OOPS 2020
Mean field methods in high-dimensional statistics and nonconvex optimization
Lecturer: Andrea Montanari
Problem session leader: Michael Celentano
July 6, 2020

Problem Session 2

Problem 1: from belief propagation to Bayes AMP state evolution

Below I have depicted the computation tree.

We observe the edge weights $X_{f v}$ and for each factor node the outcome

$$
y_{f}=\sum_{v^{\prime} \in \partial f} X_{f v^{\prime}} \theta_{v^{\prime}}+w_{f}
$$

Recall

$$
X_{f v} \stackrel{\mathrm{iid}}{\sim} \mathrm{~N}(0,1 / n), \quad \theta_{v} \stackrel{\mathrm{iid}}{\sim} \mu_{\Theta}, \quad \text { and } w_{f} \stackrel{\mathrm{iid}}{\sim} \mathrm{~N}\left(0, \sigma^{2}\right) .
$$

The belief propagation algorithm on the computation tree exactly computes the posterior $p_{v}\left(\vartheta \mid \mathcal{T}_{v, 2 t}\right)$, where $\mathcal{T}_{v, 2 t}$ is the σ-algebra generated by the obervations corresponding to nodes and edges within a $2 t$-radius ball of v. The iteration is

$$
\begin{gathered}
m_{v \rightarrow f}^{0}(\vartheta)=1 \\
\tilde{m}_{f \rightarrow v}^{s}(\vartheta) \propto \int \exp \left(-\frac{1}{2 \sigma^{2}}\left(y_{f}-X_{f v} \vartheta-\sum_{v^{\prime} \in \partial f \backslash v} X_{f v^{\prime}} \vartheta_{v^{\prime}}\right)^{2}\right) \prod_{v^{\prime} \in \partial f \backslash v} m_{v^{\prime} \rightarrow f}^{s}\left(\vartheta_{v^{\prime}}\right) \prod_{v^{\prime} \in \partial f \backslash v} \mu_{\Theta}\left(\mathrm{d} \vartheta_{v^{\prime}}\right), \\
m_{v \rightarrow f}^{s+1}(\vartheta) \propto \prod_{f^{\prime} \in \partial v \backslash f} \tilde{m}_{f^{\prime} \rightarrow v}^{s}(\vartheta)
\end{gathered}
$$

with normalization $\int \tilde{m}_{f \rightarrow v}^{t}(\vartheta) \mu_{\Theta \mid V}\left(v_{v}, \mathrm{~d} \vartheta\right)=\int m_{v \rightarrow f}^{t}(\vartheta) \mu_{\Theta \mid V}\left(v_{v}, \mathrm{~d} \vartheta\right)=1$. One can show that for any variable node v, the posterior density with respect to measure μ_{Θ} is

$$
p_{v}\left(\vartheta \mid \mathcal{T}_{v, 2 t}\right) \propto \prod_{f \in \partial v} \tilde{m}_{f \rightarrow v}^{t-1}(\vartheta)
$$

This equation is exact. Our goal is to show that when $n, d \rightarrow \infty, n / d \rightarrow \delta$

$$
p_{v}\left(\vartheta \mid \mathcal{T}_{v, 2 t}\right) \propto \exp \left(-\frac{1}{2 \tau_{t}^{2}}\left(\chi_{v}^{t}-\vartheta\right)^{2}+o_{p}(1)\right)
$$

where $\left(\chi_{v}^{t}, \theta_{v}\right) \xrightarrow{\mathrm{d}}\left(\Theta+\tau_{t} Z, \Theta\right), \Theta \sim \mu_{\Theta}, G \sim \mathrm{~N}(0,1)$ independent of Θ, and τ_{t} is given by the Bayes AMP state evolution equations

$$
\tau_{t+1}^{2}=\sigma^{2}+\frac{1}{\delta} \operatorname{mmse}_{\Theta}\left(\tau_{t}^{2}\right)
$$

initialized by $\tau_{0}^{2}=\infