=\infty$.

Proof.

$\chi=\mathbb{E}_{p}(|\mathscr{C}(0)|), \varepsilon<1 / 4 d \chi, E_{x, e_{1}, \ldots, e_{n}}$ is the event that $\exists \gamma_{i}$ from e_{i-1}^{+}to e_{i}^{-}, disjoint, and all e_{i} are sprinkled.

$$
\mathbb{P}_{p+\varepsilon}(0 \leftrightarrow x) \leq \sum_{n=0}^{\infty} \sum_{e_{1}, \ldots, e_{n}} \mathbb{P}\left(E_{x, e_{1}, \ldots, e_{n}}\right) .
$$

By the BK inequality

$$
\leq \sum_{n=0}^{\infty} \sum_{e_{1}, \ldots, e_{n}} \mathbb{P}_{p}\left(0 \leftrightarrow e_{1}^{-}\right) \mathbb{P}_{p}\left(e_{1}^{+} \leftrightarrow e_{2}^{-}\right) \cdots \mathbb{P}\left(e_{n}^{+} \leftrightarrow x\right) \varepsilon^{n}
$$

Theorem

$\mathbb{E}_{p_{c}}(|\mathscr{C}(0)|)=\infty$.

Proof.

$\chi=\mathbb{E}_{p}(|\mathscr{C}(0)|), \varepsilon<1 / 4 d \chi, E_{x, e_{1}, \ldots, e_{n}}$ is the event that $\exists \gamma_{i}$ from e_{i-1}^{+}to e_{i}^{-}, disjoint, and all e_{i} are sprinkled.

$$
\mathbb{P}_{p+\varepsilon}(0 \leftrightarrow x) \leq \sum_{n=0}^{\infty} \sum_{e_{1}, \ldots, e_{n}} \mathbb{P}\left(E_{x, e_{1}, \ldots, e_{n}}\right) .
$$

By the BK inequality

$$
\leq \sum_{n=0}^{\infty} \sum_{e_{1}, \ldots, e_{n}} \mathbb{P}_{p}\left(0 \leftrightarrow e_{1}^{-}\right) \mathbb{P}_{p}\left(e_{1}^{+} \leftrightarrow e_{2}^{-}\right) \cdots \mathbb{P}\left(e_{n}^{+} \leftrightarrow x\right) \varepsilon^{n}
$$

Summing over all x gives

$$
\chi(p+\varepsilon) \leq \sum_{n=0}^{\infty} \varepsilon^{n} \sum_{x, e_{1}, \ldots, e_{n}} \mathbb{P}_{p}\left(0 \leftrightarrow e_{1}^{-}\right) \mathbb{P}_{p}\left(e_{1}^{+} \leftrightarrow e_{2}^{-}\right) \cdots \mathbb{P}_{p}\left(e_{n}^{+} \leftrightarrow x\right) .
$$

Theorem

$\mathbb{E}_{p_{c}}(|\mathscr{C}(0)|)=\infty$.

$$
\begin{aligned}
& \text { Proof. } \\
& \chi(p+\varepsilon) \leq \sum_{n=0}^{\infty} \varepsilon^{n} \sum_{x, e_{1}, \ldots, e_{n}} \mathbb{P}_{p}\left(0 \leftrightarrow e_{1}^{-}\right) \mathbb{P}_{p}\left(e_{1}^{+} \leftrightarrow e_{2}^{-}\right) \cdots \mathbb{P}_{p}\left(e_{n}^{+} \leftrightarrow x\right) .
\end{aligned}
$$

Theorem

$\mathbb{E}_{p_{c}}(|\mathscr{C}(0)|)=\infty$.

$$
\begin{aligned}
& \text { Proof. } \\
& \chi(p+\varepsilon) \leq \sum_{n=0}^{\infty} \varepsilon^{n} \sum_{x, e_{1}, \ldots, e_{n}} \mathbb{P}_{p}\left(0 \leftrightarrow e_{1}^{-}\right) \mathbb{P}_{p}\left(e_{1}^{+} \leftrightarrow e_{2}^{-}\right) \cdots \mathbb{P}_{p}\left(e_{n}^{+} \leftrightarrow x\right) .
\end{aligned}
$$

Summing over x gives one $\chi(p)$ term which we can take out of the sum

$$
=\sum_{n=0}^{\infty} \varepsilon^{n} \chi(p) \sum_{e_{1}, \ldots, e_{n}} \mathbb{P}_{p}\left(0 \leftrightarrow e_{1}^{-}\right) \mathbb{P}_{p}\left(e_{1}^{+} \leftrightarrow e_{2}^{-}\right) \cdots \mathbb{P}_{p}\left(e_{n-1}^{+} \leftrightarrow e_{n}^{-}\right)
$$

Theorem

$\mathbb{E}_{p_{c}}(|\mathscr{C}(0)|)=\infty$.
Proof.
$\chi(p+\varepsilon) \leq \sum_{n=0}^{\infty} \varepsilon^{n} \sum_{x, e_{1}, \ldots, e_{n}} \mathbb{P}_{p}\left(0 \leftrightarrow e_{1}^{-}\right) \mathbb{P}_{p}\left(e_{1}^{+} \leftrightarrow e_{2}^{-}\right) \cdots \mathbb{P}_{p}\left(e_{n}^{+} \leftrightarrow x\right)$.
Summing over x gives one $\chi(p)$ term which we can take out of the sum

$$
=\sum_{n=0}^{\infty} \varepsilon^{n} \chi(p) \sum_{e_{1}, \ldots, e_{n}} \mathbb{P}_{p}\left(0 \leftrightarrow e_{1}^{-}\right) \mathbb{P}_{p}\left(e_{1}^{+} \leftrightarrow e_{2}^{-}\right) \cdots \mathbb{P}_{p}\left(e_{n-1}^{+} \leftrightarrow e_{n}^{-}\right)
$$

e_{n}^{+}has $2 d$ possibilities. Summing over e_{n}^{-}gives another χ term. Taking both out of the sum gives

$$
=\sum_{n=0}^{\infty} \varepsilon^{n} \cdot 2 d \chi(p)^{2} \sum_{e_{1}, \ldots, e_{n-1}} \mathbb{P}_{p}\left(0 \leftrightarrow e_{1}^{-}\right) \cdots \mathbb{P}_{p}\left(e_{n-2}^{+} \leftrightarrow e_{n-1}^{-}\right)
$$

Theorem

$\mathbb{E}_{p_{c}}(|\mathscr{C}(0)|)=\infty$.

Proof.

$\chi(p)=\mathbb{E}_{p}(|\mathscr{C}(0)|), \varepsilon<1 / 4 d \chi(p)$,

$$
\begin{aligned}
\chi(p+\varepsilon) & \leq \sum_{n=0}^{\infty} \varepsilon^{n} \sum_{x, e_{1}, \ldots, e_{n}} \mathbb{P}_{p}\left(0 \leftrightarrow e_{1}^{-}\right) \mathbb{P}_{p}\left(e_{1}^{+} \leftrightarrow e_{2}^{-}\right) \cdots \mathbb{P}_{p}\left(e_{n}^{+} \leftrightarrow x\right) \\
& =\sum_{n=0}^{\infty} \varepsilon^{n} \cdot(2 d)^{n} \chi(p)^{n+1}
\end{aligned}
$$

Theorem

$\mathbb{E}_{p_{c}}(|\mathscr{C}(0)|)=\infty$.

Proof.

$\chi(p)=\mathbb{E}_{p}(|\mathscr{C}(0)|), \varepsilon<1 / 4 d \chi(p)$,

$$
\begin{aligned}
\chi(p+\varepsilon) & \leq \sum_{n=0}^{\infty} \varepsilon^{n} \sum_{x, e_{1}, \ldots, e_{n}} \mathbb{P}_{p}\left(0 \leftrightarrow e_{1}^{-}\right) \mathbb{P}_{p}\left(e_{1}^{+} \leftrightarrow e_{2}^{-}\right) \cdots \mathbb{P}_{p}\left(e_{n}^{+} \leftrightarrow x\right) \\
& =\sum_{n=0}^{\infty} \varepsilon^{n} \cdot(2 d)^{n} \chi(p)^{n+1}<\infty .
\end{aligned}
$$

Theorem

$\mathbb{E}_{p_{c}}(|\mathscr{C}(0)|)=\infty$.

$$
\begin{aligned}
& \text { Proof. } \\
& \begin{aligned}
\chi(p)=\mathbb{E}_{p}(|\mathscr{C}(0)|), \varepsilon<1 / 4 d \chi(p), \\
\begin{aligned}
\chi(p+\varepsilon) & \leq \sum_{n=0}^{\infty} \varepsilon^{n} \sum_{x, e_{1}, \ldots, e_{n}} \mathbb{P}_{p}\left(0 \leftrightarrow e_{1}^{-}\right) \mathbb{P}_{p}\left(e_{1}^{+} \leftrightarrow e_{2}^{-}\right) \cdots \mathbb{P}_{p}\left(e_{n}^{+} \leftrightarrow x\right) \\
& =\sum_{n=0}^{\infty} \varepsilon^{n} \cdot(2 d)^{n} \chi(p)^{n+1}<\infty .
\end{aligned}
\end{aligned} .
\end{aligned}
$$

This shows that $p+\varepsilon \leq p_{c}$.

Theorem

$\mathbb{E}_{p_{c}}(|\mathscr{C}(0)|)=\infty$.

$$
\begin{aligned}
& \text { Proof. } \\
& \begin{aligned}
\chi(p)=\mathbb{E}_{p}(|\mathscr{C}(0)|), \varepsilon<1 / 4 d \chi(p), \\
\begin{aligned}
\chi(p+\varepsilon) & \leq \sum_{n=0}^{\infty} \varepsilon^{n} \sum_{x, e_{1}, \ldots, e_{n}} \mathbb{P}_{p}\left(0 \leftrightarrow e_{1}^{-}\right) \mathbb{P}_{p}\left(e_{1}^{+} \leftrightarrow e_{2}^{-}\right) \cdots \mathbb{P}_{p}\left(e_{n}^{+} \leftrightarrow x\right) \\
& =\sum_{n=0}^{\infty} \varepsilon^{n} \cdot(2 d)^{n} \chi(p)^{n+1}<\infty .
\end{aligned}
\end{aligned} .
\end{aligned}
$$

This shows that $p+\varepsilon \leq p_{c}$. The theorem is then proved by contradiction.

Theorem

$\mathbb{E}_{p_{c}}(|\mathscr{C}(0)|)=\infty$.
Proof.

$$
\begin{aligned}
& \chi(p)=\mathbb{E}_{p}(|\mathscr{C}(0)|), \varepsilon<1 / 4 d \chi(p), \\
& \begin{aligned}
\chi(p+\varepsilon) & \leq \sum_{n=0}^{\infty} \varepsilon^{n} \sum_{x, e_{1}, \ldots, e_{n}} \mathbb{P}_{p}\left(0 \leftrightarrow e_{1}^{-}\right) \mathbb{P}_{p}\left(e_{1}^{+} \leftrightarrow e_{2}^{-}\right) \cdots \mathbb{P}_{p}\left(e_{n}^{+} \leftrightarrow x\right) \\
& =\sum_{n=0}^{\infty} \varepsilon^{n} \cdot(2 d)^{n} \chi(p)^{n+1}<\infty .
\end{aligned}
\end{aligned}
$$

This shows that $p+\varepsilon \leq p_{c}$. The theorem is then proved by contradiction.

The argument also gives

$$
\chi(p) \geq \frac{1}{4 d\left(p_{c}-p\right)} \quad \forall p<p_{c}
$$

Theorem

$\mathbb{E}_{p_{c}}(|\mathscr{C}(0)|)=\infty$.
Proof.

$$
\begin{aligned}
& \chi(p)=\mathbb{E}_{p}(|\mathscr{C}(0)|), \varepsilon<1 / 4 d \chi(p), \\
& \begin{aligned}
\chi(p+\varepsilon) & \leq \sum_{n=0}^{\infty} \varepsilon^{n} \sum_{x, e_{1}, \ldots, e_{n}} \mathbb{P}_{p}\left(0 \leftrightarrow e_{1}^{-}\right) \mathbb{P}_{p}\left(e_{1}^{+} \leftrightarrow e_{2}^{-}\right) \cdots \mathbb{P}_{p}\left(e_{n}^{+} \leftrightarrow x\right) \\
& =\sum_{n=0}^{\infty} \varepsilon^{n} \cdot(2 d)^{n} \chi(p)^{n+1}<\infty .
\end{aligned}
\end{aligned}
$$

This shows that $p+\varepsilon \leq p_{c}$. The theorem is then proved by contradiction.

The argument also gives

$$
\chi(p) \geq \frac{1}{4 d\left(p_{c}-p\right)} \quad \forall p<p_{c}
$$

This is sharp on a tree but not in general.

For a set $S \subset \mathbb{Z}^{d}$ denote by ∂S the set of $x \in S$ with a neighbour $y \notin S$.
Theorem
Let $S \subset \mathbb{Z}^{d}$ be some finite set containing 0 . Then

$$
\sum_{x \in \partial S} \mathbb{P}_{p_{c}}(0 \stackrel{S}{\leftrightarrow} x) \geq 1
$$

For a set $S \subset \mathbb{Z}^{d}$ denote by ∂S the set of $x \in S$ with a neighbour $y \notin S$.

Theorem

Let $S \subset \mathbb{Z}^{d}$ be some finite set containing 0 . Then

$$
\sum_{x \in \partial S} \mathbb{P}_{p_{c}}(0 \stackrel{S}{\leftrightarrow} x) \geq 1
$$

Proof sketch.

Let $x \in \mathbb{Z}^{d}$. If $0 \leftrightarrow x$ then there exists $0=y_{1}, \ldots, y_{n}=x$ such and open paths γ_{i} such that
(1) γ_{i} is from y_{i} to y_{i+1} and is contained in $y_{i}+S$.

For a set $S \subset \mathbb{Z}^{d}$ denote by ∂S the set of $x \in S$ with a neighbour $y \notin S$.

Theorem

Let $S \subset \mathbb{Z}^{d}$ be some finite set containing 0 . Then

$$
\sum_{x \in \partial S} \mathbb{P}_{p_{c}}(0 \stackrel{S}{\leftrightarrow} x) \geq 1
$$

Proof sketch.

Let $x \in \mathbb{Z}^{d}$. If $0 \leftrightarrow x$ then there exists $0=y_{1}, \ldots, y_{n}=x$ such and open paths γ_{i} such that
(1) γ_{i} is from y_{i} to y_{i+1} and is contained in $y_{i}+S$.
(2) The γ_{i} are disjoint.

For a set $S \subset \mathbb{Z}^{d}$ denote by ∂S the set of $x \in S$ with a neighbour $y \notin S$.

Theorem

Let $S \subset \mathbb{Z}^{d}$ be some finite set containing 0 . Then

$$
\sum_{x \in \partial S} \mathbb{P}_{p_{c}}(0 \stackrel{S}{\leftrightarrow} x) \geq 1
$$

For a set $S \subset \mathbb{Z}^{d}$ denote by ∂S the set of $x \in S$ with a neighbour $y \notin S$.

Theorem

Let $S \subset \mathbb{Z}^{d}$ be some finite set containing 0 . Then

$$
\sum_{x \in \partial S} \mathbb{P}_{p_{c}}(0 \stackrel{S}{\leftrightarrow} x) \geq 1
$$

Proof sketch.

Let $x \in \mathbb{Z}^{d}$. If $0 \leftrightarrow x$ then there exists $0=y_{1}, \ldots, y_{n}=x$ such and open paths γ_{i} such that
(1) γ_{i} is from y_{i} to y_{i+1} and is contained in $y_{i}+S$.
(2) The γ_{i} are disjoint.

And we have $n \geq r|x|$ for some number $r>0$ that depends on S.

For a set $S \subset \mathbb{Z}^{d}$ denote by ∂S the set of $x \in S$ with a neighbour $y \notin S$.

Theorem

Let $S \subset \mathbb{Z}^{d}$ be some finite set containing 0 . Then

$$
\sum_{x \in \partial S} \mathbb{P}_{p_{c}}(0 \stackrel{S}{\hookrightarrow} x) \geq 1
$$

Proof sketch.

Let $x \in \mathbb{Z}^{d}$. If $0 \leftrightarrow x$ then there exists $0=y_{1}, \ldots, y_{n}=x$ such and open paths γ_{i} such that
(1) γ_{i} is from y_{i} to y_{i+1} and is contained in $y_{i}+S$.
(2) The γ_{i} are disjoint.

And we have $n \geq r|x|$ for some number $r>0$ that depends on S. A calculation similar to the previous proof shows that

$$
\mathbb{P}(0 \leftrightarrow x) \leq \sum_{n \geq r|x|}\left(\sum_{y \in \partial S} \mathbb{P}_{p_{c}}(0 \stackrel{S}{\leftrightarrow} y)\right)^{n} .
$$

Theorem

Let $S \subset \mathbb{Z}^{d}$ be some finite set containing 0 . Then
$\sum_{x \in \partial S} \mathbb{P}_{p_{c}}(0 \stackrel{S}{\leftrightarrow} x) \geq 1$.

Proof sketch.

Let $x \in \mathbb{Z}^{d}$. If $0 \leftrightarrow x$ then there exists $0=y_{1}, \ldots, y_{n}=x$ such and open paths γ_{i} such that
(1) γ_{i} is from y_{i} to y_{i+1} and is contained in $y_{i}+S$.
(2) The γ_{i} are disjoint.

And we have $n \geq r|x| S$. A calculation similar to the previous proof shows that

$$
\mathbb{P}(0 \leftrightarrow x) \leq \sum_{n \geq r|x|}\left(\sum_{y \in \partial S} \mathbb{P}_{p_{c}}(0 \stackrel{S}{\hookrightarrow} y)\right)^{n}
$$

Theorem

Let $S \subset \mathbb{Z}^{d}$ be some finite set containing 0 . Then
$\sum_{x \in \partial S} \mathbb{P}_{p_{c}}(0 \stackrel{S}{\leftrightarrow} x) \geq 1$.

Proof sketch.

Let $x \in \mathbb{Z}^{d}$. If $0 \leftrightarrow x$ then there exists $0=y_{1}, \ldots, y_{n}=x$ such and open paths γ_{i} such that
(1) γ_{i} is from y_{i} to y_{i+1} and is contained in $y_{i}+S$.
(2) The γ_{i} are disjoint.

And we have $n \geq r|x| S$. A calculation similar to the previous proof shows that

$$
\mathbb{P}(0 \leftrightarrow x) \leq \sum_{n \geq r|x|}\left(\sum_{y \in \partial S} \mathbb{P}_{p_{c}}(0 \stackrel{S}{\leftrightarrow} y)\right)^{n}
$$

If the value in the parenthesis is smaller than 1 then $\mathbb{P}(0 \leftrightarrow x)$ decays exponentially in $|x|$, contradicting the previous theorem.

Theorem

Let $S \subset \mathbb{Z}^{d}$ be some finite set containing 0 . Then
$\sum_{x \in \partial S} \mathbb{P}_{p_{c}}(0 \stackrel{S}{\longleftrightarrow} x) \geq 1$.

A full proof can be found in H. Duminil-Copin and V. Tassion, A new proof of the sharpness of the phase transition for Bernoulli percolation on \mathbb{Z}^{d}, L'Enseignement Mathématique, 62(1/2) (2016), 199-206.

Theorem

Let $S \subset \mathbb{Z}^{d}$ be some finite set containing 0 . Then
$\sum_{x \in \partial S} \mathbb{P}_{p_{c}}(0 \stackrel{S}{\longleftrightarrow} x) \geq 1$.

A full proof can be found in H. Duminil-Copin and V. Tassion, A new proof of the sharpness of the phase transition for Bernoulli percolation on \mathbb{Z}^{d}, L'Enseignement Mathématique, $62(1 / 2)(2016), 199-206$. It is the basis for a new, significantly simpler proof of the following

Theorem (Menshikov\|Aizenman-Barsky)

For any $p<p_{c} \chi(p)<\infty$.

Theorem

Let $S \subset \mathbb{Z}^{d}$ be some finite set containing 0 . Then
$\sum_{x \in \partial S} \mathbb{P}_{p_{c}}(0 \stackrel{S}{\longleftrightarrow} x) \geq 1$.

A full proof can be found in H. Duminil-Copin and V. Tassion, A new proof of the sharpness of the phase transition for Bernoulli percolation on \mathbb{Z}^{d}, L'Enseignement Mathématique, $62(1 / 2)(2016), 199-206$. It is the basis for a new, significantly simpler proof of the following

Theorem (Menshikov\|Aizenman-Barsky)
 For any $p<p_{c} \chi(p)<\infty$.

(recall that $\chi(p)=\mathbb{E}_{p}(|\mathscr{C}(0)|)$ and that what we proved before is $\left.\chi\left(p_{c}\right)=\infty\right)$.

Theorem

Let $S \subset \mathbb{Z}^{d}$ be some finite set containing 0 . Then
$\sum_{x \in \partial S} \mathbb{P}_{p_{c}}(0 \stackrel{S}{\leftrightarrow} x) \geq 1$.

Two applications:

Lemma (K-Nachmias, 2011)

For any $x \in \partial \Lambda_{n}, \Lambda_{n}:=[-n, n]^{d}$,

$$
\mathbb{P}_{p_{c}}\left(0 \stackrel{\Lambda_{m}}{\leftrightarrows} x\right) \geq c \exp \left(-C \log ^{2} n\right) .
$$

Lemma (Cerf, 2015)
For any $x, y \in \Lambda_{n}$,

$$
\mathbb{P}_{p_{c}}\left(x \stackrel{\Lambda_{2 n}}{\longleftrightarrow} y\right) \geq c n^{-C} .
$$

All constants c and C might depend on the dimension.

Lemma (Cerf, 2015)

For any $x, y \in \Lambda_{n}, \mathbb{P}_{p_{c}}\left(x \stackrel{\Lambda_{2 n}}{\longleftrightarrow} y\right) \geq c n^{-C}$.

Proof.

Assume first that $x-y=(2 k, 0, \ldots, 0), k \leq n$.

Lemma (Cerf, 2015)

For any $x, y \in \Lambda_{n}, \mathbb{P}_{p_{c}}\left(x \stackrel{\Lambda_{2 n}}{\longleftrightarrow} y\right) \geq c n^{-C}$.

Proof.

Assume first that $x-y=(2 k, 0, \ldots, 0), k \leq n$. By the theorem there exists a $z \in \partial \Lambda_{k}$ such that

$$
\mathbb{P}\left(0 \stackrel{\Lambda_{k}}{\longleftrightarrow} z\right) \geq \frac{1}{2 d\left|\partial \Lambda_{k}\right|}
$$

Lemma (Cerf, 2015)

For any $x, y \in \Lambda_{n}, \mathbb{P}_{p_{c}}\left(x \stackrel{\Lambda_{2 n}}{\longleftrightarrow} y\right) \geq c n^{-C}$.

Proof.

Assume first that $x-y=(2 k, 0, \ldots, 0), k \leq n$. By the theorem there exists a $z \in \partial \Lambda_{k}$ such that

$$
\mathbb{P}\left(0 \stackrel{\Lambda_{k}}{\longleftrightarrow} z\right) \geq \frac{1}{2 d\left|\partial \Lambda_{k}\right|} \geq \frac{c}{k^{d-1}} .
$$

Lemma (Cerf, 2015)

For any $x, y \in \Lambda_{n}, \mathbb{P}_{p_{c}}\left(x \stackrel{\Lambda_{2 n}}{\longleftrightarrow} y\right) \geq c n^{-C}$.

Proof.

Assume first that $x-y=(2 k, 0, \ldots, 0), k \leq n$. By the theorem there exists a $z \in \partial \Lambda_{k}$ such that

$$
\mathbb{P}\left(0 \stackrel{\Lambda_{k}}{\longleftrightarrow} z\right) \geq \frac{1}{2 d\left|\partial \Lambda_{k}\right|} \geq \frac{c}{k^{d-1}} .
$$

By rotation and reflection symmetry we may assume z is in some face of Λ_{k}, for example $z_{1}=k$.

Lemma (Cerf, 2015)

For any $x, y \in \Lambda_{n}, \mathbb{P}_{p_{c}}\left(x \stackrel{\Lambda_{2 n}}{\longleftrightarrow} y\right) \geq c n^{-C}$.

Proof.

Assume first that $x-y=(2 k, 0, \ldots, 0), k \leq n$. By the theorem there exists a $z \in \partial \Lambda_{k}$ such that

$$
\mathbb{P}\left(0 \stackrel{\Lambda_{k}}{\longleftrightarrow} z\right) \geq \frac{1}{2 d\left|\partial \Lambda_{k}\right|} \geq \frac{c}{k^{d-1}} .
$$

By rotation and reflection symmetry we may assume z is in some face of Λ_{k}, for example $z_{1}=k$. Let \bar{z} be the reflection of z in the first coordinate i.e. $\bar{z}=\left(-z_{1}, z_{2}, \ldots, z_{d}\right)$.

Lemma (Cerf, 2015)

For any $x, y \in \Lambda_{n}, \mathbb{P}_{p_{c}}\left(x \stackrel{\Lambda_{2 n}}{\longleftrightarrow} y\right) \geq c n^{-C}$.

Proof.

Assume first that $x-y=(2 k, 0, \ldots, 0), k \leq n$. By the theorem there exists a $z \in \partial \Lambda_{k}$ such that

$$
\mathbb{P}\left(0 \stackrel{\Lambda_{k}}{\longleftrightarrow} z\right) \geq \frac{1}{2 d\left|\partial \Lambda_{k}\right|} \geq \frac{c}{k^{d-1}} .
$$

By rotation and reflection symmetry we may assume z is in some face of Λ_{k}, for example $z_{1}=k$. Let \bar{z} be the reflection of z in the first coordinate i.e. $\bar{z}=\left(-z_{1}, z_{2}, \ldots, z_{d}\right)$. By reflection symmetry we also have $\mathbb{P}\left(0 \stackrel{\Lambda_{k}}{\longleftrightarrow} \bar{z}\right) \geq c k^{1-d}$.

Lemma (Cerf, 2015)

For any $x, y \in \Lambda_{n}, \mathbb{P}_{p_{c}}\left(x \stackrel{\Lambda_{2 n}}{\longleftrightarrow} y\right) \geq c n^{-C}$.

Proof.

Assume first that $x-y=(2 k, 0, \ldots, 0), k \leq n$. By the theorem there exists a $z \in \partial \Lambda_{k}$ such that

$$
\mathbb{P}\left(0 \stackrel{\Lambda_{k}}{\longleftrightarrow} z\right) \geq \frac{1}{2 d\left|\partial \Lambda_{k}\right|} \geq \frac{c}{k^{d-1}} .
$$

By rotation and reflection symmetry we may assume z is in some face of Λ_{k}, for example $z_{1}=k$. Let \bar{z} be the reflection of z in the first coordinate i.e. $\bar{z}=\left(-z_{1}, z_{2}, \ldots, z_{d}\right)$. By reflection symmetry we also have $\mathbb{P}\left(0 \stackrel{\Lambda_{k}}{\longleftrightarrow} \bar{z}\right) \geq c k^{1-d}$. Translating z to x and \bar{z} to y gives

$$
\mathbb{P}\left(x \stackrel{x+\Lambda_{k}}{\longleftrightarrow} x+z\right), \mathbb{P}\left(y \stackrel{y+\Lambda_{k}}{\longleftrightarrow} y+\bar{z}\right) \geq \frac{c}{k^{d-1}} .
$$

Lemma (Cerf, 2015)

For any $x, y \in \Lambda_{n}, \mathbb{P}_{p_{c}}\left(x \stackrel{\Lambda_{2 n}}{\longleftrightarrow} y\right) \geq c n^{-C}$.

Proof.

Assume first that $x-y=(2 k, 0, \ldots, 0), k \leq n$. By the theorem there exists a $z \in \partial \Lambda_{k}$ such that

$$
\mathbb{P}\left(0 \stackrel{\Lambda_{k}}{\longleftrightarrow} z\right) \geq \frac{1}{2 d\left|\partial \Lambda_{k}\right|} \geq \frac{c}{k^{d-1}} .
$$

By rotation and reflection symmetry we may assume z is in some face of Λ_{k}, for example $z_{1}=k$. Let \bar{z} be the reflection of z in the first coordinate i.e. $\bar{z}=\left(-z_{1}, z_{2}, \ldots, z_{d}\right)$. By reflection symmetry we also have $\mathbb{P}\left(0 \stackrel{\Lambda_{k}}{\longleftrightarrow} \bar{z}\right) \geq c k^{1-d}$. Translating z to x and \bar{z} to y gives

$$
\mathbb{P}\left(x \stackrel{x+\Lambda_{k}}{\longleftrightarrow} x+z\right), \mathbb{P}\left(y \stackrel{y+\Lambda_{k}}{\longleftrightarrow} y+\bar{z}\right) \geq \frac{c}{k^{d-1}} .
$$

But $x+z=y+\bar{z}!$

Lemma (Cerf, 2015)

For any $x, y \in \Lambda_{n}, \mathbb{P}_{p_{c}}\left(x \stackrel{\Lambda_{2 n}}{\longleftrightarrow} y\right) \geq c n^{-C}$.

Proof.

Assume first that $x-y=(2 k, 0, \ldots, 0), k \leq n$. Then there exists a z such that

$$
\mathbb{P}\left(x \stackrel{x+\Lambda_{k}}{\longleftrightarrow} x+z\right), \mathbb{P}\left(y \stackrel{y+\Lambda_{k}}{\longleftrightarrow} x+z\right) \geq \frac{c}{k^{d-1}} .
$$

Lemma (Cerf, 2015)

For any $x, y \in \Lambda_{n}, \mathbb{P}_{p_{c}}\left(x \stackrel{\Lambda_{2 n}}{\longleftrightarrow} y\right) \geq c n^{-C}$.

Proof.

Assume first that $x-y=(2 k, 0, \ldots, 0), k \leq n$. Then there exists a z such that

$$
\mathbb{P}\left(x \stackrel{x+\Lambda_{k}}{\longleftrightarrow} x+z\right), \mathbb{P}\left(y \xrightarrow{y+\Lambda_{k}} x+z\right) \geq \frac{c}{k^{d-1}} .
$$

Since $x+\Lambda_{k} \subset \Lambda_{2 n}$ and ditto for $y+\Lambda_{k}$ we can write

$$
\mathbb{P}\left(x \stackrel{\Lambda_{2 n}}{\longleftrightarrow} x+z\right), \mathbb{P}\left(y \stackrel{\Lambda_{2 n}}{\longleftrightarrow} x+z\right) \geq \frac{c}{k^{d-1}} .
$$

Lemma (Cerf, 2015)

For any $x, y \in \Lambda_{n}, \mathbb{P}_{p_{c}}\left(x \stackrel{\Lambda_{2 n}}{\longleftrightarrow} y\right) \geq c n^{-C}$.

Proof.

Assume first that $x-y=(2 k, 0, \ldots, 0), k \leq n$. Then there exists a z such that

$$
\mathbb{P}\left(x \stackrel{x+\Lambda_{k}}{\longleftrightarrow} x+z\right), \mathbb{P}\left(y \xrightarrow{y+\Lambda_{k}} x+z\right) \geq \frac{c}{k^{d-1}} .
$$

Since $x+\Lambda_{k} \subset \Lambda_{2 n}$ and ditto for $y+\Lambda_{k}$ we can write

$$
\mathbb{P}\left(x \stackrel{\Lambda_{2 n}}{\longleftrightarrow} x+z\right), \mathbb{P}\left(y \stackrel{\Lambda_{2 n}}{\longleftrightarrow} x+z\right) \geq \frac{c}{k^{d-1}} .
$$

By FKG

$$
\mathbb{P}\left(x \stackrel{\Lambda_{2 n}}{\longleftrightarrow} y\right) \geq \mathbb{P}\left(x \stackrel{\Lambda_{2 m}}{\longleftrightarrow} x+z, y \stackrel{\Lambda_{2 n}}{\longleftrightarrow} y+\bar{z}\right) \geq \frac{c}{k^{2 d-2}} .
$$

Proving the lemma in this case.

Lemma (Cerf, 2015)

For any $x, y \in \Lambda_{n}, \mathbb{P}_{p_{c}}\left(x \stackrel{\Lambda_{2 n}}{\longleftrightarrow} y\right) \geq c n^{-C}$.

Proof.

Assume first that $x-y=(2 k, 0, \ldots, 0), k \leq n$. Then
$\mathbb{P}\left(x \stackrel{\Lambda_{2 n}}{\longleftrightarrow} y\right) \geq c k^{2-2 d} \geq c n^{2-2 d}$.

Lemma (Cerf, 2015)

For any $x, y \in \Lambda_{n}, \mathbb{P}_{p_{c}}\left(x \stackrel{\Lambda_{2 n}}{\longleftrightarrow} y\right) \geq c n^{-C}$.

Proof.

Assume first that $x-y=(2 k, 0, \ldots, 0), k \leq n$. Then
$\mathbb{P}\left(x \stackrel{\Lambda_{2 n}}{\longleftrightarrow} y\right) \geq c k^{2-2 d} \geq c n^{2-2 d}$. With a slightly smaller c, we can remove the requirement that the distance between x and y is even.

Lemma (Cerf, 2015)

For any $x, y \in \Lambda_{n}, \mathbb{P}_{p_{c}}\left(x \stackrel{\Lambda_{2 n}}{\longleftrightarrow} y\right) \geq c n^{-C}$.

Proof.

Assume first that $x-y=(2 k, 0, \ldots, 0), k \leq n$. Then
$\mathbb{P}\left(x \stackrel{\Lambda_{2 n}}{\longleftrightarrow} y\right) \geq c k^{2-2 d} \geq c n^{2-2 d}$. With a slightly smaller c, we can remove the requirement that the distance between x and y is even. If they are not on a line, we define

$$
x=x_{0}, \ldots, x_{d}=y
$$

such that each couple x_{i}, x_{i+1} differ by only one coordinate.

Lemma (Cerf, 2015)

For any $x, y \in \Lambda_{n}, \mathbb{P}_{p_{c}}\left(x \stackrel{\Lambda_{2 n}}{\longleftrightarrow} y\right) \geq c n^{-C}$.

Proof.

Assume first that $x-y=(2 k, 0, \ldots, 0), k \leq n$. Then
$\mathbb{P}\left(x \stackrel{\Lambda_{2 n}}{\longleftrightarrow} y\right) \geq c k^{2-2 d} \geq c n^{2-2 d}$. With a slightly smaller c, we can remove the requirement that the distance between x and y is even. If they are not on a line, we define

$$
x=x_{0}, \ldots, x_{d}=y
$$

such that each couple x_{i}, x_{i+1} differ by only one coordinate. Hence $\mathbb{P}\left(x_{i} \stackrel{\Lambda_{2 m}}{\longleftrightarrow} x_{i+1}\right) \geq c n^{2-2 d}$.

Lemma (Cerf, 2015)

For any $x, y \in \Lambda_{n}, \mathbb{P}_{p_{c}}\left(x \stackrel{\Lambda_{2 n}}{\longleftrightarrow} y\right) \geq c n^{-C}$.

Proof.

Assume first that $x-y=(2 k, 0, \ldots, 0), k \leq n$. Then
$\mathbb{P}\left(x \stackrel{\Lambda_{2 n}}{\longleftrightarrow} y\right) \geq c k^{2-2 d} \geq c n^{2-2 d}$. With a slightly smaller c, we can remove the requirement that the distance between x and y is even. If they are not on a line, we define

$$
x=x_{0}, \ldots, x_{d}=y
$$

such that each couple x_{i}, x_{i+1} differ by only one coordinate. Hence $\mathbb{P}\left(x_{i} \stackrel{\Lambda_{2 m}}{\longleftrightarrow} x_{i+1}\right) \geq c n^{2-2 d}$. Using FKG again gives

$$
\begin{aligned}
\mathbb{P}\left(x \stackrel{\Lambda_{2 n}}{\longleftrightarrow} y\right) & \geq \mathbb{P}\left(x_{0} \stackrel{\Lambda_{2 n}}{\longleftrightarrow} x_{1}, x_{1} \stackrel{\Lambda_{2 n}}{\longleftrightarrow} x_{2}, \ldots, x_{d-1} \stackrel{\Lambda_{2 n}}{\longleftrightarrow} x_{d}\right) \\
& \geq \prod_{i=1}^{d} \mathbb{P}\left(x_{i-1} \stackrel{\Lambda_{2 n}}{\longleftrightarrow} x_{i}\right) \geq \frac{c}{n^{2 d^{2}-2 d}} .
\end{aligned}
$$

Lemma (Cerf, 2015)

For any $x, y \in \Lambda_{n}, \mathbb{P}_{p_{c}}\left(x \stackrel{\Lambda_{2 n}}{\longleftrightarrow} y\right) \geq c n^{2 d-2 d^{2}}$.

Lemma (Cerf, 2015)

For any $x, y \in \Lambda_{n}, \mathbb{P}_{p_{c}}\left(x \stackrel{\Lambda_{2 n}}{\longleftrightarrow} y\right) \geq c n^{2 d-2 d^{2}}$.
This was recently improved to $c n^{-d^{2}}$ by van den Berg and Don.

Lemma (Cerf, 2015)

For any $x, y \in \Lambda_{n}, \mathbb{P}_{p_{c}}\left(x \stackrel{\Lambda_{2 n}}{\longleftrightarrow} y\right) \geq c n^{2 d-2 d^{2}}$.
This was recently improved to $c n^{-d^{2}}$ by van den Berg and Don. Their proof has an interesting topological component.

Crossing probabilities

Let Λ be a box in \mathbb{Z}^{d}, with the side lengths not necessarily equal. A crossing is an open path from one side of the box to the other.

Easy way

Hard way

Crossing probabilities

Let Λ be a box in \mathbb{Z}^{d}, with the side lengths not necessarily equal. A crossing is an open path from one side of the box to the other.

Theorem

Let Λ be an $2 n \times \cdots \times 2 n \times n$ box in \mathbb{Z}^{d}. Then

$$
\mathbb{P}_{p_{c}}(\Lambda \text { has an easy-way crossing })>c
$$

Crossing probabilities

Let Λ be a box in \mathbb{Z}^{d}, with the side lengths not necessarily equal. A crossing is an open path from one side of the box to the other.

Theorem

Let Λ be an $2 n \times \cdots \times 2 n \times n$ box in \mathbb{Z}^{d}. Then

$$
\mathbb{P}_{p_{c}}(\Lambda \text { has an easy-way crossing })>c
$$

Proof (Kesten? Bollobás-Riordan? Nolin?)

Crossing probabilities

Let Λ be a box in \mathbb{Z}^{d}, with the side lengths not necessarily equal. A crossing is an open path from one side of the box to the other.

Theorem

Let Λ be an $2 n \times \cdots \times 2 n \times n$ box in \mathbb{Z}^{d}. Then

$$
\mathbb{P}_{p_{c}}(\Lambda \text { has an easy-way crossing })>c
$$

Proof (Kesten? Bollobás-Riordan? Nolin?)
It is easier to draw in $d=2$ so let us do this.

Crossing probabilities

Let Λ be a box in \mathbb{Z}^{d}, with the side lengths not necessarily equal. A crossing is an open path from one side of the box to the other.

Theorem

Let Λ be an $2 n \times \cdots \times 2 n \times n$ box in \mathbb{Z}^{d}. Then

$$
\mathbb{P}_{p_{c}}(\Lambda \text { has an easy-way crossing })>c
$$

Proof (Kesten? Bollobás-Riordan? Nolin?)

It is easier to draw in $d=2$ so let us do this. Let $p(a, b)$ be the probability of an easy-way crossing of an $a \times b$ rectangle.

Crossing probabilities

Let Λ be a box in \mathbb{Z}^{d}, with the side lengths not necessarily equal. A crossing is an open path from one side of the box to the other.

Theorem

Let Λ be an $2 n \times \cdots \times 2 n \times n$ box in \mathbb{Z}^{d}. Then

$$
\mathbb{P}_{p_{c}}(\Lambda \text { has an easy-way crossing })>c
$$

Proof (Kesten? Bollobás-Riordan? Nolin?)

It is easier to draw in $d=2$ so let us do this. Let $p(a, b)$ be the probability of an easy-way crossing of an $a \times b$ rectangle. We first claim that $p(4 n, n) \leq 5 p(2 n, n)$.

Crossing probabilities

Theorem

Let Λ be an $2 n \times \cdots \times 2 n \times n$ box in \mathbb{Z}^{d}. Then
$\mathbb{P}_{p_{c}}(\Lambda$ has an easy-way crossing $)>c$

Proof.

It is easier to draw in $d=2$ so let us do this. Let $p(a, b)$ be the probability of an easy-way crossing of an $a \times b$ rectangle. We first claim that $p(4 n, n) \leq 5 p(2 n, n)$.

Crossing probabilities

Theorem

Let Λ be an $2 n \times \cdots \times 2 n \times n$ box in \mathbb{Z}^{d}. Then
$\mathbb{P}_{p_{c}}(\Lambda$ has an easy-way crossing $)>c$

Proof.

It is easier to draw in $d=2$ so let us do this. Let $p(a, b)$ be the probability of an easy-way crossing of an $a \times b$ rectangle. We first claim that $p(4 n, n) \leq 5 p(2 n, n)$. This is because if some path γ crosses from the top to the bottom of a $4 n \times n$ rectangle, it must cross either one of 3 horizontal rectangles or one of two vertical ones.

Crossing probabilities

Theorem

Let Λ be an $2 n \times \cdots \times 2 n \times n$ box in \mathbb{Z}^{d}. Then
$\mathbb{P}_{p_{c}}(\Lambda$ has an easy-way crossing $)>c$

Proof.

It is easier to draw in $d=2$ so let us do this. Let $p(a, b)$ be the probability of an easy-way crossing of an $a \times b$ rectangle. We first claim that $p(4 n, n) \leq 5 p(2 n, n)$. This is because if some path γ crosses from the top to the bottom of a $4 n \times n$ rectangle, it must cross either one of 3 horizontal rectangles or one of two vertical ones. We next claim that $p(4 n, 2 n) \leq p(4 n, n)^{2}$.

Crossing probabilities

Theorem

Let Λ be an $2 n \times \cdots \times 2 n \times n$ box in \mathbb{Z}^{d}. Then
$\mathbb{P}_{p_{c}}(\Lambda$ has an easy-way crossing $)>c$

Proof.

It is easier to draw in $d=2$ so let us do this. Let $p(a, b)$ be the probability of an easy-way crossing of an $a \times b$ rectangle. We first claim that $p(4 n, n) \leq 5 p(2 n, n)$. This is because if some path γ crosses from the top to the bottom of a $4 n \times n$ rectangle, it must cross either one of 3 horizontal rectangles or one of two vertical ones. We next claim that $p(4 n, 2 n) \leq p(4 n, n)^{2}$. But that means that $p(4 n, 2 n) \leq 25 p(2 n, n)^{2}$ and inductively that $p\left(2^{k+1} n, 2^{k} n\right) \leq 25^{2^{k}-1} p(2 n, n)^{2^{k}}$.

Crossing probabilities

Theorem

Let Λ be an $2 n \times \cdots \times 2 n \times n$ box in \mathbb{Z}^{d}. Then
$\mathbb{P}_{p_{c}}(\Lambda$ has an easy-way crossing $)>c$

Proof.

It is easier to draw in $d=2$ so let us do this. Let $p(a, b)$ be the probability of an easy-way crossing of an $a \times b$ rectangle. We first claim that $p(4 n, n) \leq 5 p(2 n, n)$. This is because if some path γ crosses from the top to the bottom of a $4 n \times n$ rectangle, it must cross either one of 3 horizontal rectangles or one of two vertical ones. We next claim that $p(4 n, 2 n) \leq p(4 n, n)^{2}$. But that means that $p(4 n, 2 n) \leq 25 p(2 n, n)^{2}$ and inductively that $p\left(2^{k+1} n, 2^{k} n\right) \leq 25^{2^{k}-1} p(2 n, n)^{2^{k}}$. Thus, if for some n, $p(2 n, n)<\frac{1}{25}$, then it decays exponentially, contradicting the result that $\chi\left(p_{c}\right)=\infty$.

Crossing probabilities

Theorem

Let Λ be an $2 n \times \cdots \times 2 n \times n$ box in \mathbb{Z}^{d}. Then
$\mathbb{P}_{p_{c}}(\Lambda$ has an easy-way crossing $)>c$

Crossing probabilities

Theorem
 Let Λ be an $2 n \times \cdots \times 2 n \times n$ box in \mathbb{Z}^{d}. Then
 $\mathbb{P}_{p_{c}}(\Lambda$ has an easy-way crossing $)>c$

It is natural to ask if there is a corresponding upper bound, namely is it true that

$$
\mathbb{P}_{p_{c}}(\Lambda \text { has an easy-way crossing }) \leq 1-c
$$

for some $c>0$?

Crossing probabilities

Theorem
 Let Λ be an $2 n \times \cdots \times 2 n \times n$ box in \mathbb{Z}^{d}. Then
 $\mathbb{P}_{p_{c}}(\Lambda$ has an easy-way crossing $)>c$

It is natural to ask if there is a corresponding upper bound, namely is it true that

$$
\mathbb{P}_{p_{c}}(\Lambda \text { has an easy-way crossing }) \leq 1-c
$$

for some $c>0$? This is true when $d=2$.

Crossing probabilities

Theorem
 Let Λ be an $2 n \times \cdots \times 2 n \times n$ box in \mathbb{Z}^{d}. Then
 $\mathbb{P}_{p_{c}}(\Lambda$ has an easy-way crossing $)>c$

It is natural to ask if there is a corresponding upper bound, namely is it true that

$$
\mathbb{P}_{p_{c}}(\Lambda \text { has an easy-way crossing }) \leq 1-c
$$

for some $c>0$? This is true when $d=2$. It is false for $d>6$, in fact
$\mathbb{P}_{p_{c}}(\Lambda$ has an easy-way crossing $) \rightarrow 1$ as $n \rightarrow \infty$.

Crossing probabilities

Theorem
 Let Λ be an $2 n \times \cdots \times 2 n \times n$ box in \mathbb{Z}^{d}. Then
 $\mathbb{P}_{p_{c}}(\Lambda$ has an easy-way crossing $)>c$

It is natural to ask if there is a corresponding upper bound, namely is it true that

$$
\mathbb{P}_{p_{c}}(\Lambda \text { has an easy-way crossing }) \leq 1-c
$$

for some $c>0$? This is true when $d=2$. It is false for $d>6$, in fact

$$
\mathbb{P}_{p_{c}}(\Lambda \text { has an easy-way crossing }) \rightarrow 1 \text { as } n \rightarrow \infty
$$

It is not known in intermediate dimensions.

Crossing probabilities

Theorem
 Let Λ be an $2 n \times \cdots \times 2 n \times n$ box in \mathbb{Z}^{d}. Then
 $\mathbb{P}_{p_{c}}(\Lambda$ has an easy-way crossing $)>c$

It is natural to ask if there is a corresponding upper bound, namely is it true that

$$
\mathbb{P}_{p_{c}}(\Lambda \text { has an easy-way crossing }) \leq 1-c
$$

for some $c>0$? This is true when $d=2$. It is false for $d>6$, in fact

$$
\mathbb{P}_{p_{c}}(\Lambda \text { has an easy-way crossing }) \rightarrow 1 \text { as } n \rightarrow \infty
$$

It is not known in intermediate dimensions. In dimensions 2 and high, there is no significant difference between easy-way and hard-way crossing.

Crossing probabilities

Theorem
 Let Λ be an $2 n \times \cdots \times 2 n \times n$ box in \mathbb{Z}^{d}. Then
 $\mathbb{P}_{p_{c}}(\Lambda$ has an easy-way crossing $)>c$

It is natural to ask if there is a corresponding upper bound, namely is it true that

$$
\mathbb{P}_{p_{c}}(\Lambda \text { has an easy-way crossing }) \leq 1-c
$$

for some $c>0$? This is true when $d=2$. It is false for $d>6$, in fact

$$
\mathbb{P}_{p_{c}}(\Lambda \text { has an easy-way crossing }) \rightarrow 1 \text { as } n \rightarrow \infty
$$

It is not known in intermediate dimensions. In dimensions 2 and high, there is no significant difference between easy-way and hard-way crossing. In intermediate dimensions this is not known.

One arm exponent

Theorem
$\mathbb{P}\left(0 \leftrightarrow \partial \Lambda_{n}\right)>c / n^{(d-1) / 2}$.

One arm exponent

Theorem

$\mathbb{P}\left(0 \leftrightarrow \partial \Lambda_{n}\right)>c / n^{(d-1) / 2}$.

Proof.

By the previous theorem we know that the box $[-n / 2, n / 2] \times[-n, n] \times \cdots \times[-n, n]$ has an easy-way crossing with probability at least c.

One arm exponent

Theorem

$\mathbb{P}\left(0 \leftrightarrow \partial \Lambda_{n}\right)>c / n^{(d-1) / 2}$.

Proof.

By the previous theorem we know that the box $[-n / 2, n / 2] \times[-n, n] \times \cdots \times[-n, n]$ has an easy-way crossing with probability at least c. "Easy-way" means from $\{n / 2\} \times[-n, n]^{d-1}$ to $\{-n / 2\} \times[-n, n]^{d-1}$ so it must cross $0 \times[-n, n]^{d-1}$.

One arm exponent

Theorem

$\mathbb{P}\left(0 \leftrightarrow \partial \Lambda_{n}\right)>c / n^{(d-1) / 2}$.

Proof.

By the previous theorem we know that the box $[-n / 2, n / 2] \times[-n, n] \times \cdots \times[-n, n]$ has an easy-way crossing with probability at least c. "Easy-way" means from $\{n / 2\} \times[-n, n]^{d-1}$ to $\{-n / 2\} \times[-n, n]^{d-1}$ so it must cross $0 \times[-n, n]^{d-1}$. Therefore there exists some $x \in\{0\} \times[-n, n]^{d-1}$ such that the probability that the crossing pass through it is at least c / n^{d-1}.

One arm exponent

Theorem

$\mathbb{P}\left(0 \leftrightarrow \partial \Lambda_{n}\right)>c / n^{(d-1) / 2}$.

Proof.

By the previous theorem we know that the box $[-n / 2, n / 2] \times[-n, n] \times \cdots \times[-n, n]$ has an easy-way crossing with probability at least c. "Easy-way" means from $\{n / 2\} \times[-n, n]^{d-1}$ to $\{-n / 2\} \times[-n, n]^{d-1}$ so it must cross $0 \times[-n, n]^{d-1}$. Therefore there exists some $x \in\{0\} \times[-n, n]^{d-1}$ such that the probability that the crossing pass through it is at least c / n^{d-1}. But if it does, then x is connected to distance at least $n / 2$ by two disjoint paths.

One arm exponent

Theorem

$\mathbb{P}\left(0 \leftrightarrow \partial \Lambda_{n}\right)>c / n^{(d-1) / 2}$.

Proof.

By the previous theorem we know that the box $[-n / 2, n / 2] \times[-n, n] \times \cdots \times[-n, n]$ has an easy-way crossing with probability at least c. "Easy-way" means from $\{n / 2\} \times[-n, n]^{d-1}$ to $\{-n / 2\} \times[-n, n]^{d-1}$ so it must cross $0 \times[-n, n]^{d-1}$. Therefore there exists some $x \in\{0\} \times[-n, n]^{d-1}$ such that the probability that the crossing pass through it is at least c / n^{d-1}. But if it does, then x is connected to distance at least $n / 2$ by two disjoint paths. The BK inequality finishes the proof.

One arm exponent

Theorem

$\mathbb{P}\left(0 \leftrightarrow \partial \Lambda_{n}\right)>c / n^{(d-1) / 2}$.

Proof.

By the previous theorem we know that the box $[-n / 2, n / 2] \times[-n, n] \times \cdots \times[-n, n]$ has an easy-way crossing with probability at least c. "Easy-way" means from $\{n / 2\} \times[-n, n]^{d-1}$ to $\{-n / 2\} \times[-n, n]^{d-1}$ so it must cross $0 \times[-n, n]^{d-1}$. Therefore there exists some $x \in\{0\} \times[-n, n]^{d-1}$ such that the probability that the crossing pass through it is at least c / n^{d-1}. But if it does, then x is connected to distance at least $n / 2$ by two disjoint paths. The BK inequality finishes the proof.

In $d=2$ Kesten improved this to $n^{-1 / 3}$.

Dependencies diagram

The
Aizenman-Kesten-Newman argument

Exploration and martingales

Lemma

Let E be the number of open edges in $\mathscr{C}(0)$ and let B be the number of closed edges in its boundary.

Exploration and martingales

Lemma

Let E be the number of open edges in $\mathscr{C}(0)$ and let B be the number of closed edges in its boundary. Let $\lambda>0$ be some parameter.

Exploration and martingales

Lemma

Let E be the number of open edges in $\mathscr{C}(0)$ and let B be the number of closed edges in its boundary. Let $\lambda>0$ be some parameter. Then

$$
\mathbb{P}_{p}(B+E \leq n,|(1-p) E-p B|>\lambda \sqrt{n}) \leq C e^{-c \lambda^{2}}
$$

Exploration and martingales

Lemma

Let E be the number of open edges in $\mathscr{C}(0)$ and let B be the number of closed edges in its boundary. Let $\lambda>0$ be some parameter. Then

$$
\mathbb{P}_{p}(B+E \leq n,|(1-p) E-p B|>\lambda \sqrt{n}) \leq C e^{-c \lambda^{2}}
$$

Proof.

We define sets of edges $\emptyset=S_{0} \subset S_{1} \subset \cdots$ for $i \leq n$ as follows.

Exploration and martingales

Lemma

Let E be the number of open edges in $\mathscr{C}(0)$ and let B be the number of closed edges in its boundary. Let $\lambda>0$ be some parameter. Then

$$
\mathbb{P}_{p}(B+E \leq n,|(1-p) E-p B|>\lambda \sqrt{n}) \leq C e^{-c \lambda^{2}}
$$

Proof.

We define sets of edges $\emptyset=S_{0} \subset S_{1} \subset \cdots$ for $i \leq n$ as follows. Assume at step i there exists some edge $e \notin S_{i}$ such that there is an open path in S_{i} from 0 to one of the vertices of e.

Exploration and martingales

Lemma

Let E be the number of open edges in $\mathscr{C}(0)$ and let B be the number of closed edges in its boundary. Let $\lambda>0$ be some parameter. Then

$$
\mathbb{P}_{p}(B+E \leq n,|(1-p) E-p B|>\lambda \sqrt{n}) \leq C e^{-c \lambda^{2}}
$$

Proof.

We define sets of edges $\emptyset=S_{0} \subset S_{1} \subset \cdots$ for $i \leq n$ as follows. Assume at step i there exists some edge $e \notin S_{i}$ such that there is an open path in S_{i} from 0 to one of the vertices of e. We choose one such e arbitrarily and define $S_{i+1}:=S_{i} \cup\{e\}$.

Exploration and martingales

Lemma

Let E be the number of open edges in $\mathscr{C}(0)$ and let B be the number of closed edges in its boundary. Let $\lambda>0$ be some parameter. Then

$$
\mathbb{P}_{p}(B+E \leq n,|(1-p) E-p B|>\lambda \sqrt{n}) \leq C e^{-c \lambda^{2}}
$$

Proof.

We define sets of edges $\emptyset=S_{0} \subset S_{1} \subset \cdots$ for $i \leq n$ as follows. Assume at step i there exists some edge $e \notin S_{i}$ such that there is an open path in S_{i} from 0 to one of the vertices of e. We choose one such e arbitrarily and define $S_{i+1}:=S_{i} \cup\{e\}$. If no such e exists (and this happens when $\left|S_{i}\right|=B+E$), let $S_{i+1}=S_{i}$.

Exploration and martingales

Lemma

Let E be the number of open edges in $\mathscr{C}(0)$ and let B be the number of closed edges in its boundary. Let $\lambda>0$ be some parameter. Then

$$
\mathbb{P}_{p}(B+E \leq n,|(1-p) E-p B|>\lambda \sqrt{n}) \leq C e^{-c \lambda^{2}} .
$$

Proof.

We define sets of edges $\emptyset=S_{0} \subset S_{1} \subset \cdots$ for $i \leq n$ as follows. Assume at step i there exists some edge $e \notin S_{i}$ such that there is an open path in S_{i} from 0 to one of the vertices of e. We choose one such e arbitrarily and define $S_{i+1}:=S_{i} \cup\{e\}$. If no such e exists (and this happens when $\left|S_{i}\right|=B+E$), let $S_{i+1}=S_{i}$. Let X_{i} be $1-p$ times the number of open edges in S_{i} minus p times the number of closed edges in S_{i}.

Exploration and martingales

Lemma

Let E be the number of open edges in $\mathscr{C}(0)$ and let B be the number of closed edges in its boundary. Let $\lambda>0$ be some parameter. Then

$$
\mathbb{P}_{p}(B+E \leq n,|(1-p) E-p B|>\lambda \sqrt{n}) \leq C e^{-c \lambda^{2}}
$$

Proof.

We define sets of edges $\emptyset=S_{0} \subset S_{1} \subset \cdots$ for $i \leq n$ as follows. Assume at step i there exists some edge $e \notin S_{i}$ such that there is an open path in S_{i} from 0 to one of the vertices of e. We choose one such e arbitrarily and define $S_{i+1}:=S_{i} \cup\{e\}$. If no such e exists (and this happens when $\left|S_{i}\right|=B+E$), let $S_{i+1}=S_{i}$. Let X_{i} be $1-p$ times the number of open edges in S_{i} minus p times the number of closed edges in S_{i}. Then X_{i} is a martingale.

Exploration and martingales

Lemma

Let E be the number of open edges in $\mathscr{C}(0)$ and let B be the number of closed edges in its boundary. Let $\lambda>0$ be some parameter. Then

$$
\mathbb{P}_{p}(B+E \leq n,|(1-p) E-p B|>\lambda \sqrt{n}) \leq C e^{-c \lambda^{2}}
$$

Proof.

We define sets of edges $\emptyset=S_{0} \subset S_{1} \subset \cdots$ for $i \leq n$ as follows. Assume at step i there exists some edge $e \notin S_{i}$ such that there is an open path in S_{i} from 0 to one of the vertices of e. We choose one such e arbitrarily and define $S_{i+1}:=S_{i} \cup\{e\}$. If no such e exists (and this happens when $\left|S_{i}\right|=B+E$), let $S_{i+1}=S_{i}$. Let X_{i} be $1-p$ times the number of open edges in S_{i} minus p times the number of closed edges in S_{i}. Then X_{i} is a martingale. The lemma follows from Azuma-Hoeffding.

Exploration and martingales

Lemma

Let E be the number of open edges in $\mathscr{C}(0)$ and let B be the number of closed edges in its boundary. Let $\lambda>0$ be some parameter. Then

$$
\mathbb{P}_{p}(B+E \leq n,|(1-p) E-p B|>\lambda \sqrt{n}) \leq C e^{-c \lambda^{2}}
$$

This is a flexible argument. You can start from a set of vertices (not just one), and you can add additional stopping conditions.

Exploration and martingales

Lemma

Let E be the number of open edges in $\mathscr{C}(0)$ and let B be the number of closed edges in its boundary. Let $\lambda>0$ be some parameter. Then

$$
\mathbb{P}_{p}(B+E \leq n,|(1-p) E-p B|>\lambda \sqrt{n}) \leq C e^{-c \lambda^{2}}
$$

This is a flexible argument. You can start from a set of vertices (not just one), and you can add additional stopping conditions. For example,

Lemma

Let $S \subset \Lambda$ be the set of vertices connected to the boundary. Let E be the number of open edges between vertices of S and let B be the number of closed edges with at least one vertex in S and both vertices in Λ.

Exploration and martingales

Lemma

Let E be the number of open edges in $\mathscr{C}(0)$ and let B be the number of closed edges in its boundary. Let $\lambda>0$ be some parameter. Then

$$
\mathbb{P}_{p}(B+E \leq n,|(1-p) E-p B|>\lambda \sqrt{n}) \leq C e^{-c \lambda^{2}} .
$$

This is a flexible argument. You can start from a set of vertices (not just one), and you can add additional stopping conditions. For example,

Lemma

Let $S \subset \Lambda$ be the set of vertices connected to the boundary. Let E be the number of open edges between vertices of S and let B be the number of closed edges with at least one vertex in S and both vertices in Λ. Let $X=(1-p) E-p B$. Then

$$
\mathbb{P}\left(|X|>\lambda n^{d / 2}\right) \leq e^{-c \lambda^{2}}
$$

Notation

Let A, B be subsets of $E \subseteq \mathbb{Z}^{d}$. We denote by

$$
A \stackrel{E}{\Longleftrightarrow} B
$$

the event that there are two disjoint clusters in E which intersect both A and B.

Notation

Let A, B be subsets of $E \subseteq \mathbb{Z}^{d}$. We denote by

$$
A \stackrel{E}{\Leftrightarrow} B
$$

the event that there are two disjoint clusters in E which intersect both A and B. We will use very often $A \stackrel{E}{\leftrightarrows} \partial E$ and in this case we omit the superscript, i.e. write $A \leftrightarrows \partial E$.

Theorem

Let V be the number of edges (x, y) in Λ_{n} such that $\{x, y\} \Leftrightarrow \partial \Lambda_{n}$ i.e. both x and y are connected to $\partial \Lambda_{n}$ but $x{ }_{\Lambda_{n}}^{\leftrightarrow} y$.

Theorem

Let V be the number of edges (x, y) in Λ_{n} such that $\{x, y\} \not \partial \partial \Lambda_{n}$ i.e. both x and y are connected to $\partial \Lambda_{n}$ but $x \stackrel{\Lambda_{n}}{\leftrightarrow} y$. Then $\mathbb{E}(V)<C n^{d-1 / 2} \sqrt{\log n}$.

Theorem

Let V be the number of edges (x, y) in Λ_{n} such that $\{x, y\} \leftrightarrows \partial \Lambda_{n}$ i.e. both x and y are connected to $\partial \Lambda_{n}$ but $x \stackrel{\Lambda_{n}}{\leftrightarrow} y$. Then $\mathbb{E}(V)<C n^{d-1 / 2} \sqrt{\log n}$.

Proof (Gandolfi-Grimmett-Russo).

For an $S \subseteq \Lambda_{n}$ define $X(S)$ to be $1-p$ times the number of open edges between two vertices of S minus p times the number of closed edges with at least one vertex in S and both vertices in Λ_{n}.

Theorem

Let V be the number of edges (x, y) in Λ_{n} such that $\{x, y\} \leftrightarrows \partial \Lambda_{n}$ i.e. both x and y are connected to $\partial \Lambda_{n}$ but $x \stackrel{\Lambda_{n}}{\leftrightarrow} y$. Then $\mathbb{E}(V)<C n^{d-1 / 2} \sqrt{\log n}$.

Proof (Gandolfi-Grimmett-Russo).

For an $S \subseteq \Lambda_{n}$ define $X(S)$ to be $1-p$ times the number of open edges between two vertices of S minus p times the number of closed edges with at least one vertex in S and both vertices in Λ_{n}. Let $\mathscr{C}_{1}, \mathscr{C}_{2}, \ldots$ be all the clusters in Λ_{n} that touch the boundary.

Theorem

Let V be the number of edges (x, y) in Λ_{n} such that $\{x, y\} \leftrightarrows \partial \Lambda_{n}$ i.e. both x and y are connected to $\partial \Lambda_{n}$ but $x \stackrel{\Lambda_{n}}{\leftrightarrow} y$. Then $\mathbb{E}(V)<C n^{d-1 / 2} \sqrt{\log n}$.

Proof (Gandolfi-Grimmett-Russo).

For an $S \subseteq \Lambda_{n}$ define $X(S)$ to be $1-p$ times the number of open edges between two vertices of S minus p times the number of closed edges with at least one vertex in S and both vertices in Λ_{n}. Let $\mathscr{C}_{1}, \mathscr{C}_{2}, \ldots$ be all the clusters in Λ_{n} that touch the boundary. Then

$$
X\left(\bigcup_{i} \mathscr{C}_{i}\right)-\sum_{i} X\left(\mathscr{C}_{i}\right)=p V
$$

Theorem

Let V be the number of edges (x, y) in Λ_{n} such that $\{x, y\} \Leftrightarrow \partial \Lambda_{n}$ i.e. both x and y are connected to $\partial \Lambda_{n}$ but $x \stackrel{\Lambda_{n}}{\leftrightarrow} y$. Then $\mathbb{E}(V)<C n^{d-1 / 2} \sqrt{\log n}$.

Proof (Gandolfi-Grimmett-Russo).

For an $S \subseteq \Lambda_{n}$ define $X(S)$ to be $1-p$ times the number of open edges between two vertices of S minus p times the number of closed edges with at least one vertex in S and both vertices in Λ_{n}. Let $\mathscr{C}_{1}, \mathscr{C}_{2}, \ldots$ be all the clusters in Λ_{n} that touch the boundary. Then

$$
X\left(\bigcup_{i} \mathscr{C}_{i}\right)-\sum_{i} X\left(\mathscr{C}_{i}\right)=p V
$$

The exploration argument shows that with high probability

$$
\left|X\left(\bigcup_{i} \mathscr{C}_{i}\right)\right|<C n^{d / 2} \sqrt{\log n} \quad\left|X\left(\mathscr{C}_{i}\right)\right|<C \sqrt{\left|\mathscr{C}_{i}\right|} \sqrt{\log n} \quad \forall i
$$

Theorem

Let V be the number of edges (x, y) in Λ_{n} such that $\{x, y\} \Leftrightarrow \partial \Lambda_{n}$. Then $\mathbb{E}(V)<C n^{d-1 / 2} \sqrt{\log n}$.

Proof (Gandolfi-Grimmett-Russo).

For an $S \subseteq \Lambda_{n}$ define $X(S)$ to be $1-p$ times the number of open edges between two vertices of S minus p times the number of closed edges with at least one vertex in S and both vertices in Λ_{n}. Let $\mathscr{C}_{1}, \mathscr{C}_{2}, \ldots$ be all the clusters in Λ_{n} that touch the boundary. Then $X\left(\bigcup_{i} \mathscr{C}_{i}\right)-\sum_{i} X\left(\mathscr{C}_{i}\right)=p V$. The exploration argument shows that with high probability $\left|X\left(\bigcup_{i} \mathscr{C}_{i}\right)\right|<C n^{d / 2} \sqrt{\log n},\left|X\left(\mathscr{C}_{i}\right)\right|<C \sqrt{\left|\mathscr{C}_{i}\right|} \sqrt{\log n}$ for all i.

Theorem

Let V be the number of edges (x, y) in Λ_{n} such that $\{x, y\} \Leftrightarrow \partial \Lambda_{n}$. Then $\mathbb{E}(V)<C n^{d-1 / 2} \sqrt{\log n}$.

Proof (Gandolfi-Grimmett-Russo).

For an $S \subseteq \Lambda_{n}$ define $X(S)$ to be $1-p$ times the number of open edges between two vertices of S minus p times the number of closed edges with at least one vertex in S and both vertices in Λ_{n}. Let $\mathscr{C}_{1}, \mathscr{C}_{2}, \ldots$ be all the clusters in Λ_{n} that touch the boundary. Then $X\left(\bigcup_{i} \mathscr{C}_{i}\right)-\sum_{i} X\left(\mathscr{C}_{i}\right)=p V$. The exploration argument shows that with high probability $\left|X\left(\bigcup_{i} \mathscr{C}_{i}\right)\right|<C n^{d / 2} \sqrt{\log n},\left|X\left(\mathscr{C}_{i}\right)\right|<C \sqrt{\left|\mathscr{C}_{i}\right|} \sqrt{\log n}$ for all i. By Cauchy-Schwarz,

$$
\sum_{i} \sqrt{\left|\mathscr{C}_{i}\right|} \leq \sqrt{\sum_{i}\left|\mathscr{C}_{i}\right|} \sqrt{\sum_{i} 1}
$$

Theorem

Let V be the number of edges (x, y) in Λ_{n} such that $\{x, y\} \Leftrightarrow \partial \Lambda_{n}$. Then $\mathbb{E}(V)<C n^{d-1 / 2} \sqrt{\log n}$.

Proof (Gandolfi-Grimmett-Russo).

For an $S \subseteq \Lambda_{n}$ define $X(S)$ to be $1-p$ times the number of open edges between two vertices of S minus p times the number of closed edges with at least one vertex in S and both vertices in Λ_{n}. Let $\mathscr{C}_{1}, \mathscr{C}_{2}, \ldots$ be all the clusters in Λ_{n} that touch the boundary. Then $X\left(\bigcup_{i} \mathscr{C}_{i}\right)-\sum_{i} X\left(\mathscr{C}_{i}\right)=p V$. The exploration argument shows that with high probability $\left|X\left(\bigcup_{i} \mathscr{C}_{i}\right)\right|<C n^{d / 2} \sqrt{\log n},\left|X\left(\mathscr{C}_{i}\right)\right|<C \sqrt{\left|\mathscr{C}_{i}\right|} \sqrt{\log n}$ for all i. By Cauchy-Schwarz,

$$
\sum_{i} \sqrt{\left|\mathscr{C}_{i}\right|} \leq \sqrt{\sum_{i}\left|\mathscr{C}_{i}\right|} \sqrt{\sum_{i} 1} \leq \sqrt{n^{d}}
$$

Theorem

Let V be the number of edges (x, y) in Λ_{n} such that $\{x, y\} \Leftrightarrow \partial \Lambda_{n}$. Then $\mathbb{E}(V)<C n^{d-1 / 2} \sqrt{\log n}$.

Proof (Gandolfi-Grimmett-Russo).

For an $S \subseteq \Lambda_{n}$ define $X(S)$ to be $1-p$ times the number of open edges between two vertices of S minus p times the number of closed edges with at least one vertex in S and both vertices in Λ_{n}. Let $\mathscr{C}_{1}, \mathscr{C}_{2}, \ldots$ be all the clusters in Λ_{n} that touch the boundary. Then $X\left(\bigcup_{i} \mathscr{C}_{i}\right)-\sum_{i} X\left(\mathscr{C}_{i}\right)=p V$. The exploration argument shows that with high probability $\left|X\left(\bigcup_{i} \mathscr{C}_{i}\right)\right|<C n^{d / 2} \sqrt{\log n},\left|X\left(\mathscr{C}_{i}\right)\right|<C \sqrt{\left|\mathscr{C}_{i}\right|} \sqrt{\log n}$ for all i. By Cauchy-Schwarz,

$$
\sum_{i} \sqrt{\left|\mathscr{C}_{i}\right|} \leq \sqrt{\sum_{i}\left|\mathscr{C}_{i}\right|} \sqrt{\sum_{i} 1} \leq \sqrt{n^{d}} \sqrt{n^{d-1}}=n^{d-1 / 2}
$$

Theorem

Let V be the number of edges (x, y) in Λ_{n} such that $\{x, y\} \Leftrightarrow \partial \Lambda_{n}$. Then $\mathbb{E}(V)<C n^{d-1 / 2} \sqrt{\log n}$.

Proof (Gandolfi-Grimmett-Russo).

For an $S \subseteq \Lambda_{n}$ define $X(S)$ to be $1-p$ times the number of open edges between two vertices of S minus p times the number of closed edges with at least one vertex in S and both vertices in Λ_{n}. Let $\mathscr{C}_{1}, \mathscr{C}_{2}, \ldots$ be all the clusters in Λ_{n} that touch the boundary. Then $X\left(\bigcup_{i} \mathscr{C}_{i}\right)-\sum_{i} X\left(\mathscr{C}_{i}\right)=p V$. The exploration argument shows that with high probability $\left|X\left(\bigcup_{i} \mathscr{C}_{i}\right)\right|<C n^{d / 2} \sqrt{\log n},\left|X\left(\mathscr{C}_{i}\right)\right|<C \sqrt{\left|\mathscr{C}_{i}\right|} \sqrt{\log n}$ for all i. By Cauchy-Schwarz,

$$
\sum_{i} \sqrt{\left|\mathscr{C}_{i}\right|} \leq \sqrt{\sum_{i}\left|\mathscr{C}_{i}\right|} \sqrt{\sum_{i} 1} \leq \sqrt{n^{d}} \sqrt{n^{d-1}}=n^{d-1 / 2}
$$

"with high probability" can be made to mean "with probability $>1-n^{-1 / 2 "}$ and we are done.

Theorem

Let V be the number of edges (x, y) in Λ_{n} such that $\{x, y\} \Leftrightarrow \partial \Lambda_{n}$. Then $\mathbb{E}(V)<C n^{d-1 / 2} \sqrt{\log n}$.

Corollary

For x a neighbour of 0 ,

$$
\mathbb{P}\left(\{0, x\} \Leftrightarrow \partial \Lambda_{n}\right)<C \sqrt{\frac{\log n}{n}} .
$$

Theorem

Let V be the number of edges (x, y) in Λ_{n} such that $\{x, y\} \Leftrightarrow \partial \Lambda_{n}$. Then $\mathbb{E}(V)<C n^{d-1 / 2} \sqrt{\log n}$.

Corollary

For x a neighbour of 0 ,

$$
\mathbb{P}\left(\{0, x\} \Leftrightarrow \partial \Lambda_{n}\right)<C \sqrt{\frac{\log n}{n}} .
$$

A flexible argument: by changing from where you explore you can get all kinds of results.

Theorem

Let V be the number of edges (x, y) in Λ_{n} such that $\{x, y\} \Leftrightarrow \partial \Lambda_{n}$. Then $\mathbb{E}(V)<C n^{d-1 / 2} \sqrt{\log n}$.

Corollary

For x a neighbour of 0 ,

$$
\mathbb{P}\left(\{0, x\} \Longleftrightarrow \partial \Lambda_{n}\right)<C \sqrt{\frac{\log n}{n}}
$$

A flexible argument: by changing from where you explore you can get all kinds of results. For example, if L is the union of all clusters reaching the left side of Λ_{n} and R is the union of all clusters reaching the right side of Λ_{n} then

$$
X(L \cup R)-X(L)-X(R)
$$

teaches something about edges connected to both the left and the right.

Theorem

Let V be the number of edges (x, y) in Λ_{n} such that $\{x, y\} \Leftrightarrow \partial \Lambda_{n}$. Then $\mathbb{E}(V)<C n^{d-1 / 2} \sqrt{\log n}$.

Corollary

For x a neighbour of 0 ,

$$
\mathbb{P}\left(\{0, x\} \Longleftrightarrow \partial \Lambda_{n}\right)<C \sqrt{\frac{\log n}{n}}
$$

A flexible argument: by changing from where you explore you can get all kinds of results. For example, if L is the union of all clusters reaching the left side of Λ_{n} and R is the union of all clusters reaching the right side of Λ_{n} then

$$
X(L \cup R)-X(L)-X(R)
$$

teaches something about edges connected to both the left and the right. Hutchcroft has a version where one explores from random points.

Theorem (Cerf, 2015)
$\mathbb{P}_{p_{c}}\left(\Lambda_{n^{c}} \leftrightarrows \partial \Lambda_{n}\right) \leq C n^{-c}$ for $c>0$ small enough .

Theorem (Cerf, 2015)
 $\mathbb{P}_{p_{c}}\left(\Lambda_{n^{c}} \leftrightarrows \partial \Lambda_{n}\right) \leq C n^{-c}$ for $c>0$ small enough .

Recall from the previous slide

Corollary

For x a neighbour of $0, \mathbb{P}\left(\{0, x\} \leftrightarrows \partial \Lambda_{n}\right)<C \sqrt{(\log n) / n}$.

Theorem (Cerf, 2015)
 $\mathbb{P}_{p_{c}}\left(\Lambda_{n^{c}} \leftrightarrows \partial \Lambda_{n}\right) \leq C n^{-c}$ for $c>0$ small enough.

Let $k<\frac{1}{2} n$ be some number (it will be n^{c} eventually, but for now let us keep it a parameter).

Theorem (Cerf, 2015)
 $\mathbb{P}_{p_{c}}\left(\Lambda_{n^{c}} \leftrightarrows \partial \Lambda_{n}\right) \leq C n^{-c}$ for $c>0$ small enough.

Let $k<\frac{1}{2} n$ be some number (it will be n^{c} eventually, but for now let us keep it a parameter). Recall the lemma from the previous hour: For any $x, y \in \Lambda_{k}, \mathbb{P}_{p_{c}}\left(x \stackrel{\Lambda_{2 k}}{\longleftrightarrow} y\right)>c k^{2 d-2 d^{2}}$.

Theorem (Cerf, 2015)
 $\mathbb{P}_{p_{c}}\left(\Lambda_{n^{c}} \leftrightarrows \partial \Lambda_{n}\right) \leq C n^{-c}$ for $c>0$ small enough.

Let $k<\frac{1}{2} n$ be some number (it will be n^{c} eventually, but for now let us keep it a parameter). Recall the lemma from the previous hour: For any $x, y \in \Lambda_{k}, \mathbb{P}_{p_{c}}\left(x \stackrel{\Lambda_{2 k}}{\longleftrightarrow} y\right)>c k^{2 d-2 d^{2}}$. It gives

Theorem (Cerf, 2015)

$\mathbb{P}_{p_{c}}\left(\Lambda_{n^{c}} \Leftrightarrow \partial \Lambda_{n}\right) \leq C n^{-c}$ for $c>0$ small enough .

Let $k<\frac{1}{2} n$ be some number (it will be n^{c} eventually, but for now let us keep it a parameter). Recall the lemma from the previous hour: For any $x, y \in \Lambda_{k}, \mathbb{P}_{p_{c}}\left(x \stackrel{\Lambda_{2 k}}{\longleftrightarrow} y\right)>c k^{2 d-2 d^{2}}$. It gives

Lemma

Let $A, B \subset \Lambda_{2 k}$, both intersecting Λ_{k}.

Theorem (Cerf, 2015)

$\mathbb{P}_{p_{c}}\left(\Lambda_{n^{c}} \Leftrightarrow \partial \Lambda_{n}\right) \leq C n^{-c}$ for $c>0$ small enough .

Let $k<\frac{1}{2} n$ be some number (it will be n^{c} eventually, but for now let us keep it a parameter). Recall the lemma from the previous hour: For any $x, y \in \Lambda_{k}, \mathbb{P}_{p_{c}}\left(x \stackrel{\Lambda_{2 k}}{\longleftrightarrow} y\right)>c k^{2 d-2 d^{2}}$. It gives

Lemma

Let $A, B \subset \Lambda_{2 k}$, both intersecting Λ_{k}. Then

$$
\mathbb{P}_{p_{c}}\left(A \stackrel{\Lambda_{2 k} \backslash A \cup B}{\longleftrightarrow} B\right)>c k^{2 d-2 d^{2}} .
$$

Lemma

Let $A, B \subset \Lambda_{2 k}$, both intersecting Λ_{k}. Then

$$
\mathbb{P}_{p_{c}}\left(A \stackrel{\Lambda_{2 k} \backslash A \cup B}{\longleftrightarrow} B\right)>c k^{2 d-2 d^{2}} .
$$

Theorem (Cerf, 2015)

$\mathbb{P}_{p_{c}}\left(\Lambda_{n^{c}} \leftrightarrows \partial \Lambda_{n}\right) \leq C n^{-c}$ for $c>0$ small enough .

Let $k<\frac{1}{2} n$ be some number (it will be n^{c} eventually, but for now let us keep it a parameter). Recall the lemma from the previous hour: For any $x, y \in \Lambda_{k}, \mathbb{P}_{p_{c}}\left(x \stackrel{\Lambda_{2 k}}{\longleftrightarrow} y\right)>c k^{2 d-2 d^{2}}$. It gives

Lemma

Let $A, B \subset \Lambda_{2 k}$, both intersecting Λ_{k}. Then

$$
\mathbb{P}_{p_{c}}\left(A \stackrel{\Lambda_{2 k} \backslash A \cup B}{\longleftrightarrow} B\right)>c k^{2 d-2 d^{2}} .
$$

Proof.

Let $x \in A \cap \Lambda_{k}$ and $y \in B \cap \Lambda_{k}$.

Theorem (Cerf, 2015)

$\mathbb{P}_{p_{c}}\left(\Lambda_{n^{c}} \Leftrightarrow \partial \Lambda_{n}\right) \leq C n^{-c}$ for $c>0$ small enough .

Let $k<\frac{1}{2} n$ be some number (it will be n^{c} eventually, but for now let us keep it a parameter). Recall the lemma from the previous hour: For any $x, y \in \Lambda_{k}, \mathbb{P}_{p_{c}}\left(x \stackrel{\Lambda_{2 k}}{\longleftrightarrow} y\right)>c k^{2 d-2 d^{2}}$. It gives

Lemma

Let $A, B \subset \Lambda_{2 k}$, both intersecting Λ_{k}. Then

$$
\mathbb{P}_{p_{c}}\left(A \stackrel{\Lambda_{2 k} \backslash A \cup B}{\longleftrightarrow} B\right)>c k^{2 d-2 d^{2}} .
$$

Proof.

Let $x \in A \cap \Lambda_{k}$ and $y \in B \cap \Lambda_{k}$. With probability at least $c k^{2 d-2 d^{2}}$ there is an open path γ from x to y.

Theorem (Cerf, 2015)

$\mathbb{P}_{p_{c}}\left(\Lambda_{n^{c}} \Leftrightarrow \partial \Lambda_{n}\right) \leq C n^{-c}$ for $c>0$ small enough .

Let $k<\frac{1}{2} n$ be some number (it will be n^{c} eventually, but for now let us keep it a parameter). Recall the lemma from the previous hour: For any $x, y \in \Lambda_{k}, \mathbb{P}_{p_{c}}\left(x \stackrel{\Lambda_{2 k}}{\longleftrightarrow} y\right)>c k^{2 d-2 d^{2}}$. It gives

Lemma

Let $A, B \subset \Lambda_{2 k}$, both intersecting Λ_{k}. Then

$$
\mathbb{P}_{p_{c}}\left(A \stackrel{\Lambda_{2 k} \backslash A \cup B}{\longleftrightarrow} B\right)>c k^{2 d-2 d^{2}} .
$$

Proof.

Let $x \in A \cap \Lambda_{k}$ and $y \in B \cap \Lambda_{k}$. With probability at least $c k^{2 d-2 d^{2}}$ there is an open path γ from x to y. The portion of γ from its last vertex in A until the first vertex in B after it demonstrates the lemma.

Theorem (Cerf, 2015)
 $\mathbb{P}_{p_{c}}\left(\Lambda_{n^{c}} \leftrightarrows \partial \Lambda_{n}\right) \leq C n^{-c}$ for $c>0$ small enough.

Lemma: Let $A, B \subset \Lambda_{2 k}$, both intersecting Λ_{k}. Then $\mathbb{P}_{p_{c}}\left(A \stackrel{\Lambda_{2 k} \backslash A \cup B}{\longleftrightarrow} B\right)>c k^{2 d-2 d^{2}}$.

Theorem (Cerf, 2015)
 $\mathbb{P}_{p_{c}}\left(\Lambda_{n^{c}} \leftrightarrows \partial \Lambda_{n}\right) \leq C n^{-c}$ for $c>0$ small enough.

Lemma: Let $A, B \subset \Lambda_{2 k}$, both intersecting Λ_{k}. Then $\mathbb{P}_{p_{c}}\left(A \stackrel{\Lambda_{2 k \backslash A \cup B}}{\longleftrightarrow} B\right)>c k^{2 d-2 d^{2}}$. Denote $P:=\mathbb{P}\left(\Lambda_{k} \Leftrightarrow \partial \Lambda_{n}\right)$.

Theorem (Cerf, 2015)

$\mathbb{P}_{p_{c}}\left(\Lambda_{n^{c}} \leftrightarrows \partial \Lambda_{n}\right) \leq C n^{-c}$ for $c>0$ small enough .

Lemma: Let $A, B \subset \Lambda_{2 k}$, both intersecting Λ_{k}. Then $\mathbb{P}_{p_{c}}\left(A \stackrel{\Lambda_{2 k} \backslash A \cup B}{\longleftrightarrow} B\right)>c k^{2 d-2 d^{2}}$. Denote $P:=\mathbb{P}\left(\Lambda_{k} \Leftrightarrow \partial \Lambda_{n}\right)$.

Lemma

Let E be the event that there exist edges e, $f \in \Lambda_{2 k}$ such that $\partial \Lambda_{n} \leftrightarrow e^{-}, e^{+} \leftrightarrow f^{-}, f^{+} \leftrightarrow \partial \Lambda_{n}$ but $e^{-} \leftrightarrow e^{+}, f^{-} \leftrightarrow f^{+}$and $e^{-} \leftrightarrow f^{+}$.

Lemma
Let E be the event that there exist edges e, $f \in \Lambda_{2 k}$ such that $\partial \Lambda_{n} \leftrightarrow e^{-}, e^{+} \leftrightarrow f^{-}, f^{+} \leftrightarrow \partial \Lambda_{n}$ but $e^{-} \leftrightarrow e^{+}, f^{-} \leftrightarrow f^{+}$and $e^{-} \nleftarrow f^{+}$.

Theorem (Cerf, 2015)

$\mathbb{P}_{p_{c}}\left(\Lambda_{n^{c}} \leftrightarrows \partial \Lambda_{n}\right) \leq C n^{-c}$ for $c>0$ small enough .

Lemma: Let $A, B \subset \Lambda_{2 k}$, both intersecting Λ_{k}. Then $\mathbb{P}_{p_{c}}\left(A \stackrel{\Lambda_{2 k} \backslash A \cup B}{\longleftrightarrow} B\right)>c k^{2 d-2 d^{2}}$. Denote $P:=\mathbb{P}\left(\Lambda_{k} \Leftrightarrow \partial \Lambda_{n}\right)$.

Lemma

Let E be the event that there exist edges e, $f \in \Lambda_{2 k}$ such that $\partial \Lambda_{n} \leftrightarrow e^{-}, e^{+} \leftrightarrow f^{-}, f^{+} \leftrightarrow \partial \Lambda_{n}$ but $e^{-} \leftrightarrow e^{+}, f^{-} \leftrightarrow f^{+}$and $e^{-} \leftrightarrow f^{+}$. Then $\mathbb{P}_{p_{c}}(E) \geq c k^{-2 d^{2}} P$.

Theorem (Cerf, 2015)

$\mathbb{P}_{p_{c}}\left(\Lambda_{n^{c}} \Leftrightarrow \partial \Lambda_{n}\right) \leq C n^{-c}$ for $c>0$ small enough .

Lemma: Let $A, B \subset \Lambda_{2 k}$, both intersecting Λ_{k}. Then $\mathbb{P}_{p_{c}}\left(A \stackrel{\Lambda_{2 k} \backslash A \cup B}{\longleftrightarrow} B\right)>c k^{2 d-2 d^{2}}$. Denote $P:=\mathbb{P}\left(\Lambda_{k} \Leftrightarrow \partial \Lambda_{n}\right)$.

Lemma

Let E be the event that there exist edges e, $f \in \Lambda_{2 k}$ such that $\partial \Lambda_{n} \leftrightarrow e^{-}, e^{+} \leftrightarrow f^{-}, f^{+} \leftrightarrow \partial \Lambda_{n}$ but $e^{-} \leftrightarrow e^{+}, f^{-} \leftrightarrow f^{+}$and $e^{-} \leftrightarrow f^{+}$. Then $\mathbb{P}_{p_{c}}(E) \geq c k^{-2 d^{2}} P$.

Proof.

There exist some $x, y \in \Lambda_{k}$ such that with probability $k^{-2 d} P$, $x \leftrightarrow \partial \Lambda_{n}, y \leftrightarrow \partial \Lambda_{n}$ and $x \leftrightarrow y$.

Theorem (Cerf, 2015)

$\mathbb{P}_{p_{c}}\left(\Lambda_{n^{c}} \Leftrightarrow \partial \Lambda_{n}\right) \leq C n^{-c}$ for $c>0$ small enough .

Lemma: Let $A, B \subset \Lambda_{2 k}$, both intersecting Λ_{k}. Then $\mathbb{P}_{p_{c}}\left(A \stackrel{\Lambda_{2 k} \backslash A \cup B}{\longleftrightarrow} B\right)>c k^{2 d-2 d^{2}}$. Denote $P:=\mathbb{P}\left(\Lambda_{k} \Leftrightarrow \partial \Lambda_{n}\right)$.

Lemma

Let E be the event that there exist edges e, $f \in \Lambda_{2 k}$ such that $\partial \Lambda_{n} \leftrightarrow e^{-}, e^{+} \leftrightarrow f^{-}, f^{+} \leftrightarrow \partial \Lambda_{n}$ but $e^{-} \leftrightarrow e^{+}, f^{-} \leftrightarrow f^{+}$and $e^{-} \leftrightarrow f^{+}$. Then $\mathbb{P}_{p_{c}}(E) \geq c k^{-2 d^{2}} P$.

Proof.

There exist some $x, y \in \Lambda_{k}$ such that with probability $k^{-2 d} P$, $x \leftrightarrow \partial \Lambda_{n}, y \leftrightarrow \partial \Lambda_{n}$ and $x \leftrightarrow y$. Condition on $\mathscr{C}(x)$ and $\mathscr{C}(y)$.

Theorem (Cerf, 2015)

$\mathbb{P}_{p_{c}}\left(\Lambda_{n^{c}} \Leftrightarrow \partial \Lambda_{n}\right) \leq C n^{-c}$ for $c>0$ small enough .

Lemma: Let $A, B \subset \Lambda_{2 k}$, both intersecting Λ_{k}. Then $\mathbb{P}_{p_{c}}\left(A \stackrel{\Lambda_{2 k} \backslash A \cup B}{\longleftrightarrow} B\right)>c k^{2 d-2 d^{2}}$. Denote $P:=\mathbb{P}\left(\Lambda_{k} \Leftrightarrow \partial \Lambda_{n}\right)$.

Lemma

Let E be the event that there exist edges e, $f \in \Lambda_{2 k}$ such that $\partial \Lambda_{n} \leftrightarrow e^{-}, e^{+} \leftrightarrow f^{-}, f^{+} \leftrightarrow \partial \Lambda_{n}$ but $e^{-} \leftrightarrow e^{+}, f^{-} \leftrightarrow f^{+}$and $e^{-} \leftrightarrow f^{+}$. Then $\mathbb{P}_{p_{c}}(E) \geq c k^{-2 d^{2}} P$.

Proof.

There exist some $x, y \in \Lambda_{k}$ such that with probability $k^{-2 d} P$, $x \leftrightarrow \partial \Lambda_{n}, y \leftrightarrow \partial \Lambda_{n}$ and $x \leftrightarrow y$. Condition on $\mathscr{C}(x)$ and $\mathscr{C}(y)$. Use the previous lemma with $A=\overline{\mathscr{C}(x)}$ i.e. $\mathscr{C}(x)$ with its immediate neighbourhood and $B=\overline{\mathscr{C}(y)}$.

Theorem (Cerf, 2015)

$\mathbb{P}_{p_{c}}\left(\Lambda_{n^{c}} \Leftrightarrow \partial \Lambda_{n}\right) \leq C n^{-c}$ for $c>0$ small enough .

Lemma: Let $A, B \subset \Lambda_{2 k}$, both intersecting Λ_{k}. Then $\mathbb{P}_{p_{c}}\left(A \stackrel{\Lambda_{2 k} \backslash A \cup B}{\longleftrightarrow} B\right)>c k^{2 d-2 d^{2}}$. Denote $P:=\mathbb{P}\left(\Lambda_{k} \Leftrightarrow \partial \Lambda_{n}\right)$.

Lemma

Let E be the event that there exist edges e, $f \in \Lambda_{2 k}$ such that $\partial \Lambda_{n} \leftrightarrow e^{-}, e^{+} \leftrightarrow f^{-}, f^{+} \leftrightarrow \partial \Lambda_{n}$ but $e^{-} \leftrightarrow e^{+}, f^{-} \leftrightarrow f^{+}$and $e^{-} \leftrightarrow f^{+}$. Then $\mathbb{P}_{p_{c}}(E) \geq c k^{-2 d^{2}} P$.

Proof.

There exist some $x, y \in \Lambda_{k}$ such that with probability $k^{-2 d} P$, $x \leftrightarrow \partial \Lambda_{n}, y \leftrightarrow \partial \Lambda_{n}$ and $x \leftrightarrow y$. Condition on $\mathscr{C}(x)$ and $\mathscr{C}(y)$. Use the previous lemma with $A=\overline{\mathscr{C}(x)}$ i.e. $\mathscr{C}(x)$ with its immediate neighbourhood and $B=\overline{\mathscr{C}(y)} . \quad A \stackrel{\Lambda_{2 k} \backslash A \cup B}{\longleftrightarrow} B$ is independent of the conditioning.

Lemma

Let E be the event that there exist edges e, $f \in \Lambda_{2 k}$ such that $\partial \Lambda_{n} \leftrightarrow e^{-}, e^{+} \leftrightarrow f^{-}, f^{+} \leftrightarrow \partial \Lambda_{n}$ but $e^{-} \leftrightarrow e^{+}, f^{-} \leftrightarrow f^{+}$and $e^{-} \leftrightarrow f^{+}$. Then $\mathbb{P}_{p_{c}}(E) \geq c k^{-2 d^{2}} P$.

Proof.

There exist some $x, y \in \Lambda_{k}$ such that with probability $k^{-2 d} P$, $x \leftrightarrow \partial \Lambda_{n}, y \leftrightarrow \partial \Lambda_{n}$ and $x \leftrightarrow y$. Condition on $\mathscr{C}(x)$ and $\mathscr{C}(y)$. Use the previous lemma with $A=\overline{\mathscr{C}(x)}$ i.e. $\mathscr{C}(x)$ with its immediate neighbourhood and $B=\overline{\mathscr{C}(y)} . \quad A \stackrel{\Lambda_{2 k} \backslash A \cup B}{\longrightarrow} B$ is independent of the conditioning.

Lemma

Let E be the event that there exist edges e, $f \in \Lambda_{2 k}$ such that $\partial \Lambda_{n} \leftrightarrow e^{-}, e^{+} \leftrightarrow f^{-}, f^{+} \leftrightarrow \partial \Lambda_{n}$ but $e^{-} \leftrightarrow e^{+}, f^{-} \leftrightarrow f^{+}$and $e^{-} \leftrightarrow f^{+}$. Then $\mathbb{P}_{p_{c}}(E) \geq c k^{-2 d^{2}} P$.

Proof.

There exist some $x, y \in \Lambda_{k}$ such that with probability $k^{-2 d} P$, $x \leftrightarrow \partial \Lambda_{n}, y \leftrightarrow \partial \Lambda_{n}$ and $x \leftrightarrow y$. Condition on $\mathscr{C}(x)$ and $\mathscr{C}(y)$. Use the previous lemma with $A=\overline{\mathscr{C}(x)}$ i.e. $\mathscr{C}(x)$ with its immediate neighbourhood and $B=\overline{\mathscr{C}(y)} . \quad A \stackrel{\Lambda_{2 k} \backslash A \cup B}{\longleftrightarrow} B$ is independent of the conditioning.

This kind of argument is called a "patching argument".

Theorem (Cerf, 2015)

$\mathbb{P}_{p_{c}}\left(\Lambda_{n^{c}} \leftrightarrows \partial \Lambda_{n}\right) \leq C n^{-c}$ for $c>0$ small enough.

Lemma

Let E be the event that there exist edges e, $f \in \Lambda_{2 k}$ such that $\partial \Lambda_{n} \leftrightarrow e^{-}, e^{+} \leftrightarrow f^{-}, f^{+} \leftrightarrow \partial \Lambda_{n}$ but $e^{-} \leftrightarrow e^{+}, f^{-} \leftrightarrow f^{+}$and $e^{-} \leftrightarrow f^{+}$. Then $\mathbb{P}_{p_{c}}(E) \geq c k^{-2 d^{2}} P$.

Theorem (Cerf, 2015)

$\mathbb{P}_{p_{c}}\left(\Lambda_{n^{c}} \leftrightarrows \partial \Lambda_{n}\right) \leq C n^{-c}$ for $c>0$ small enough .

Lemma

Let E be the event that there exist edges e, $f \in \Lambda_{2 k}$ such that $\partial \Lambda_{n} \leftrightarrow e^{-}, e^{+} \leftrightarrow f^{-}, f^{+} \leftrightarrow \partial \Lambda_{n}$ but $e^{-} \leftrightarrow e^{+}, f^{-} \leftrightarrow f^{+}$and $e^{-} \leftrightarrow f^{+}$. Then $\mathbb{P}_{p_{c}}(E) \geq c k^{-2 d^{2}} P$.

Proof of the theorem.

For given edges e and f denote by $E_{e, f}$ the event as in the lemma (so $E=\bigcup E_{e, f}$).

Theorem (Cerf, 2015)

$\mathbb{P}_{p_{c}}\left(\Lambda_{n^{c}} \leftrightarrows \partial \Lambda_{n}\right) \leq C n^{-c}$ for $c>0$ small enough .

Lemma

Let E be the event that there exist edges e, $f \in \Lambda_{2 k}$ such that $\partial \Lambda_{n} \leftrightarrow e^{-}, e^{+} \leftrightarrow f^{-}, f^{+} \leftrightarrow \partial \Lambda_{n}$ but $e^{-} \leftrightarrow e^{+}, f^{-} \leftrightarrow f^{+}$and $e^{-} \not \leftrightarrow f^{+}$. Then $\mathbb{P}_{p_{c}}(E) \geq c k^{-2 d^{2}} P$.

Proof of the theorem.

For given edges e and f denote by $E_{e, f}$ the event as in the lemma (so $E=\bigcup E_{e, f}$). Choose some e and f such that $\mathbb{P}\left(E_{e, f}\right) \geq c k^{-2 d^{2}-2 d} P$.

Theorem (Cerf, 2015)

$\mathbb{P}_{p_{c}}\left(\Lambda_{n^{c}} \Leftrightarrow \partial \Lambda_{n}\right) \leq C n^{-c}$ for $c>0$ small enough .

Lemma

Let E be the event that there exist edges e, $f \in \Lambda_{2 k}$ such that $\partial \Lambda_{n} \leftrightarrow e^{-}, e^{+} \leftrightarrow f^{-}, f^{+} \leftrightarrow \partial \Lambda_{n}$ but $e^{-} \leftrightarrow e^{+}, f^{-} \leftrightarrow f^{+}$and $e^{-} \leftrightarrow f^{+}$. Then $\mathbb{P}_{p_{c}}(E) \geq c k^{-2 d^{2}} P$.

Proof of the theorem.

For given edges e and f denote by $E_{e, f}$ the event as in the lemma (so $E=\bigcup E_{e, f}$). Choose some e and f such that $\mathbb{P}\left(E_{e, f}\right) \geq c k^{-2 d^{2}-2 d} P$. The event $E_{e, f}^{*}$ that " $E_{e, f}$ would have been satisfied had e been closed, but it's open" satisfies $\mathbb{P}\left(E_{e, f}^{*}\right) \approx \mathbb{P}\left(E_{e, f}\right)$.

Theorem (Cerf, 2015)

$\mathbb{P}_{p_{c}}\left(\Lambda_{n^{c}} \Leftrightarrow \partial \Lambda_{n}\right) \leq C n^{-c}$ for $c>0$ small enough .

Lemma

Let E be the event that there exist edges e, $f \in \Lambda_{2 k}$ such that $\partial \Lambda_{n} \leftrightarrow e^{-}, e^{+} \leftrightarrow f^{-}, f^{+} \leftrightarrow \partial \Lambda_{n}$ but $e^{-} \leftrightarrow e^{+}, f^{-} \leftrightarrow f^{+}$and $e^{-} \leftrightarrow f^{+}$. Then $\mathbb{P}_{p_{c}}(E) \geq c k^{-2 d^{2}} P$.

Proof of the theorem.

For given edges e and f denote by $E_{e, f}$ the event as in the lemma (so $E=\bigcup E_{e, f}$). Choose some e and f such that $\mathbb{P}\left(E_{e, f}\right) \geq c k^{-2 d^{2}-2 d} P$. The event $E_{e, f}^{*}$ that " $E_{e, f}$ would have been satisfied had e been closed, but it's open" satisfies $\mathbb{P}\left(E_{e, f}^{*}\right) \approx \mathbb{P}\left(E_{e, f}\right)$. But $E_{e, f}^{*}$ implies $f \Leftrightarrow \partial \Lambda_{n}$, which has probability $\leq C \sqrt{(\log n) / n}$.

Theorem (Cerf, 2015)

$\mathbb{P}_{p_{c}}\left(\Lambda_{n^{c}} \leftrightarrows \partial \Lambda_{n}\right) \leq C n^{-c}$ for $c>0$ small enough .

Proof of the theorem.

For given edges e and f denote by $E_{e, f}$ the event as in the lemma (so $E=\bigcup E_{e, f}$). Choose some e and f such that $\mathbb{P}\left(E_{e, f}\right) \geq c k^{-2 d^{2}-2 d} P$. The event $E_{e, f}^{*}$ that " $E_{e, f}$ would have been satisfied had e been closed, but it's open" satisfies $\mathbb{P}\left(E_{e, f}^{*}\right) \approx \mathbb{P}\left(E_{e, f}\right)$. But $E_{e, f}^{*}$ implies $f \Longleftrightarrow \partial \Lambda_{n}$, which has probability $\leq C \sqrt{(\log n) / n}$. All in all we get

$$
C \sqrt{\frac{\log n}{n}} \geq \mathbb{P}\left(E_{e, f}^{*}\right) \geq c \mathbb{P}\left(E_{e, f}\right) \geq c k^{-2 d^{2}-2 d} P
$$

Theorem (Cerf, 2015)

$\mathbb{P}_{p_{c}}\left(\Lambda_{n^{c}} \leftrightarrows \partial \Lambda_{n}\right) \leq C n^{-c}$ for $c>0$ small enough .

Proof of the theorem.

For given edges e and f denote by $E_{e, f}$ the event as in the lemma (so $E=\bigcup E_{e, f}$). Choose some e and f such that $\mathbb{P}\left(E_{e, f}\right) \geq c k^{-2 d^{2}-2 d} P$. The event $E_{e, f}^{*}$ that " $E_{e, f}$ would have been satisfied had e been closed, but it's open" satisfies $\mathbb{P}\left(E_{e, f}^{*}\right) \approx \mathbb{P}\left(E_{e, f}\right)$. But $E_{e, f}^{*}$ implies $f \Leftrightarrow \partial \Lambda_{n}$, which has probability $\leq C \sqrt{(\log n) / n}$. All in all we get

$$
C \sqrt{\frac{\log n}{n}} \geq \mathbb{P}\left(E_{e, f}^{*}\right) \geq c \mathbb{P}\left(E_{e, f}\right) \geq c k^{-2 d^{2}-2 d} P
$$

Choosing $k=n^{1 /\left(8 d^{2}+8 d\right)}$ proves the theorem.

Theorem (Cerf, 2015)

$\mathbb{P}_{p_{c}}\left(\Lambda_{n^{1 /\left(8 d^{2}+8 d\right)-o(1)}} \leftrightarrows \partial \Lambda_{n}\right) \leq C n^{-1 / 4}$.

Theorem (Cerf, 2015)

$\mathbb{P}_{p_{c}}\left(\Lambda_{n^{1 /\left(8 d^{2}+8 d\right)-o(1)}} \leftrightarrows \partial \Lambda_{n}\right) \leq C n^{-1 / 4}$.

- The theorem actually holds for all p.

Theorem (Cerf, 2015)

$\mathbb{P}_{p_{c}}\left(\Lambda_{n^{1 /\left(8 d^{2}+8 d\right)-o(1)}} \leftrightarrows \partial \Lambda_{n}\right) \leq C n^{-1 / 4}$.

- The theorem actually holds for all p.
- Cerf had the a scheme for improving the exponents.

Get a better estimate
Get a better estimate for $\mathbb{P}\left(\Lambda_{n^{c}} \rightrightarrows \partial \Lambda_{n}\right)$

$$
\left\{\begin{array}{l}
\text { to } \\
\text { Get a better estimate } \\
\text { for } \mathbb{P}(\{0, x\} \Leftrightarrow \partial \Lambda)
\end{array}\right.
$$

for the number of clusters from $\partial \Lambda_{2 n}$ to $\partial \Lambda_{n}$

Theorem (Cerf, 2015)

$\mathbb{P}_{p_{c}}\left(\Lambda_{n^{1 /\left(8 d^{2}+8 d\right)-o(1)}} \leftrightarrows \partial \Lambda_{n}\right) \leq C n^{-1 / 4}$.

- The theorem actually holds for all p.
- Cerf had the a scheme for improving the exponents. Unfortunately, the end result was

$$
\mathbb{P}\left(\{0, x\} \Longleftrightarrow \partial \Lambda_{n}\right) \leq n^{-\frac{2 d^{2}+3 d-3}{4 d^{2}+5 d-5}+o(1)}
$$

which is not a big improvement over $\frac{1}{2}$, say in $d=3$ it gives $\frac{12}{23}$.

Theorem (Cerf, 2015)

$\mathbb{P}_{p_{c}}\left(\Lambda_{n^{1 /\left(8 d^{2}+8 d\right)-o(1)}} \Leftrightarrow \partial \Lambda_{n}\right) \leq C n^{-1 / 4}$.

- The theorem actually holds for all p.
- Cerf had the a scheme for improving the exponents. Unfortunately, the end result was

$$
\mathbb{P}\left(\{0, x\} \Longleftrightarrow \partial \Lambda_{n}\right) \leq n^{-\frac{2 d^{2}+3 d-3}{4 d^{2}+5 d-5}+o(1)}
$$

which is not a big improvement over $\frac{1}{2}$, say in $d=3$ it gives $\frac{12}{23}$.

Definition

Let η be some positive number smaller than $\frac{1}{8 d^{2}+8 d}$.

Theorem (Cerf, 2015)

$\mathbb{P}_{p_{c}}\left(\Lambda_{n^{1 /\left(8 d^{2}+8 d\right)-o(1)}} \leftrightarrows \partial \Lambda_{n}\right) \leq C n^{-1 / 4}$.

Lemma

Call a cluster \mathscr{C} in Λ_{n} "large" if it intersects $\frac{7}{8}$ of the cubes of side-length n^{η} in Λ_{n}.

Theorem (Cerf, 2015)

$\mathbb{P}_{p_{c}}\left(\Lambda_{n^{1 /\left(8 d^{2}+8 d\right)-o(1)}} \leftrightarrows \partial \Lambda_{n}\right) \leq C n^{-1 / 4}$.

Lemma

Call a cluster \mathscr{C} in Λ_{n} "large" if it intersects $\frac{7}{8}$ of the cubes of side-length n^{η} in Λ_{n}. Then

$$
\mathbb{P}_{p_{c}}(\exists \text { large cluster }) \leq 1-c .
$$

Theorem (Cerf, 2015)

$\mathbb{P}_{p_{c}}\left(\Lambda_{n^{1 /\left(8 d^{2}+8 d\right)-o(1)}} \leftrightarrows \partial \Lambda_{n}\right) \leq C n^{-1 / 4}$.

Lemma

Call a cluster \mathscr{C} in Λ_{n} "large" if it intersects $\frac{7}{8}$ of the cubes of side-length n^{η} in Λ_{n}. Then

$$
\mathbb{P}_{p_{c}}(\exists \text { large cluster }) \leq 1-c .
$$

Proof.

Denote the event by E. Assume both E and its translation by $(n / 2,0, \ldots, 0)$ occurred (call the translates $\Lambda^{\prime}, \mathscr{C}^{\prime}$ and $\left.E^{\prime}\right)$.

Theorem (Cerf, 2015)

$\mathbb{P}_{p_{c}}\left(\Lambda_{n^{1 /\left(8 d^{2}+8 d\right)-o(1)}} \leftrightarrows \partial \Lambda_{n}\right) \leq C n^{-1 / 4}$.

Lemma

Call a cluster \mathscr{C} in Λ_{n} "large" if it intersects $\frac{7}{8}$ of the cubes of side-length n^{η} in Λ_{n}. Then

$$
\mathbb{P}_{p_{c}}(\exists \text { large cluster }) \leq 1-c .
$$

Proof.

Denote the event by E. Assume both E and its translation by $(n / 2,0, \ldots, 0)$ occurred (call the translates $\Lambda^{\prime}, \mathscr{C}^{\prime}$ and $\left.E^{\prime}\right)$. Then there at least $\frac{1}{4}$ of the n^{η} cubes in $\Lambda \cap \Lambda^{\prime}$ intersect both \mathscr{C} and \mathscr{C}^{\prime}.

Theorem (Cerf, 2015)

$\mathbb{P}_{p_{c}}\left(\Lambda_{n^{1 /\left(8 d^{2}+8 d\right)-o(1)}} \leftrightarrows \partial \Lambda_{n}\right) \leq C n^{-1 / 4}$.

Lemma

Call a cluster \mathscr{C} in Λ_{n} "large" if it intersects $\frac{7}{8}$ of the cubes of side-length n^{η} in Λ_{n}. Then

$$
\mathbb{P}_{p_{c}}(\exists \text { large cluster }) \leq 1-c .
$$

Proof.

Denote the event by E. Assume both E and its translation by $(n / 2,0, \ldots, 0)$ occurred (call the translates $\Lambda^{\prime}, \mathscr{C}^{\prime}$ and $\left.E^{\prime}\right)$. Then there at least $\frac{1}{4}$ of the n^{η} cubes in $\Lambda \cap \Lambda^{\prime}$ intersect both \mathscr{C} and \mathscr{C}^{\prime}. If $\mathscr{C} \neq \mathscr{C}^{\prime}$ then each of these cubes satisfies the two disjoint clusters event.

Theorem (Cerf, 2015)

$\mathbb{P}_{p_{c}}\left(\Lambda_{n^{1 /\left(8 d^{2}+8 d\right)-o(1)}} \leftrightarrows \partial \Lambda_{n}\right) \leq C n^{-1 / 4}$.

Lemma

Call a cluster \mathscr{C} in Λ_{n} "large" if it intersects $\frac{7}{8}$ of the cubes of side-length n^{η} in Λ_{n}. Then

$$
\mathbb{P}_{p_{c}}(\exists \text { large cluster }) \leq 1-c .
$$

Proof.

Denote the event by E. Assume both E and its translation by $(n / 2,0, \ldots, 0)$ occurred (call the translates $\Lambda^{\prime}, \mathscr{C}^{\prime}$ and $\left.E^{\prime}\right)$. Then there at least $\frac{1}{4}$ of the n^{η} cubes in $\Lambda \cap \Lambda^{\prime}$ intersect both \mathscr{C} and \mathscr{C}^{\prime}. If $\mathscr{C} \neq \mathscr{C}^{\prime}$ then each of these cubes satisfies the two disjoint clusters event. Hence by Cerf's theorem and Markov's inequality

$$
\mathbb{P}_{p_{c}}\left(E \cap E^{\prime} \cap\left\{\mathscr{C} \neq \mathscr{C}^{\prime}\right\}\right) \leq C n^{-1 / 4}
$$

Lemma

Call a cluster \mathscr{C} in Λ_{n} "large" if it intersects $\frac{7}{8}$ of the cubes of side-length n^{η} in Λ_{n}. Then $\mathbb{P}_{p_{c}}(\exists$ large cluster $) \leq 1-c_{1}$.

Proof.

Denote the event by E. Assume both E and its translation by $(n / 2,0, \ldots, 0)$ occurred (call the translates $\Lambda^{\prime}, \mathscr{C}^{\prime}$ and $\left.E^{\prime}\right)$. Then there at least $\frac{1}{4}$ of the n^{η} cubes in $\Lambda \cap \Lambda^{\prime}$ intersect both \mathscr{C} and \mathscr{C}^{\prime}. If $\mathscr{C} \neq \mathscr{C}^{\prime}$ then each of these cubes satisfies the two disjoint clusters event. Hence by Cerf's theorem and Markov's inequality $\mathbb{P}_{p_{c}}\left(E \cap E^{\prime} \cap\left\{\mathscr{C} \neq \mathscr{C}^{\prime}\right\}\right) \leq C n^{-1 / 4}$.

Lemma

Call a cluster \mathscr{C} in Λ_{n} "large" if it intersects $\frac{7}{8}$ of the cubes of side-length n^{η} in Λ_{n}. Then $\mathbb{P}_{p_{c}}(\exists$ large cluster $) \leq 1-c_{1}$.

Proof.

Denote the event by E. Assume both E and its translation by $(n / 2,0, \ldots, 0)$ occurred (call the translates $\Lambda^{\prime}, \mathscr{C}^{\prime}$ and $\left.E^{\prime}\right)$. Then there at least $\frac{1}{4}$ of the n^{η} cubes in $\Lambda \cap \Lambda^{\prime}$ intersect both \mathscr{C} and \mathscr{C}^{\prime}. If $\mathscr{C} \neq \mathscr{C}^{\prime}$ then each of these cubes satisfies the two disjoint clusters event. Hence by Cerf's theorem and Markov's inequality $\mathbb{P}_{p_{c}}\left(E \cap E^{\prime} \cap\left\{\mathscr{C} \neq \mathscr{C}^{\prime}\right\}\right) \leq C n^{-1 / 4}$. Hence

$$
\mathbb{P}_{p_{c}}\left(\mathscr{C}=\mathscr{C}^{\prime}\right) \geq 1-2 c_{1}-C n^{-1 / 4}
$$

Lemma

Call a cluster \mathscr{C} in Λ_{n} "large" if it intersects $\frac{7}{8}$ of the cubes of side-length n^{η} in Λ_{n}. Then $\mathbb{P}_{p_{c}}(\exists$ large cluster $) \leq 1-c_{1}$.

Proof.

Denote the event by E. Assume both E and its translation by $(n / 2,0, \ldots, 0)$ occurred (call the translates $\Lambda^{\prime}, \mathscr{C}^{\prime}$ and $\left.E^{\prime}\right)$. Then there at least $\frac{1}{4}$ of the n^{η} cubes in $\Lambda \cap \Lambda^{\prime}$ intersect both \mathscr{C} and \mathscr{C}^{\prime}. If $\mathscr{C} \neq \mathscr{C}^{\prime}$ then each of these cubes satisfies the two disjoint clusters event. Hence by Cerf's theorem and Markov's inequality $\mathbb{P}_{p_{c}}\left(E \cap E^{\prime} \cap\left\{\mathscr{C} \neq \mathscr{C}^{\prime}\right\}\right) \leq C n^{-1 / 4}$. Hence

$$
\mathbb{P}_{p_{c}}\left(\mathscr{C}=\mathscr{C}^{\prime}\right) \geq 1-2 c_{1}-C n^{-1 / 4}
$$

By continuity, the same inequality will hold for a slightly smaller p.

Lemma

Call a cluster \mathscr{C} in Λ_{n} "large" if it intersects $\frac{7}{8}$ of the cubes of side-length n^{η} in Λ_{n}. Then $\mathbb{P}_{p_{c}}(\exists$ large cluster $) \leq 1-c_{1}$.

Proof.

Denote the event by E. Assume both E and its translation by $(n / 2,0, \ldots, 0)$ occurred (call the translates $\Lambda^{\prime}, \mathscr{C}^{\prime}$ and $\left.E^{\prime}\right)$. Then there at least $\frac{1}{4}$ of the n^{η} cubes in $\Lambda \cap \Lambda^{\prime}$ intersect both \mathscr{C} and \mathscr{C}^{\prime}. If $\mathscr{C} \neq \mathscr{C}^{\prime}$ then each of these cubes satisfies the two disjoint clusters event. Hence by Cerf's theorem and Markov's inequality $\mathbb{P}_{p_{c}}\left(E \cap E^{\prime} \cap\left\{\mathscr{C} \neq \mathscr{C}^{\prime}\right\}\right) \leq C n^{-1 / 4}$. Hence

$$
\mathbb{P}_{p_{c}}\left(\mathscr{C}=\mathscr{C}^{\prime}\right) \geq 1-2 c_{1}-C n^{-1 / 4}
$$

By continuity, the same inequality will hold for a slightly smaller p. By a theorem of Liggett, Schonmann and Stacey (1997), if c_{1} is sufficiently small and n sufficiently large, then an infinite cluster exists, contradicting $p<p_{c}$.

Lemma

Call a cluster \mathscr{C} in Λ_{n} "large" if it intersects $\frac{7}{8}$ of the cubes of side-length n^{η} in Λ_{n}. Then $\mathbb{P}_{p_{c}}(\exists$ large cluster $) \leq 1-c$.

The same argument works for clusters $\Lambda_{2 n}$ (or any constant), i.e. we define the cluster by connections in $\Lambda_{2 n}$ but still ask only about intersections with subcubes of Λ_{n}.

Lemma

Call a cluster \mathscr{C} in Λ_{n} "large" if it intersects $\frac{7}{8}$ of the cubes of side-length n^{η} in Λ_{n}. Then $\mathbb{P}_{p_{c}}(\exists$ large cluster $) \leq 1-c$.

The same argument works for clusters $\Lambda_{2 n}$ (or any constant), i.e. we define the cluster by connections in $\Lambda_{2 n}$ but still ask only about intersections with subcubes of Λ_{n}. The proof is the same, only the "distance of independence" in Liggett-Schonmann-Stacey needs to be increased.

Lemma

Call a cluster \mathscr{C} in $\Lambda_{2 n}$ "large" if it intersects $\frac{7}{8}$ of the cubes of side-length n^{η} in Λ_{n}. Then $\mathbb{P}_{p_{c}}(\exists$ large cluster $) \leq 1-c$.

The same argument works for clusters $\Lambda_{2 n}$ (or any constant), i.e. we define the cluster by connections in $\Lambda_{2 n}$ but still ask only about intersections with subcubes of Λ_{n}. The proof is the same, only the "distance of independence" in Liggett-Schonmann-Stacey needs to be increased.

Lemma

Call a cluster \mathscr{C} in $\Lambda_{2 n}$ "large" if it intersects $\frac{7}{8}$ of the cubes of side-length n^{η} in Λ_{n}. Then $\mathbb{P}_{p_{c}}(\exists$ large cluster $) \leq 1-c$.

Theorem (Duminil-Copin-K-Tassion, unpublished)
For $d \geq 3$ and some $\nu=\nu(d)>0, \mathbb{P}_{p_{c}}\left(\Lambda_{n^{\nu}} \nleftarrow \partial \Lambda_{n}\right)>C n^{-d}$.

Lemma

Call a cluster \mathscr{C} in $\Lambda_{2 n}$ "large" if it intersects $\frac{7}{8}$ of the cubes of side-length n^{η} in Λ_{n}. Then $\mathbb{P}_{p_{c}}(\exists$ large cluster $) \leq 1-c$.

Theorem (Duminil-Copin-K-Tassion, unpublished)
For $d \geq 3$ and some $\nu=\nu(d)>0, \mathbb{P}_{p_{c}}\left(\Lambda_{n^{\nu}} \leftrightarrow \partial \Lambda_{n}\right)>C n^{-d}$.

Proof.

Examine one ν (whose value will be chosen later) and assume by contradiction that this probability is, in fact, larger than $1-C n^{-d}$.

Lemma

Call a cluster \mathscr{C} in $\Lambda_{2 n}$ "large" if it intersects $\frac{7}{8}$ of the cubes of side-length n^{η} in Λ_{n}. Then $\mathbb{P}_{p_{c}}(\exists$ large cluster $) \leq 1-c$.

Theorem (Duminil-Copin-K-Tassion, unpublished)

For $d \geq 3$ and some $\nu=\nu(d)>0, \mathbb{P}_{p_{c}}\left(\Lambda_{n^{\nu}} \leftrightarrow \partial \Lambda_{n}\right)>C n^{-d}$.

Proof.

Examine one ν (whose value will be chosen later) and assume by contradiction that this probability is, in fact, larger than $1-C n^{-d}$. Then, with probability $>1-n^{-d \nu}$, each box $a+\Lambda_{n^{\nu}}, a \in \Lambda_{n}$ is connected to $a+\partial \Lambda_{n}$.

Lemma

Call a cluster \mathscr{C} in $\Lambda_{2 n}$ "large" if it intersects $\frac{7}{8}$ of the cubes of side-length n^{η} in Λ_{n}. Then $\mathbb{P}_{p_{c}}(\exists$ large cluster $) \leq 1-c$.

Theorem (Duminil-Copin-K-Tassion, unpublished)

For $d \geq 3$ and some $\nu=\nu(d)>0, \mathbb{P}_{p_{c}}\left(\Lambda_{n^{\nu}} \leftrightarrow \partial \Lambda_{n}\right)>C n^{-d}$.

Proof.

Examine one ν (whose value will be chosen later) and assume by contradiction that this probability is, in fact, larger than $1-C n^{-d}$. Then, with probability $>1-n^{-d \nu}$, each box $a+\Lambda_{n^{\nu}}, a \in \Lambda_{n}$ is connected to $a+\partial \Lambda_{n}$. Denote this event by A.

Lemma

Call a cluster \mathscr{C} in $\Lambda_{2 n}$ "large" if it intersects $\frac{7}{8}$ of the cubes of side-length n^{η} in Λ_{n}. Then $\mathbb{P}_{p_{c}}(\exists$ large cluster $) \leq 1-c$.

Theorem (Duminil-Copin-K-Tassion, unpublished)

For $d \geq 3$ and some $\nu=\nu(d)>0, \mathbb{P}_{p_{c}}\left(\Lambda_{n^{\nu}} \leftrightarrow \partial \Lambda_{n}\right)>C n^{-d}$.

Proof.

Examine one ν (whose value will be chosen later) and assume by contradiction that this probability is, in fact, larger than $1-C n^{-d}$. Then, with probability $>1-n^{-d \nu}$, each box $a+\Lambda_{n^{\nu}}, a \in \Lambda_{n}$ is connected to $a+\partial \Lambda_{n}$. Denote this event by A. In particular, all boxes in $\Lambda_{n / 4}$ are connected to $\partial \Lambda_{n / 2}$.

Lemma

Call a cluster \mathscr{C} in $\Lambda_{2 n}$ "large" if it intersects $\frac{7}{8}$ of the cubes of side-length n^{η} in Λ_{n}. Then $\mathbb{P}_{p_{c}}(\exists$ large cluster $) \leq 1-c$.

Theorem (Duminil-Copin-K-Tassion, unpublished)

For $d \geq 3$ and some $\nu=\nu(d)>0, \mathbb{P}_{p_{c}}\left(\Lambda_{n^{\nu}} \leftrightarrow \partial \Lambda_{n}\right)>C n^{-d}$.

Proof.

Examine one ν (whose value will be chosen later) and assume by contradiction that this probability is, in fact, larger than $1-C n^{-d}$. Then, with probability $>1-n^{-d \nu}$, each box $a+\Lambda_{n^{\nu}}, a \in \Lambda_{n}$ is connected to $a+\partial \Lambda_{n}$. Denote this event by A. In particular, all boxes in $\Lambda_{n / 4}$ are connected to $\partial \Lambda_{n / 2}$. During this proof, whenever we say "cluster" we mean a cluster in Λ_{n} that intersects $\Lambda_{n / 4}$ and $\partial \Lambda_{n / 2}$

Lemma

Call a cluster \mathscr{C} in $\Lambda_{2 n}$ "large" if it intersects $\frac{7}{8}$ of the cubes of side-length n^{η} in Λ_{n}. Then $\mathbb{P}_{p_{c}}(\exists$ large cluster $) \leq 1-c$.

Theorem (Duminil-Copin-K-Tassion, unpublished)
For $d \geq 3$ and some $\nu=\nu(d)>0, \mathbb{P}_{p_{c}}\left(\Lambda_{n^{\nu}} \leftrightarrow \partial \Lambda_{n}\right)>C n^{-d}$.

Proof.

$A \Longrightarrow\left\{\right.$ all n^{ν} boxes in $\Lambda_{n / 4}$ are connected to $\left.\partial \Lambda_{n / 2}\right\}$.

Lemma

Call a cluster \mathscr{C} in $\Lambda_{2 n}$ "large" if it intersects $\frac{7}{8}$ of the cubes of side-length n^{η} in Λ_{n}. Then $\mathbb{P}_{p_{c}}(\exists$ large cluster $) \leq 1-c$.

Theorem (Duminil-Copin-K-Tassion, unpublished)
For $d \geq 3$ and some $\nu=\nu(d)>0, \mathbb{P}_{p_{c}}\left(\Lambda_{n^{\nu}} \leftrightarrow \partial \Lambda_{n}\right)>C n^{-d}$.

Proof.

$A \Longrightarrow\left\{\right.$ all n^{ν} boxes in $\Lambda_{n / 4}$ are connected to $\left.\partial \Lambda_{n / 2}\right\}$. For every cluster \mathscr{C} let $N(\mathscr{C})$ be the number of n^{ν}-subboxes of $\Lambda_{n / 2}$ that intersect \mathscr{C}.

Lemma

Call a cluster \mathscr{C} in $\Lambda_{2 n}$ "large" if it intersects $\frac{7}{8}$ of the cubes of side-length n^{η} in Λ_{n}. Then $\mathbb{P}_{p_{c}}(\exists$ large cluster $) \leq 1-c$.

Theorem (Duminil-Copin-K-Tassion, unpublished)

For $d \geq 3$ and some $\nu=\nu(d)>0, \mathbb{P}_{p_{c}}\left(\Lambda_{n^{\nu}} \leftrightarrow \partial \Lambda_{n}\right)>C n^{-d}$.

Proof.

$A \Longrightarrow\left\{\right.$ all n^{ν} boxes in $\Lambda_{n / 4}$ are connected to $\left.\partial \Lambda_{n / 2}\right\}$. For every cluster \mathscr{C} let $N(\mathscr{C})$ be the number of n^{ν}-subboxes of $\Lambda_{n / 2}$ that intersect \mathscr{C}. Under A we have,

$$
n^{(1-\nu) d} \lesssim \sum_{\mathscr{C}} N(\mathscr{C})
$$

Lemma

Call a cluster \mathscr{C} in $\Lambda_{2 n}$ "large" if it intersects $\frac{7}{8}$ of the cubes of side-length n^{η} in Λ_{n}. Then $\mathbb{P}_{p_{c}}(\exists$ large cluster $) \leq 1-c$.

Theorem (Duminil-Copin-K-Tassion, unpublished)

For $d \geq 3$ and some $\nu=\nu(d)>0, \mathbb{P}_{p_{c}}\left(\Lambda_{n^{\nu}} \leftrightarrow \partial \Lambda_{n}\right)>C n^{-d}$.

Proof.

$A \Longrightarrow\left\{\right.$ all n^{ν} boxes in $\Lambda_{n / 4}$ are connected to $\left.\partial \Lambda_{n / 2}\right\}$. For every cluster \mathscr{C} let $N(\mathscr{C})$ be the number of n^{ν}-subboxes of $\Lambda_{n / 2}$ that intersect \mathscr{C}. Under A we have, by concavity

$$
n^{(1-\nu) d} \lesssim \sum_{\mathscr{C}} N(\mathscr{C}) \leq\left(\sum_{\mathscr{C}} N(\mathscr{C})^{(d-1) / d}\right)^{d /(d-1)}
$$

Lemma

Call a cluster \mathscr{C} in $\Lambda_{2 n}$ "large" if it intersects $\frac{7}{8}$ of the cubes of side-length n^{η} in Λ_{n}. Then $\mathbb{P}_{p_{c}}(\exists$ large cluster $) \leq 1-c$.

Theorem (Duminil-Copin-K-Tassion, unpublished)

For $d \geq 3$ and some $\nu=\nu(d)>0, \mathbb{P}_{p_{c}}\left(\Lambda_{n^{\nu}} \leftrightarrow \partial \Lambda_{n}\right)>C n^{-d}$.

Proof.

$A \Longrightarrow\left\{\right.$ all n^{ν} boxes in $\Lambda_{n / 4}$ are connected to $\left.\partial \Lambda_{n / 2}\right\}$. For every cluster \mathscr{C} let $N(\mathscr{C})$ be the number of n^{ν}-subboxes of $\Lambda_{n / 2}$ that intersect \mathscr{C}. Under A we have, by concavity

$$
n^{(1-\nu) d} \lesssim \sum_{\mathscr{C}} N(\mathscr{C}) \leq\left(\sum_{\mathscr{C}} N(\mathscr{C})^{(d-1) / d}\right)^{d /(d-1)}
$$

By the lemma,

$$
\mathbb{E} \sum_{\mathscr{C} \text { small }} N(\mathscr{C})^{(d-1) / d} \geq c n^{(1-\nu)(d-1)}
$$

Theorem (Duminil-Copin-K-Tassion, unpublished)

For $d \geq 3$ and some $\nu=\nu(d)>0, \mathbb{P}_{p_{c}}\left(\Lambda_{n^{\nu}} \leftrightarrow \partial \Lambda_{n}\right)>C n^{-d}$.

Proof.

Let $N(\mathscr{C})$ be the number of n^{ν}-subboxes of $\Lambda_{n / 2}$ that intersect $\mathscr{C} \cdot \mathbb{E} \sum_{\mathscr{C} \text { small }} N(\mathscr{C})^{(d-1) / d} \geq c n^{(1-\nu)(d-1)}$.

Theorem (Duminil-Copin-K-Tassion, unpublished)

For $d \geq 3$ and some $\nu=\nu(d)>0, \mathbb{P}_{p_{c}}\left(\Lambda_{n^{\nu}} \leftrightarrow \partial \Lambda_{n}\right)>C n^{-d}$.

Proof.

Let $N(\mathscr{C})$ be the number of n^{ν}-subboxes of $\Lambda_{n / 2}$ that intersect $\mathscr{C} . \mathbb{E} \sum_{\mathscr{C} \text { small }} N(\mathscr{C})^{(d-1) / d} \geq c n^{(1-\nu)(d-1)}$. Let us return to the proof of Gandolfi-Grimmett-Russo. In fact it shows that

$$
\mathbb{P}\left(0 \Leftrightarrow \partial \Lambda_{n / 4}\right) \leq C n^{-d / 2}+C(\log n) n^{-d} \mathbb{E} \sum_{\mathscr{C}} \sqrt{|\mathscr{C}|} .
$$

where the sum is over clusters in $\Lambda_{n / 2}$.

Theorem (Duminil-Copin-K-Tassion, unpublished)

For $d \geq 3$ and some $\nu=\nu(d)>0, \mathbb{P}_{p_{c}}\left(\Lambda_{n^{\nu}} \leftrightarrow \partial \Lambda_{n}\right)>C n^{-d}$.

Proof.

Let $N(\mathscr{C})$ be the number of n^{ν}-subboxes of $\Lambda_{n / 2}$ that intersect $\mathscr{C} . \mathbb{E} \sum_{\mathscr{C} \text { small }} N(\mathscr{C})^{(d-1) / d} \geq c n^{(1-\nu)(d-1)}$. Let us return to the proof of Gandolfi-Grimmett-Russo. In fact it shows that

$$
\mathbb{P}\left(0 \Leftrightarrow \partial \Lambda_{n / 4}\right) \leq C n^{-d / 2}+C(\log n) n^{-d} \mathbb{E} \sum_{\mathscr{C}} \sqrt{|\mathscr{C}|} .
$$

where the sum is over clusters in $\Lambda_{n / 2}$. A variation on the argument, also due to Cerf, shows that one can take the sum only over \mathscr{C} in Λ_{n} that intersect $\Lambda_{n / 4}$ and $\partial \Lambda_{n / 2}$.

Theorem (Duminil-Copin-K-Tassion, unpublished)

For $d \geq 3$ and some $\nu=\nu(d)>0, \mathbb{P}_{p_{c}}\left(\Lambda_{n^{\nu}} \nleftarrow \partial \Lambda_{n}\right)>C n^{-d}$.

Proof.

Let $N(\mathscr{C})$ be the number of n^{ν}-subboxes of $\Lambda_{n / 2}$ that intersect $\mathscr{C} . \mathbb{E} \sum_{\mathscr{C} \text { small }} N(\mathscr{C})^{(d-1) / d} \geq c n^{(1-\nu)(d-1)}$. Let us return to the proof of Gandolfi-Grimmett-Russo. In fact it shows that

$$
\mathbb{P}\left(0 \Leftrightarrow \partial \Lambda_{n / 4}\right) \leq C n^{-d / 2}+C(\log n) n^{-d} \mathbb{E} \sum_{\mathscr{C}} \sqrt{|\mathscr{C}|} .
$$

where the sum is over clusters in $\Lambda_{n / 2}$. A variation on the argument, also due to Cerf, shows that one can take the sum only over \mathscr{C} in Λ_{n} that intersect $\Lambda_{n / 4}$ and $\partial \Lambda_{n / 2}$. And with Cerf's lemma,

$$
\mathbb{P}\left(\Lambda_{2 n^{\nu}} \Leftrightarrow \partial \Lambda_{n / 4}\right) \leq C n^{C \nu} \mathbb{P}\left(0 \Leftrightarrow \partial \Lambda_{n / 4}\right)
$$

Theorem (Duminil-Copin-K-Tassion, unpublished)

For $d \geq 3$ and some $\nu=\nu(d)>0, \mathbb{P}_{p_{c}}\left(\Lambda_{n^{\nu}} \nleftarrow \partial \Lambda_{n}\right)>C n^{-d}$.

Proof.

Let $N(\mathscr{C})$ be the number of n^{ν}-subboxes of $\Lambda_{n / 2}$ that intersect $\mathscr{C} . \mathbb{E} \sum_{\mathscr{C} \text { small }} N(\mathscr{C})^{(d-1) / d} \geq c n^{(1-\nu)(d-1)}$. Let us return to the proof of Gandolfi-Grimmett-Russo. In fact it shows that

$$
\mathbb{P}\left(0 \Leftrightarrow \partial \Lambda_{n / 4}\right) \leq C n^{-d / 2}+C(\log n) n^{-d} \mathbb{E} \sum_{\mathscr{C}} \sqrt{|\mathscr{C}|} .
$$

where the sum is over clusters in $\Lambda_{n / 2}$. A variation on the argument, also due to Cerf, shows that one can take the sum only over \mathscr{C} in Λ_{n} that intersect $\Lambda_{n / 4}$ and $\partial \Lambda_{n / 2}$. And with Cerf's lemma,

$$
\begin{aligned}
\mathbb{P}\left(\Lambda_{2 n^{\nu}} \leftrightarrows \partial \Lambda_{n / 4}\right) & \leq C n^{C \nu} \mathbb{P}\left(0 \leftrightarrows \partial \Lambda_{n / 4}\right) \\
& \leq C n^{-d / 2+C \nu}+C n^{-d+C \nu} \mathbb{E} \sum_{\mathscr{C}} \sqrt{N(\mathscr{C})}
\end{aligned}
$$

Theorem (Duminil-Copin-K-Tassion, unpublished)

For $d \geq 3$ and some $\nu=\nu(d)>0, \mathbb{P}_{p_{c}}\left(\Lambda_{n^{\nu}} \leftrightarrow \partial \Lambda_{n}\right)>C n^{-d}$.

Proof.

Let $N(\mathscr{C})$ be the number of n^{ν}-subboxes of $\Lambda_{n / 2}$ that intersect $\mathscr{C} \cdot \mathbb{E} \sum_{\mathscr{C} \text { small }} N(\mathscr{C})^{(d-1) / d} \geq c n^{(1-\nu)(d-1)}$.
$\mathbb{P}\left(\Lambda_{2 n^{\nu}} \Leftrightarrow \partial \Lambda_{n / 4}\right) \leq C n^{-d / 2+C \nu}+C n^{-d+C \nu} \mathbb{E} \sum_{\mathscr{C}} \sqrt{N(\mathscr{C})}$.

Theorem (Duminil-Copin-K-Tassion, unpublished)

For $d \geq 3$ and some $\nu=\nu(d)>0, \mathbb{P}_{p_{c}}\left(\Lambda_{n^{\nu}} \leftrightarrow \partial \Lambda_{n}\right)>C n^{-d}$.

Proof.

Let $N(\mathscr{C})$ be the number of n^{ν}-subboxes of $\Lambda_{n / 2}$ that intersect $\mathscr{C} \cdot \mathbb{E} \sum_{\mathscr{C} \text { small }} N(\mathscr{C})^{(d-1) / d} \geq c n^{(1-\nu)(d-1)}$.
$\mathbb{P}\left(\Lambda_{2 n^{\nu}} \Leftrightarrow \partial \Lambda_{n / 4}\right) \leq C n^{-d / 2+C \nu}+C n^{-d+C \nu} \mathbb{E} \sum_{\mathscr{C}} \sqrt{N(\mathscr{C})}$. The isoperimetric inequality in \mathbb{Z}^{d} shows that for every small \mathscr{C} we have at least $c N(\mathscr{C})^{(d-1) / d}$ subboxes of $\Lambda_{n / 2}$ which intersect \mathscr{C} but have a neighbouring box that does not intersect \mathscr{C}.

Theorem (Duminil-Copin-K-Tassion, unpublished)

For $d \geq 3$ and some $\nu=\nu(d)>0, \mathbb{P}_{p_{c}}\left(\Lambda_{n^{\nu}} \leftrightarrow \partial \Lambda_{n}\right)>C n^{-d}$.

Proof.

Let $N(\mathscr{C})$ be the number of n^{ν}-subboxes of $\Lambda_{n / 2}$ that intersect $\mathscr{C} \cdot \mathbb{E} \sum_{\mathscr{C} \text { small }} N(\mathscr{C})^{(d-1) / d} \geq c n^{(1-\nu)(d-1)}$.
$\mathbb{P}\left(\Lambda_{2 n^{\nu}} \Leftrightarrow \partial \Lambda_{n / 4}\right) \leq C n^{-d / 2+C \nu}+C n^{-d+C \nu} \mathbb{E} \sum_{\mathscr{C}} \sqrt{N(\mathscr{C})}$. The isoperimetric inequality in \mathbb{Z}^{d} shows that for every small \mathscr{C} we have at least $c N(\mathscr{C})^{(d-1) / d}$ subboxes of $\Lambda_{n / 2}$ which intersect \mathscr{C} but have a neighbouring box that does not intersect \mathscr{C}. Let Q be such a box and let Q^{\prime} be its neighbour that does not interset \mathscr{C}.

Theorem (Duminil-Copin-K-Tassion, unpublished)

For $d \geq 3$ and some $\nu=\nu(d)>0, \mathbb{P}_{p_{c}}\left(\Lambda_{n^{\nu}} \nleftarrow \partial \Lambda_{n}\right)>C n^{-d}$.

Proof.

Let $N(\mathscr{C})$ be the number of n^{ν}-subboxes of $\Lambda_{n / 2}$ that intersect $\mathscr{C} \cdot \mathbb{E} \sum_{\mathscr{C} \text { small }} N(\mathscr{C})^{(d-1) / d} \geq c n^{(1-\nu)(d-1)}$.
$\mathbb{P}\left(\Lambda_{2 n^{\nu}} \Leftrightarrow \partial \Lambda_{n / 4}\right) \leq C n^{-d / 2+C \nu}+C n^{-d+C \nu} \mathbb{E} \sum_{\mathscr{C}} \sqrt{N(\mathscr{C})}$. The isoperimetric inequality in \mathbb{Z}^{d} shows that for every small \mathscr{C} we have at least $c N(\mathscr{C})^{(d-1) / d}$ subboxes of $\Lambda_{n / 2}$ which intersect \mathscr{C} but have a neighbouring box that does not intersect \mathscr{C}. Let Q be such a box and let Q^{\prime} be its neighbour that does not interset \mathscr{C}. Under the event A (which, recall, said that every n^{ν} subbox of $\Lambda_{n / 2}$ is connected to distance n), this implies that $Q \cup Q^{\prime}$ is connected to distance $n / 4$ by two disjoint clusters.

Theorem (Duminil-Copin-K-Tassion, unpublished)

For $d \geq 3$ and some $\nu=\nu(d)>0, \mathbb{P}_{p_{c}}\left(\Lambda_{n^{\nu}} \nleftarrow \partial \Lambda_{n}\right)>C n^{-d}$.

Proof.

Let $N(\mathscr{C})$ be the number of n^{ν}-subboxes of $\Lambda_{n / 2}$ that intersect $\mathscr{C} \cdot \mathbb{E} \sum_{\mathscr{C} \text { small }} N(\mathscr{C})^{(d-1) / d} \geq c n^{(1-\nu)(d-1)}$.
$\mathbb{P}\left(\Lambda_{2 n^{\nu}} \Leftrightarrow \partial \Lambda_{n / 4}\right) \leq C n^{-d / 2+C \nu}+C n^{-d+C \nu} \mathbb{E} \sum_{\mathscr{C}} \sqrt{N(\mathscr{C})}$. The isoperimetric inequality in \mathbb{Z}^{d} shows that for every small \mathscr{C} we have at least $c N(\mathscr{C})^{(d-1) / d}$ subboxes of $\Lambda_{n / 2}$ which intersect \mathscr{C} but have a neighbouring box that does not intersect \mathscr{C}. Let Q be such a box and let Q^{\prime} be its neighbour that does not interset \mathscr{C}. Under the event A (which, recall, said that every n^{ν} subbox of $\Lambda_{n / 2}$ is connected to distance n), this implies that $Q \cup Q^{\prime}$ is connected to distance $n / 4$ by two disjoint clusters. Thus, under A, there are $c \sum_{\mathscr{C} \text { small }} N(\mathscr{C})^{(d-1) / d}$ boxes of size $2 n^{\nu}$ in $\Lambda_{n / 2}$ which are connected to distance $n / 4$ by two disjoint clusters.

Theorem (Duminil-Copin-K-Tassion, unpublished)

For $d \geq 3$ and some $\nu=\nu(d)>0, \mathbb{P}_{p_{c}}\left(\Lambda_{n^{\nu}} \leftrightarrow \partial \Lambda_{n}\right)>C n^{-d}$.

Proof.

Let $N(\mathscr{C})$ be the number of n^{ν}-subboxes of $\Lambda_{n / 2}$ that intersect $\mathscr{C} \cdot \mathbb{E} \sum_{\mathscr{C} \text { small }} N(\mathscr{C})^{(d-1) / d} \geq c n^{(1-\nu)(d-1)}$.
$\mathbb{P}\left(\Lambda_{2 n^{\nu}} \Leftrightarrow \partial \Lambda_{n / 4}\right) \leq C n^{-d / 2+C \nu}+C n^{-d+C \nu} \mathbb{E} \sum_{\mathscr{C}} \sqrt{N(\mathscr{C})}$.
Thus, under A, there are $c \sum_{\mathscr{C} \text { small }} N(\mathscr{C})^{(d-1) / d}$ boxes of size $2 n^{\nu}$ in $\Lambda_{n / 2}$ which are connected to distance $n / 4$ by two disjoint clusters.

Theorem (Duminil-Copin-K-Tassion, unpublished)

For $d \geq 3$ and some $\nu=\nu(d)>0, \mathbb{P}_{p_{c}}\left(\Lambda_{n^{\nu}} \leftrightarrow \partial \Lambda_{n}\right)>C n^{-d}$.

Proof.

Let $N(\mathscr{C})$ be the number of n^{ν}-subboxes of $\Lambda_{n / 2}$ that intersect $\mathscr{C} \cdot \mathbb{E} \sum_{\mathscr{C} \text { small }} N(\mathscr{C})^{(d-1) / d} \geq c n^{(1-\nu)(d-1)}$.
$\mathbb{P}\left(\Lambda_{2 n^{\nu}} \Leftrightarrow \partial \Lambda_{n / 4}\right) \leq C n^{-d / 2+C \nu}+C n^{-d+C \nu} \mathbb{E} \sum_{\mathscr{C}} \sqrt{N(\mathscr{C})}$.
Thus, under A, there are $c \sum_{\mathscr{C} \text { small }} N(\mathscr{C})^{(d-1) / d}$ boxes of size $2 n^{\nu}$ in $\Lambda_{n / 2}$ which are connected to distance $n / 4$ by two disjoint clusters. There is some over-counting in this argument, every $2 n^{\nu}$ box might be counted for every cluster that intersects it.

Theorem (Duminil-Copin-K-Tassion, unpublished)

For $d \geq 3$ and some $\nu=\nu(d)>0, \mathbb{P}_{p_{c}}\left(\Lambda_{n^{\nu}} \nleftarrow \partial \Lambda_{n}\right)>C n^{-d}$.

Proof.

Let $N(\mathscr{C})$ be the number of n^{ν}-subboxes of $\Lambda_{n / 2}$ that intersect $\mathscr{C} \cdot \mathbb{E} \sum_{\mathscr{C} \text { small }} N(\mathscr{C})^{(d-1) / d} \geq c n^{(1-\nu)(d-1)}$.
$\mathbb{P}\left(\Lambda_{2 n^{\nu}} \Leftrightarrow \partial \Lambda_{n / 4}\right) \leq C n^{-d / 2+C \nu}+C n^{-d+C \nu} \mathbb{E} \sum_{\mathscr{C}} \sqrt{N(\mathscr{C})}$.
Thus, under A, there are $c \sum_{\mathscr{C} \text { small }} N(\mathscr{C})^{(d-1) / d}$ boxes of size $2 n^{\nu}$ in $\Lambda_{n / 2}$ which are connected to distance $n / 4$ by two disjoint clusters. There is some over-counting in this argument, every $2 n^{\nu}$ box might be counted for every cluster that intersects it. We bound the over-counting crudely by the volume of the box, $C n^{d \nu}$.

Theorem (Duminil-Copin-K-Tassion, unpublished)

For $d \geq 3$ and some $\nu=\nu(d)>0, \mathbb{P}_{p_{c}}\left(\Lambda_{n^{\nu}} \nleftarrow \partial \Lambda_{n}\right)>C n^{-d}$.

Proof.

Let $N(\mathscr{C})$ be the number of n^{ν}-subboxes of $\Lambda_{n / 2}$ that intersect $\mathscr{C} \cdot \mathbb{E} \sum_{\mathscr{C} \text { small }} N(\mathscr{C})^{(d-1) / d} \geq c n^{(1-\nu)(d-1)}$.
$\mathbb{P}\left(\Lambda_{2 n^{\nu}} \Leftrightarrow \partial \Lambda_{n / 4}\right) \leq C n^{-d / 2+C \nu}+C n^{-d+C \nu} \mathbb{E} \sum_{\mathscr{C}} \sqrt{N(\mathscr{C})}$.
Thus, under A, there are $c \sum_{\mathscr{C} \text { small }} N(\mathscr{C})^{(d-1) / d}$ boxes of size $2 n^{\nu}$ in $\Lambda_{n / 2}$ which are connected to distance $n / 4$ by two disjoint clusters. There is some over-counting in this argument, every $2 n^{\nu}$ box might be counted for every cluster that intersects it. We bound the over-counting crudely by the volume of the box, $C n^{d \nu}$. Overall we get, under A,

$$
\#\{\text { such boxes }\} \geq c n^{-d \nu} \sum_{\mathscr{C} \text { small }} N(\mathscr{C})^{(d-1) / d}
$$

Theorem (Duminil-Copin-K-Tassion, unpublished)

For $d \geq 3$ and some $\nu=\nu(d)>0, \mathbb{P}_{p_{c}}\left(\Lambda_{n^{\nu}} \leftrightarrow \partial \Lambda_{n}\right)>C n^{-d}$.

Proof.

Let $N(\mathscr{C})$ be the number of n^{ν}-subboxes of $\Lambda_{n / 2}$ that intersect $\mathscr{C} \cdot \mathbb{E} \sum_{\mathscr{C} \text { small }} N(\mathscr{C})^{(d-1) / d} \geq c n^{(1-\nu)(d-1)}$.
$\mathbb{P}\left(\Lambda_{2 n^{\nu}} \Leftrightarrow \partial \Lambda_{n / 4}\right) \leq C n^{-d / 2+C \nu}+C n^{-d+C \nu} \mathbb{E} \sum_{\mathscr{C}} \sqrt{N(\mathscr{C})}$.
Under A,

$$
\#\{\text { such boxes }\} \geq c n^{-d \nu} \sum_{\mathscr{C} \text { small }} N(\mathscr{C})^{(d-1) / d} .
$$

Theorem (Duminil-Copin-K-Tassion, unpublished)

For $d \geq 3$ and some $\nu=\nu(d)>0, \mathbb{P}_{p_{c}}\left(\Lambda_{n^{\nu}} \leftrightarrow \partial \Lambda_{n}\right)>C n^{-d}$.

Proof.

Let $N(\mathscr{C})$ be the number of n^{ν}-subboxes of $\Lambda_{n / 2}$ that intersect $\mathscr{C} \cdot \mathbb{E} \sum_{\mathscr{C} \text { small }} N(\mathscr{C})^{(d-1) / d} \geq c n^{(1-\nu)(d-1)}$.
$\mathbb{P}\left(\Lambda_{2 n^{\nu}} \Leftrightarrow \partial \Lambda_{n / 4}\right) \leq C n^{-d / 2+C \nu}+C n^{-d+C \nu} \mathbb{E} \sum_{\mathscr{C}} \sqrt{N(\mathscr{C})}$.
Under A,

$$
\#\{\text { such boxes }\} \geq c n^{-d \nu} \sum_{\mathscr{C} \text { small }} N(\mathscr{C})^{(d-1) / d}
$$

Taking expectations gives

$$
C n^{(1-\nu) d} \mathbb{P}\left(\Lambda_{2 n^{\nu}} \Leftrightarrow \partial \Lambda_{n / 4}\right) \geq c n^{-d \nu} \mathbb{E} \sum_{\mathscr{C} \text { small }} N(\mathscr{C})^{(d-1) / d}
$$

Theorem (Duminil-Copin-K-Tassion, unpublished)

For $d \geq 3$ and some $\nu=\nu(d)>0, \mathbb{P}_{p_{c}}\left(\Lambda_{n^{\nu}} \leftrightarrow \partial \Lambda_{n}\right)>C n^{-d}$.

Proof.

Let $N(\mathscr{C})$ be the number of n^{ν}-subboxes of $\Lambda_{n / 2}$ that intersect $\mathscr{C} . \mathbb{E} \sum_{\mathscr{C} \text { small }} N(\mathscr{C})^{(d-1) / d} \geq c n^{(1-\nu)(d-1)}$.
$\mathbb{P}\left(\Lambda_{2 n^{\nu}} \Leftrightarrow \partial \Lambda_{n / 4}\right) \leq C n^{-d / 2+C \nu}+C n^{-d+C \nu} \mathbb{E} \sum_{\mathscr{C}} \sqrt{N(\mathscr{C})}$.
Under A,

$$
\#\{\text { such boxes }\} \geq c n^{-d \nu} \sum_{\mathscr{C} \text { small }} N(\mathscr{C})^{(d-1) / d} .
$$

Taking expectations gives

$$
C n^{(1-\nu) d} \mathbb{P}\left(\Lambda_{2 n^{\nu}} \Leftrightarrow \partial \Lambda_{n / 4}\right) \geq c n^{-d \nu} \mathbb{E} \sum_{\mathscr{C} \text { small }} N(\mathscr{C})^{(d-1) / d}
$$

Together these give

$$
\mathbb{E} \sum_{\mathscr{C} \text { small }} N(\mathscr{C})^{(d-1) / d} \leq C n^{d / 2+C \nu}+C n^{C \nu} \sum_{\mathscr{C}} \mathbb{E} \sqrt{N(\mathscr{C})}
$$

Theorem (Duminil-Copin-K-Tassion, unpublished)

For $d \geq 3$ and some $\nu=\nu(d)>0, \mathbb{P}_{p_{c}}\left(\Lambda_{n^{\nu}} \leftrightarrow \partial \Lambda_{n}\right)>C n^{-d}$.

Proof.

Let $N(\mathscr{C})$ be the number of n^{ν}-subboxes of $\Lambda_{n / 2}$ that intersect $\mathscr{C} . \mathbb{E} \sum_{\mathscr{C} \text { small }} N(\mathscr{C})^{(d-1) / d} \geq c n^{(1-\nu)(d-1)}$

$$
\mathbb{E} \sum_{\mathscr{C} \text { small }} N(\mathscr{C})^{(d-1) / d} \leq C n^{d / 2+C \nu}+C n^{C \nu} \mathbb{E} \sum_{\mathscr{C}} \sqrt{N(\mathscr{C})}
$$

Theorem (Duminil-Copin-K-Tassion, unpublished)

For $d \geq 3$ and some $\nu=\nu(d)>0, \mathbb{P}_{p_{c}}\left(\Lambda_{n^{\nu}} \leftrightarrow \partial \Lambda_{n}\right)>C n^{-d}$.

Proof.

Let $N(\mathscr{C})$ be the number of n^{ν}-subboxes of $\Lambda_{n / 2}$ that intersect $\mathscr{C} . \mathbb{E} \sum_{\mathscr{C} \text { small }} N(\mathscr{C})^{(d-1) / d} \geq c n^{(1-\nu)(d-1)}$

$$
\mathbb{E} \sum_{\mathscr{C} \text { small }} N(\mathscr{C})^{(d-1) / d} \leq C n^{d / 2+C \nu}+C n^{C \nu} \mathbb{E} \sum_{\mathscr{C}} \sqrt{N(\mathscr{C})} .
$$

We may add the requirement " \mathscr{C} small" on the right hand side, as the possible large clusters can only add a factor of $C n^{d / 2+C \nu}$.

Theorem (Duminil-Copin-K-Tassion, unpublished)

For $d \geq 3$ and some $\nu=\nu(d)>0, \mathbb{P}_{p_{c}}\left(\Lambda_{n^{\nu}} \leftrightarrow \partial \Lambda_{n}\right)>C n^{-d}$.

Proof.

Let $N(\mathscr{C})$ be the number of n^{ν}-subboxes of $\Lambda_{n / 2}$ that intersect $\mathscr{C} \cdot \mathbb{E} \sum_{\mathscr{C} \text { small }} N(\mathscr{C})^{(d-1) / d} \geq c n^{(1-\nu)(d-1)}$

$$
\mathbb{E} \sum_{\mathscr{C} \text { small }} N(\mathscr{C})^{(d-1) / d} \leq C n^{d / 2+C \nu}+C n^{C \nu} \mathbb{E} \sum_{\mathscr{C} \text { small }} \sqrt{N(\mathscr{C})}
$$

We may add the requirement " \mathscr{C} small" on the right hand side, as the possible large clusters can only add a factor of $C n^{d / 2+C \nu}$.

Theorem (Duminil-Copin-K-Tassion, unpublished)

For $d \geq 3$ and some $\nu=\nu(d)>0, \mathbb{P}_{p_{c}}\left(\Lambda_{n^{\nu}} \leftrightarrow \partial \Lambda_{n}\right)>C n^{-d}$.

Proof.

Let $N(\mathscr{C})$ be the number of n^{ν}-subboxes of $\Lambda_{n / 2}$ that intersect $\mathscr{C} \cdot \mathbb{E} \sum_{\mathscr{C} \text { small }} N(\mathscr{C})^{(d-1) / d} \geq c n^{(1-\nu)(d-1)}$

$$
\mathbb{E} \sum_{\mathscr{C} \text { small }} N(\mathscr{C})^{(d-1) / d} \leq C n^{d / 2+C \nu}+C n^{C \nu} \mathbb{E} \sum_{\mathscr{C} \text { small }} \sqrt{N(\mathscr{C})}
$$

We may add the requirement " \mathscr{C} small" on the right hand side, as the possible large clusters can only add a factor of $C n^{d / 2+C \nu}$. Since our clusters all touch both $\Lambda_{n / 4}$ and $\partial \Lambda_{n / 2}$ we must have $N(\mathscr{C})>c n^{1-\nu}$ for all \mathscr{C}.

Theorem (Duminil-Copin-K-Tassion, unpublished)

For $d \geq 3$ and some $\nu=\nu(d)>0, \mathbb{P}_{p_{c}}\left(\Lambda_{n^{\nu}} \nleftarrow \partial \Lambda_{n}\right)>C n^{-d}$.

Proof.

Let $N(\mathscr{C})$ be the number of n^{ν}-subboxes of $\Lambda_{n / 2}$ that intersect $\mathscr{C} . \mathbb{E} \sum_{\mathscr{C} \text { small }} N(\mathscr{C})^{(d-1) / d} \geq c n^{(1-\nu)(d-1)}$

$$
\mathbb{E} \sum_{\mathscr{C} \text { small }} N(\mathscr{C})^{(d-1) / d} \leq C n^{d / 2+C \nu}+C n^{C \nu} \mathbb{E} \sum_{\mathscr{C} \text { small }} \sqrt{N(\mathscr{C})} .
$$

We may add the requirement " \mathscr{C} small" on the right hand side, as the possible large clusters can only add a factor of $C n^{d / 2+C \nu}$. Since our clusters all touch both $\Lambda_{n / 4}$ and $\partial \Lambda_{n / 2}$ we must have $N(\mathscr{C})>c n^{1-\nu}$ for all \mathscr{C}. Thus

$$
\sum_{\mathscr{C} \text { small }} \sqrt{N(\mathscr{C})} \leq C n^{-(1-\nu)(d-2) / d} \sum_{\mathscr{C} \text { small }} N(\mathscr{C})^{(d-1) / d}
$$

Theorem (Duminil-Copin-K-Tassion, unpublished)

For $d \geq 3$ and some $\nu=\nu(d)>0, \mathbb{P}_{p_{c}}\left(\Lambda_{n^{\nu}} \nleftarrow \partial \Lambda_{n}\right)>C n^{-d}$.

Proof.

Let $N(\mathscr{C})$ be the number of n^{ν}-subboxes of $\Lambda_{n / 2}$ that intersect $\mathscr{C} . \mathbb{E} \sum_{\mathscr{C} \text { small }} N(\mathscr{C})^{(d-1) / d} \geq c n^{(1-\nu)(d-1)}$

$$
\mathbb{E} \sum_{\mathscr{C} \text { small }} N(\mathscr{C})^{(d-1) / d} \leq C n^{d / 2+C \nu}+C n^{C \nu} \mathbb{E} \sum_{\mathscr{C} \text { small }} \sqrt{N(\mathscr{C})} .
$$

We may add the requirement " \mathscr{C} small" on the right hand side, as the possible large clusters can only add a factor of $C n^{d / 2+C \nu}$. Since our clusters all touch both $\Lambda_{n / 4}$ and $\partial \Lambda_{n / 2}$ we must have $N(\mathscr{C})>c n^{1-\nu}$ for all \mathscr{C}. Thus

$$
\sum_{\mathscr{C} \text { small }} \sqrt{N(\mathscr{C})} \leq C n^{-(1-\nu)(d-2) / d} \sum_{\mathscr{C} \text { small }} N(\mathscr{C})^{(d-1) / d}
$$

For ν sufficiently small, we reach a contradiction.

Theorem (Duminil-Copin-K-Tassion, unpublished)

For $d \geq 3$ and some $\nu=\nu(d)>0, \mathbb{P}_{p_{c}}\left(\Lambda_{n^{\nu}} \leftrightarrow \partial \Lambda_{n}\right)>C n^{-d}$.

The proof in a nutshell

The Aizenman-Kesten-Newman-Cerf argument gives

$$
\mathbb{P}\left(\Lambda_{n^{\nu}} \Leftrightarrow \Lambda_{n}\right) \leq \text { uninteresting terms } n^{-d} \sum \sqrt{|\mathscr{C}|} .
$$

The contradictory assumption, the isoperimetric inequality and the fact that there are no large clusters give

$$
\mathbb{P}\left(\Lambda_{n^{\nu}} \Leftrightarrow \Lambda_{n}\right) \geq \text { uninteresting terms } n^{-d} \sum|\mathscr{C}|^{(d-1) / d} .
$$

And these two contradict.

Theorem (Duminil-Copin-K-Tassion, unpublished)
 For $d \geq 3$ and some $\nu=\nu(d)>0, \mathbb{P}_{p_{c}}\left(\Lambda_{n^{\nu}} \leftrightarrow \partial \Lambda_{n}\right)>C n^{-d}$.

- Going through the calculation gives

$$
\nu<\frac{d-2}{d^{3}+4 d^{2}+d-2}
$$

so, say, $1 / 64$ at $d=3$.

Theorem (Duminil-Copin-K-Tassion, unpublished)
 For $d \geq 3$ and some $\nu=\nu(d)>0, \mathbb{P}_{p_{c}}\left(\Lambda_{n^{\nu}} \leftrightarrow \partial \Lambda_{n}\right)>C n^{-d}$.

- Going through the calculation gives

$$
\nu<\frac{d-2}{d^{3}+4 d^{2}+d-2}
$$

so, say, $1 / 64$ at $d=3$.

- The theorem holds also at $d=2$ (known since the 80 s, with a different proof).

Dependencies diagram II

$$
\chi\left(p_{c}\right)=\infty
$$

Theorem

For $d \geq 3, \mathbb{P}\left(\Lambda_{n^{c}} \stackrel{\Lambda_{n} \backslash \Lambda_{n} c}{\Longleftrightarrow} \partial \Lambda_{n}\right) \leq C n^{-1 / 8}$.

Theorem

For $d \geq 3, \mathbb{P}\left(\Lambda_{n^{c}} \stackrel{\Lambda_{n} \backslash \Lambda_{n} c}{\Longleftrightarrow} \partial \Lambda_{n}\right) \leq C n^{-1 / 8}$.

Here

Cerf

Theorem

For $d \geq 3, \mathbb{P}\left(\Lambda_{n^{c}} \stackrel{\Lambda_{n} \backslash \Lambda_{n} c}{\Longleftrightarrow} \partial \Lambda_{n}\right) \leq C n^{-1 / 8}$.

Proof.

Let η be sufficiently small so that $\mathbb{P}\left(\Lambda_{n^{\eta}} \leftrightarrows \Lambda_{n}\right) \leq C n^{-1 / 4}$.

Theorem

For $d \geq 3, \mathbb{P}\left(\Lambda_{n^{c}} \stackrel{\Lambda_{n} \backslash \Lambda_{n} c}{\Longleftrightarrow} \partial \Lambda_{n}\right) \leq C n^{-1 / 8}$.

Proof.

Let η be sufficiently small so that $\mathbb{P}\left(\Lambda_{n^{\eta}} \leftrightarrows \Lambda_{n}\right) \leq C n^{-1 / 4}$. Let γ be sufficiently small so that $\mathbb{P}\left(\Lambda_{n^{\gamma}} \not \leftrightarrow \partial \Lambda_{n^{\eta}}\right)>c n^{-1 / 8}$.

Theorem

For $d \geq 3, \mathbb{P}\left(\Lambda_{n^{c}} \stackrel{\Lambda_{n} \backslash \Lambda_{n} c}{\Longleftrightarrow} \partial \Lambda_{n}\right) \leq C n^{-1 / 8}$.

Proof.

Let η be sufficiently small so that $\mathbb{P}\left(\Lambda_{n^{\eta}} \leftrightarrows \Lambda_{n}\right) \leq C n^{-1 / 4}$. Let γ be sufficiently small so that $\mathbb{P}\left(\Lambda_{n^{\gamma}} \leftrightarrow \partial \Lambda_{n^{\eta}}\right)>c n^{-1 / 8}$. Denote $P=\mathbb{P}\left(\Lambda_{n^{\gamma}} \stackrel{\Lambda_{n} \backslash \Lambda_{n} \gamma}{\rightleftarrows} \partial \Lambda_{n}\right)$ (i.e. we need to show that P is small).

Theorem

For $d \geq 3, \mathbb{P}\left(\Lambda_{n^{c}} \stackrel{\Lambda_{n} \backslash \Lambda_{n} c}{\Longleftrightarrow} \partial \Lambda_{n}\right) \leq C n^{-1 / 8}$.

Let η be sufficiently small so that $\mathbb{P}\left(\Lambda_{n^{\eta}} \leftrightarrows \Lambda_{n}\right) \leq C n^{-1 / 4}$. Let γ be sufficiently small so that $\mathbb{P}\left(\Lambda_{n^{\gamma}} \nleftarrow \partial \Lambda_{n^{\eta}}\right)>c n^{-1 / 8}$. Denote $P=\mathbb{P}\left(\Lambda_{n} \gamma \stackrel{\Lambda_{n} \backslash \Lambda_{n} \gamma}{\rightleftarrows} \partial \Lambda_{n}\right)$ (i.e. we need to show that P is small).

Lemma

For any $A \supseteq \Lambda_{n \gamma}, \mathbb{P}\left(A \stackrel{\Lambda_{n} \backslash A}{\rightleftarrows} \partial \Lambda_{n}\right) \geq P$.

Theorem

For $d \geq 3, \mathbb{P}\left(\Lambda_{n^{c}} \stackrel{\Lambda_{n} \backslash \Lambda_{n} c}{\Longleftrightarrow} \partial \Lambda_{n}\right) \leq C n^{-1 / 8}$.

Let η be sufficiently small so that $\mathbb{P}\left(\Lambda_{n^{\eta}} \leftrightarrows \Lambda_{n}\right) \leq C n^{-1 / 4}$. Let γ be sufficiently small so that $\mathbb{P}\left(\Lambda_{n^{\gamma}} \leftrightarrow \partial \Lambda_{n^{\eta}}\right)>c n^{-1 / 8}$. Denote $P=\mathbb{P}\left(\Lambda_{n} \gamma \stackrel{\Lambda_{n} \backslash \Lambda_{n} \gamma}{\rightleftarrows} \partial \Lambda_{n}\right)$ (i.e. we need to show that P is small).

Lemma

For any $A \supseteq \Lambda_{n \gamma}, \mathbb{P}\left(A \stackrel{\Lambda_{n} \backslash A}{\rightleftarrows} \partial \Lambda_{n}\right) \geq P$.

Theorem

For $d \geq 3, \mathbb{P}\left(\Lambda_{n^{c}} \stackrel{\Lambda_{n} \backslash \Lambda_{n} c}{\Longleftrightarrow} \partial \Lambda_{n}\right) \leq C n^{-1 / 8}$.

Let η be sufficiently small so that $\mathbb{P}\left(\Lambda_{n^{\eta}} \leftrightarrows \Lambda_{n}\right) \leq C n^{-1 / 4}$. Let γ be sufficiently small so that $\mathbb{P}\left(\Lambda_{n^{\gamma}} \leftrightarrow \partial \Lambda_{n^{\eta}}\right)>c n^{-1 / 8}$. Denote $P=\mathbb{P}\left(\Lambda_{n} \gamma \stackrel{\Lambda_{n} \backslash \Lambda_{n} \gamma}{\rightleftarrows} \partial \Lambda_{n}\right)$ (i.e. we need to show that P is small).

Lemma

For any $A \supseteq \Lambda_{n \gamma}, \mathbb{P}\left(A \stackrel{\Lambda_{n} \backslash A}{\rightleftarrows} \partial \Lambda_{n}\right) \geq P$.

Let $\Lambda_{n^{\gamma}} \subseteq B \subseteq \Lambda_{n^{\eta}-1}$ and condition on $B=\mathscr{C}\left(\Lambda_{n^{\gamma}}\right)$.

Theorem

For $d \geq 3, \mathbb{P}\left(\Lambda_{n^{c}} \stackrel{\Lambda_{n} \backslash \Lambda_{n} c}{\Longleftrightarrow} \partial \Lambda_{n}\right) \leq C n^{-1 / 8}$.

Let η be sufficiently small so that $\mathbb{P}\left(\Lambda_{n^{\eta}} \leftrightarrows \Lambda_{n}\right) \leq C n^{-1 / 4}$. Let γ be sufficiently small so that $\mathbb{P}\left(\Lambda_{n^{\gamma}} \leftrightarrow \partial \Lambda_{n^{\eta}}\right)>c n^{-1 / 8}$. Denote $P=\mathbb{P}\left(\Lambda_{n \gamma} \stackrel{\Lambda_{n} \backslash \Lambda_{n} \gamma}{\rightleftarrows} \partial \Lambda_{n}\right)$ (i.e. we need to show that P is small).

Lemma

For any $A \supseteq \Lambda_{n \gamma}, \mathbb{P}\left(A \stackrel{\Lambda_{n} \backslash A}{\rightleftarrows} \partial \Lambda_{n}\right) \geq P$.

Let $\Lambda_{n} \subseteq B \subseteq \Lambda_{n^{\eta}-1}$ and condition on $B=\mathscr{C}\left(\Lambda_{n} \gamma\right)$. Let $A=\bar{B}$. Outside A, the conditioning has no effect.

Theorem

For $d \geq 3, \mathbb{P}\left(\Lambda_{n^{c}} \stackrel{\Lambda_{n} \backslash \Lambda_{n} c}{\Longleftrightarrow} \partial \Lambda_{n}\right) \leq C n^{-1 / 8}$.

Let η be sufficiently small so that $\mathbb{P}\left(\Lambda_{n^{\eta}} \leftrightarrows \Lambda_{n}\right) \leq C n^{-1 / 4}$. Let γ be sufficiently small so that $\mathbb{P}\left(\Lambda_{n^{\gamma}} \leftrightarrow \partial \Lambda_{n^{\eta}}\right)>c n^{-1 / 8}$. Denote $P=\mathbb{P}\left(\Lambda_{n \gamma} \stackrel{\Lambda_{n} \backslash \Lambda_{n} \gamma}{\rightleftarrows} \partial \Lambda_{n}\right)$ (i.e. we need to show that P is small).

Lemma

For any $A \supseteq \Lambda_{n \gamma}, \mathbb{P}\left(A \stackrel{\Lambda_{n} \backslash A}{\Longleftrightarrow} \partial \Lambda_{n}\right) \geq P$.

Let $\Lambda_{n} \subseteq B \subseteq \Lambda_{n^{\eta}-1}$ and condition on $B=\mathscr{C}\left(\Lambda_{n} \gamma\right)$. Let $A=\bar{B}$. Outside A, the conditioning has no effect. Use the lemma and get
$\mathbb{P}\left(B=\mathscr{C}\left(\Lambda_{n^{\gamma}}\right), A \stackrel{\Lambda_{n} \backslash A}{\Longleftrightarrow} \partial \Lambda_{n}\right) \geq P \cdot \mathbb{P}\left(B=\mathscr{C}\left(\Lambda_{n^{\gamma}}\right)\right)$.

Theorem

For $d \geq 3, \mathbb{P}\left(\Lambda_{n^{c}} \stackrel{\Lambda_{n} \backslash \Lambda_{n} c}{\rightleftarrows} \partial \Lambda_{n}\right) \leq C n^{-1 / 8}$.

Let η be sufficiently small so that $\mathbb{P}\left(\Lambda_{n^{\eta}} \leftrightarrows \Lambda_{n}\right) \leq C n^{-1 / 4}$. Let γ be sufficiently small so that $\mathbb{P}\left(\Lambda_{n^{\gamma}} \leftrightarrow \partial \Lambda_{n^{\eta}}\right)>c n^{-1 / 8}$. Denote $P=\mathbb{P}\left(\Lambda_{n^{\gamma}} \stackrel{\Lambda_{n} \backslash \Lambda_{n} \gamma}{\rightleftarrows} \partial \Lambda_{n}\right)$. Let $\Lambda_{n^{\gamma}} \subseteq B \subseteq \Lambda_{n^{\eta}-1}$ and condition on $B=\mathscr{C}\left(\Lambda_{n} \gamma\right)$. Let $A=\bar{B}$. Then
$\mathbb{P}\left(B=\mathscr{C}\left(\Lambda_{n^{\gamma}}\right), A \stackrel{\Lambda_{n} \backslash A}{\Longleftrightarrow} \partial \Lambda_{n}\right) \geq P \cdot \mathbb{P}\left(B=\mathscr{C}\left(\Lambda_{n^{\gamma}}\right)\right)$.

For $d \geq 3, \mathbb{P}\left(\Lambda_{n^{c}} \stackrel{\Lambda_{n} \backslash \Lambda_{n} c}{\Longleftrightarrow} \partial \Lambda_{n}\right) \leq C n^{-1 / 8}$.

Let η be sufficiently small so that $\mathbb{P}\left(\Lambda_{n^{\eta}} \leftrightarrows \Lambda_{n}\right) \leq C n^{-1 / 4}$. Let γ be sufficiently small so that $\mathbb{P}\left(\Lambda_{n^{\gamma}} \nleftarrow \partial \Lambda_{n^{\eta}}\right)>c n^{-1 / 8}$. Denote $P=\mathbb{P}\left(\Lambda_{n^{\gamma}} \stackrel{\Lambda_{n} \backslash \Lambda_{n \gamma}}{\Longleftrightarrow} \partial \Lambda_{n}\right)$. Let $\Lambda_{n^{\gamma}} \subseteq B \subseteq \Lambda_{n^{\eta}-1}$ and condition on $B=\mathscr{C}\left(\Lambda_{n \gamma}\right)$. Let $A=\bar{B}$. Then
$\mathbb{P}\left(B=\mathscr{C}\left(\Lambda_{n^{\gamma}}\right), A \stackrel{\Lambda_{n} \backslash A}{\Longleftrightarrow} \partial \Lambda_{n}\right) \geq P \cdot \mathbb{P}\left(B=\mathscr{C}\left(\Lambda_{n \gamma}\right)\right)$. Sum over all such B and get
$\mathbb{P}\left(\Lambda_{n^{\gamma}} \leftrightarrow \partial \Lambda_{n^{\eta}}, \overline{\mathscr{C}\left(\Lambda_{n} \gamma\right)} \stackrel{\Lambda_{n} \backslash \overline{\mathscr{C}\left(\Lambda_{n} \gamma\right)}}{\rightleftarrows} \partial \Lambda_{n}\right) \geq P \cdot \mathbb{P}\left(\Lambda_{n^{\gamma}} \leftrightarrow \partial \Lambda_{n^{\eta}}\right)$

For $d \geq 3, \mathbb{P}\left(\Lambda_{n^{c}} \stackrel{\Lambda_{n} \backslash \Lambda_{n} c}{\Longleftrightarrow} \partial \Lambda_{n}\right) \leq C n^{-1 / 8}$.

Let η be sufficiently small so that $\mathbb{P}\left(\Lambda_{n^{\eta}} \Leftrightarrow \Lambda_{n}\right) \leq C n^{-1 / 4}$. Let γ be sufficiently small so that $\mathbb{P}\left(\Lambda_{n^{\gamma}} \nleftarrow \partial \Lambda_{n^{\eta}}\right)>c n^{-1 / 8}$. Denote $P=\mathbb{P}\left(\Lambda_{n^{\gamma}} \stackrel{\Lambda_{n} \backslash \Lambda_{n \gamma}}{\Longleftrightarrow} \partial \Lambda_{n}\right)$. Let $\Lambda_{n^{\gamma}} \subseteq B \subseteq \Lambda_{n^{\eta}-1}$ and condition on $B=\mathscr{C}\left(\Lambda_{n \gamma}\right)$. Let $A=\bar{B}$. Then
$\mathbb{P}\left(B=\mathscr{C}\left(\Lambda_{n^{\gamma}}\right), A \stackrel{\Lambda_{n} \backslash A}{\Longleftrightarrow} \partial \Lambda_{n}\right) \geq P \cdot \mathbb{P}\left(B=\mathscr{C}\left(\Lambda_{n \gamma}\right)\right)$. Sum over all such B and get
$\mathbb{P}\left(\Lambda_{n^{\gamma}} \nleftarrow \partial \Lambda_{n^{\eta}}, \overline{\mathscr{C}\left(\Lambda_{n} \gamma\right)} \stackrel{\Lambda_{n} \backslash \overline{\mathscr{C}\left(\Lambda_{n} \gamma\right)}}{\rightleftharpoons} \partial \Lambda_{n}\right) \geq P \cdot \mathbb{P}\left(\Lambda_{n^{\gamma}} \leftrightarrow \partial \Lambda_{n^{\eta}}\right)$
But the left-hand side implies $\Lambda_{n^{\eta}} \Leftrightarrow \partial \Lambda_{n}$.

For $d \geq 3, \mathbb{P}\left(\Lambda_{n^{c}} \stackrel{\Lambda_{n} \backslash \Lambda_{n} c}{\Longleftrightarrow} \partial \Lambda_{n}\right) \leq C n^{-1 / 8}$.

Let η be sufficiently small so that $\mathbb{P}\left(\Lambda_{n^{\eta}} \leftrightarrows \Lambda_{n}\right) \leq C n^{-1 / 4}$. Let γ be sufficiently small so that $\mathbb{P}\left(\Lambda_{n \gamma} \leftrightarrow \partial \Lambda_{n^{\eta}}\right)>c n^{-1 / 8}$. Denote $P=\mathbb{P}\left(\Lambda_{n^{\gamma}} \stackrel{\Lambda_{n} \backslash \Lambda_{n \gamma} \gamma}{\rightleftarrows} \partial \Lambda_{n}\right)$. Let $\Lambda_{n^{\gamma}} \subseteq B \subseteq \Lambda_{n^{\eta}-1}$ and condition on $B=\mathscr{C}\left(\Lambda_{n} \gamma\right)$. Let $A=\bar{B}$. Then
$\mathbb{P}\left(B=\mathscr{C}\left(\Lambda_{n \gamma}\right), A \stackrel{\Lambda_{n} \backslash A}{\rightleftarrows} \partial \Lambda_{n}\right) \geq P \cdot \mathbb{P}\left(B=\mathscr{C}\left(\Lambda_{n^{\gamma}}\right)\right)$. Sum over all such B and get
$\mathbb{P}\left(\Lambda_{n^{\gamma}} \nLeftarrow \partial \Lambda_{n^{\eta}}, \overline{\mathscr{C}\left(\Lambda_{n^{\gamma}}\right)} \stackrel{\Lambda_{n} \backslash \overline{\mathscr{C}\left(\Lambda_{n} \gamma\right)}}{\rightleftharpoons} \partial \Lambda_{n}\right) \geq P \cdot \mathbb{P}\left(\Lambda_{n^{\gamma}} \nrightarrow \partial \Lambda_{n^{\eta}}\right)$
But the left-hand side implies $\Lambda_{n^{\eta}} \Leftrightarrow \partial \Lambda_{n}$. So we get

$$
C n^{-1 / 4} \geq \mathbb{P}\left(\Lambda_{n^{\eta}} \leftrightarrows \partial \Lambda_{n}\right) \geq P \cdot \mathbb{P}\left(\Lambda_{n \gamma} \leftrightarrow \partial \Lambda_{n^{\eta}}\right)>c P \cdot n^{-1 / 8}
$$

For $d \geq 3, \mathbb{P}\left(\Lambda_{n^{c}} \stackrel{\Lambda_{n} \backslash \Lambda_{n} c}{\Longleftrightarrow} \partial \Lambda_{n}\right) \leq C n^{-1 / 8}$.

Let η be sufficiently small so that $\mathbb{P}\left(\Lambda_{n^{\eta}} \leftrightarrows \Lambda_{n}\right) \leq C n^{-1 / 4}$. Let γ be sufficiently small so that $\mathbb{P}\left(\Lambda_{n \gamma} \leftrightarrow \partial \Lambda_{n^{\eta}}\right)>c n^{-1 / 8}$. Denote $P=\mathbb{P}\left(\Lambda_{n^{\gamma}} \stackrel{\Lambda_{n} \backslash \Lambda_{n \gamma} \gamma}{\rightleftarrows} \partial \Lambda_{n}\right)$. Let $\Lambda_{n^{\gamma}} \subseteq B \subseteq \Lambda_{n^{\eta}-1}$ and condition on $B=\mathscr{C}\left(\Lambda_{n \gamma}\right)$. Let $A=\bar{B}$. Then
$\mathbb{P}\left(B=\mathscr{C}\left(\Lambda_{n \gamma}\right), A \stackrel{\Lambda_{n} \backslash A}{\rightleftarrows} \partial \Lambda_{n}\right) \geq P \cdot \mathbb{P}\left(B=\mathscr{C}\left(\Lambda_{n^{\gamma}}\right)\right)$. Sum over all such B and get
$\mathbb{P}\left(\Lambda_{n^{\gamma}} \nLeftarrow \partial \Lambda_{n^{\eta}}, \overline{\mathscr{C}\left(\Lambda_{n^{\gamma}}\right)} \stackrel{\Lambda_{n} \backslash \overline{\mathscr{C}\left(\Lambda_{n} \gamma\right)}}{\rightleftharpoons} \partial \Lambda_{n}\right) \geq P \cdot \mathbb{P}\left(\Lambda_{n^{\gamma}} \nrightarrow \partial \Lambda_{n^{\eta}}\right)$
But the left-hand side implies $\Lambda_{n^{\eta}} \leftrightarrows \partial \Lambda_{n}$. So we get

$$
\begin{aligned}
& C n^{-1 / 4} \geq \mathbb{P}\left(\Lambda_{n^{\eta}} \leftrightarrows \partial \Lambda_{n}\right) \geq P \cdot \mathbb{P}\left(\Lambda_{n^{\gamma}} \leftrightarrow \partial \Lambda_{n^{\eta}}\right)>c P \cdot n^{-1 / 8} \\
& \text { or } P<C n^{-1 / 8}
\end{aligned}
$$

Theorem (Chayes, Chayes, Newman, Grimmett, Kesten, Schonmann...)

For $p<p_{c}$ there is a number, denoted by $\xi(p)$, such that

$$
\mathbb{P}_{p}\left(0 \leftrightarrow \partial \Lambda_{n}\right)=e^{-(\xi(p)+o(1)) n}
$$

Theorem (Chayes, Chayes, Newman, Grimmett, Kesten, Schonmann...)

For $p<p_{c}$ there is a number, denoted by $\xi(p)$, such that

$$
\mathbb{P}_{p}\left(0 \leftrightarrow \partial \Lambda_{n}\right)=e^{-(\xi(p)+o(1)) n} .
$$

For $p>p_{c}$ there is a number, also denoted by $\xi(p)$, such that

$$
\mathbb{P}_{p}\left(0 \leftrightarrow \partial \Lambda_{n}, 0 \leftrightarrow \infty\right)=e^{-(\xi(p)+o(1)) n} .
$$

The notation $A \leftrightarrow \infty$ means $|\mathscr{C}(A)|=\infty$.

Theorem (Chayes, Chayes, Newman, Grimmett, Kesten, Schonmann...)

For $p<p_{c}$ there is a number, denoted by $\xi(p)$, such that

$$
\mathbb{P}_{p}\left(0 \leftrightarrow \partial \Lambda_{n}\right)=e^{-(\xi(p)+o(1)) n} .
$$

For $p>p_{c}$ there is a number, also denoted by $\xi(p)$, such that

$$
\mathbb{P}_{p}\left(0 \leftrightarrow \partial \Lambda_{n}, 0 \leftrightarrow \infty\right)=e^{-(\xi(p)+o(1)) n} .
$$

The notation $A \leftrightarrow \infty$ means $|\mathscr{C}(A)|=\infty$.

Theorem (Duminil-Copin-K-Tassion)

$\xi(p) \leq e^{\left|p-p_{c}\right|^{-2}}$.

Theorem (Chayes, Chayes, Newman, Grimmett, Kesten, Schonmann...)

For $p<p_{c}$ there is a number, denoted by $\xi(p)$, such that

$$
\mathbb{P}_{p}\left(0 \leftrightarrow \partial \Lambda_{n}\right)=e^{-(\xi(p)+o(1)) n} .
$$

For $p>p_{c}$ there is a number, also denoted by $\xi(p)$, such that

$$
\mathbb{P}_{p}\left(0 \leftrightarrow \partial \Lambda_{n}, 0 \leftrightarrow \infty\right)=e^{-(\xi(p)+o(1)) n} .
$$

The notation $A \leftrightarrow \infty$ means $|\mathscr{C}(A)|=\infty$.

Theorem (Duminil-Copin-K-Tassion)

$\xi(p) \leq e^{\left|p-p_{c}\right|^{-2}}$.

We will only show a lemma from proof, to demonstrate yet another use of Cerf's theorem.

Lemma If $\theta:=\mathbb{P}(0 \leftrightarrow \infty)>0$

The notation $A \leftrightarrow \infty$ means $|\mathscr{C}(A)|=\infty$.

```
Lemma
If \(\theta:=\mathbb{P}(0 \leftrightarrow \infty)>0\) then for every \(\varepsilon>0\) there exists an \(n\) such that for any set \(A \subseteq \Lambda_{n}\) intersecting both \(\{0\}\) and \(\partial \Lambda_{n}\) we have \(\mathbb{P}(A \leftrightarrow \infty)>1-\varepsilon\).
```

The notation $A \leftrightarrow \infty$ means $|\mathscr{C}(A)|=\infty$.

Lemma

If $\theta:=\mathbb{P}(0 \leftrightarrow \infty)>0$ then for every $\varepsilon>0$ there exists an n such that for any set $A \subseteq \Lambda_{n}$ intersecting both $\{0\}$ and $\partial \Lambda_{n}$ we have $\mathbb{P}(A \leftrightarrow \infty)>1-\varepsilon$.

Proof.

Let m be such that $(1-\theta)^{m}<\frac{1}{3} \varepsilon$.

Lemma

If $\theta:=\mathbb{P}(0 \leftrightarrow \infty)>0$ then for every $\varepsilon>0$ there exists an n such that for any set $A \subseteq \Lambda_{n}$ intersecting both $\{0\}$ and $\partial \Lambda_{n}$ we have $\mathbb{P}(A \leftrightarrow \infty)>1-\varepsilon$.

Proof.

Let m be such that $(1-\theta)^{m}<\frac{1}{3} \varepsilon$. Let k be so large such that

$$
\mathbb{P}\left(\Lambda_{k} \leftrightarrow \infty\right) \geq 1-\frac{\varepsilon}{3 m}
$$

Lemma

If $\theta:=\mathbb{P}(0 \leftrightarrow \infty)>0$ then for every $\varepsilon>0$ there exists an n such that for any set $A \subseteq \Lambda_{n}$ intersecting both $\{0\}$ and $\partial \Lambda_{n}$ we have $\mathbb{P}(A \leftrightarrow \infty)>1-\varepsilon$.

Proof.

Let m be such that $(1-\theta)^{m}<\frac{1}{3} \varepsilon$. Let k be so large such that

$$
\mathbb{P}\left(\Lambda_{k} \leftrightarrow \infty\right) \geq 1-\frac{\varepsilon}{3 m} .
$$

Let K be so large that

$$
\mathbb{P}\left(\Lambda_{k} \Leftrightarrow \partial \Lambda_{K}\right)<\frac{\varepsilon}{3 m} .
$$

Lemma

If $\theta:=\mathbb{P}(0 \leftrightarrow \infty)>0$ then for every $\varepsilon>0$ there exists an n such that for any set $A \subseteq \Lambda_{n}$ intersecting both $\{0\}$ and $\partial \Lambda_{n}$ we have $\mathbb{P}(A \leftrightarrow \infty)>1-\varepsilon$.

Proof.

Let m be such that $(1-\theta)^{m}<\frac{1}{3} \varepsilon$. Let k be so large such that

$$
\mathbb{P}\left(\Lambda_{k} \leftrightarrow \infty\right) \geq 1-\frac{\varepsilon}{3 m} .
$$

Let K be so large that

$$
\mathbb{P}\left(\Lambda_{k} \Leftrightarrow \partial \Lambda_{K}\right)<\frac{\varepsilon}{3 m} .
$$

Define $n=2 K$ m .

Lemma

If $\theta:=\mathbb{P}(0 \leftrightarrow \infty)>0$ then for every $\varepsilon>0$ there exists an n such that for any set $A \subseteq \Lambda_{n}$ intersecting both $\{0\}$ and $\partial \Lambda_{n}$ we have $\mathbb{P}(A \leftrightarrow \infty)>1-\varepsilon$.

Proof.

Let m be such that $(1-\theta)^{m}<\frac{1}{3} \varepsilon$. Let k be so large such that

$$
\mathbb{P}\left(\Lambda_{k} \leftrightarrow \infty\right) \geq 1-\frac{\varepsilon}{3 m} .
$$

Let K be so large that

$$
\mathbb{P}\left(\Lambda_{k} \Leftrightarrow \partial \Lambda_{K}\right)<\frac{\varepsilon}{3 m} .
$$

Define $n=2 K m$. We are now given an $A \subseteq \Lambda_{n}$.

Lemma

If $\theta:=\mathbb{P}(0 \leftrightarrow \infty)>0$ then for every $\varepsilon>0$ there exists an n such that for any set $A \subseteq \Lambda_{n}$ intersecting both $\{0\}$ and $\partial \Lambda_{n}$ we have $\mathbb{P}(A \leftrightarrow \infty)>1-\varepsilon$.

Proof.

Let m be such that $(1-\theta)^{m}<\frac{1}{3} \varepsilon$. Let k be so large such that

$$
\mathbb{P}\left(\Lambda_{k} \leftrightarrow \infty\right) \geq 1-\frac{\varepsilon}{3 m} .
$$

Let K be so large that

$$
\mathbb{P}\left(\Lambda_{k} \Leftrightarrow \partial \Lambda_{K}\right)<\frac{\varepsilon}{3 m} .
$$

Define $n=2 K m$. We are now given an $A \subseteq \Lambda_{n}$. Find m elements $a_{1}, \ldots, a_{m} \in A$ such that the translates $a_{i}+\Lambda_{K}$ are disjoint.

Lemma

If $\theta:=\mathbb{P}(0 \leftrightarrow \infty)>0$ then for every $\varepsilon>0$ there exists an n such that for any set $A \subseteq \Lambda_{n}$ intersecting both $\{0\}$ and $\partial \Lambda_{n}$ we have $\mathbb{P}(A \leftrightarrow \infty)>1-\varepsilon$.

Lemma

If $\theta:=\mathbb{P}(0 \leftrightarrow \infty)>0$ then for every $\varepsilon>0$ there exists an n such that for any set $A \subseteq \Lambda_{n}$ intersecting both $\{0\}$ and $\partial \Lambda_{n}$ we have $\mathbb{P}(A \leftrightarrow \infty)>1-\varepsilon$.

Proof.

Let m be such that $(1-\theta)^{m}<\frac{1}{3} \varepsilon$. Let k be so large such that $\mathbb{P}\left(\Lambda_{k} \leftrightarrow \infty\right) \geq 1-\frac{\varepsilon}{3 m}$. Let K be so large that $\mathbb{P}\left(\Lambda_{k} \Leftrightarrow \partial \Lambda_{K}\right)<\frac{\varepsilon}{3 m}$. Define $n=2 K m$. We are now given an $A \subseteq \Lambda_{n}$. Find m elements $a_{1}, \ldots, a_{m} \in A$ such that the translates $a_{i}+\Lambda_{K}$ are disjoint. For each a_{i}, $\mathbb{P}\left(a_{i} \leftrightarrow a_{i}+\partial \Lambda_{K}\right) \geq \theta$.

Lemma

If $\theta:=\mathbb{P}(0 \leftrightarrow \infty)>0$ then for every $\varepsilon>0$ there exists an n such that for any set $A \subseteq \Lambda_{n}$ intersecting both $\{0\}$ and $\partial \Lambda_{n}$ we have $\mathbb{P}(A \leftrightarrow \infty)>1-\varepsilon$.

Proof.

Let m be such that $(1-\theta)^{m}<\frac{1}{3} \varepsilon$. Let k be so large such that $\mathbb{P}\left(\Lambda_{k} \leftrightarrow \infty\right) \geq 1-\frac{\varepsilon}{3 m}$. Let K be so large that
$\mathbb{P}\left(\Lambda_{k} \Leftrightarrow \partial \Lambda_{K}\right)<\frac{\varepsilon}{3 m}$. Define $n=2 K m$. We are now given an $A \subseteq \Lambda_{n}$. Find m elements $a_{1}, \ldots, a_{m} \in A$ such that the translates $a_{i}+\Lambda_{K}$ are disjoint. For each a_{i}, $\mathbb{P}\left(a_{i} \leftrightarrow a_{i}+\partial \Lambda_{K}\right) \geq \theta$. Since the boxes are disjoint these are independent and we have

$$
\mathbb{P}\left(\exists i: a_{i} \leftrightarrow a_{i}+\partial \Lambda_{K}\right) \geq 1-(1-\theta)^{m}>1-\frac{\varepsilon}{3} .
$$

Lemma

If $\theta:=\mathbb{P}(0 \leftrightarrow \infty)>0$ then for every $\varepsilon>0$ there exists an n such that for any set $A \subseteq \Lambda_{n}$ intersecting both $\{0\}$ and $\partial \Lambda_{n}$ we have $\mathbb{P}(A \leftrightarrow \infty)>1-\varepsilon$.

Proof.

Let m be such that $(1-\theta)^{m}<\frac{1}{3} \varepsilon$. Let k be so large such that $\mathbb{P}\left(\Lambda_{k} \leftrightarrow \infty\right) \geq 1-\frac{\varepsilon}{3 m}$. Let K be so large that
$\mathbb{P}\left(\Lambda_{k} \Leftrightarrow \partial \Lambda_{K}\right)<\frac{\varepsilon}{3 m}$. Define $n=2 K m$. We are now given an $A \subseteq \Lambda_{n}$. Find m elements $a_{1}, \ldots, a_{m} \in A$ such that the translates $a_{i}+\Lambda_{K}$ are disjoint. For each a_{i}, $\mathbb{P}\left(a_{i} \leftrightarrow a_{i}+\partial \Lambda_{K}\right) \geq \theta$. Since the boxes are disjoint these are independent and we have

$$
\mathbb{P}\left(\exists i: a_{i} \leftrightarrow a_{i}+\partial \Lambda_{K}\right) \geq 1-(1-\theta)^{m}>1-\frac{\varepsilon}{3} .
$$

On the other hand

$$
\mathbb{P}\left(\forall i: a_{i}+\Lambda_{k} \leftrightarrow \infty, a_{i}+\Lambda_{k} \nLeftarrow a_{i}+\Lambda_{K}\right)>1-\frac{2 \varepsilon}{3} .
$$

Lemma

If $\theta:=\mathbb{P}(0 \leftrightarrow \infty)>0$ then for every $\varepsilon>0$ there exists an n such that for any set $A \subseteq \Lambda_{n}$ intersecting both $\{0\}$ and $\partial \Lambda_{n}$ we have $\mathbb{P}(A \leftrightarrow \infty)>1-\varepsilon$.

Thanks for your attention!

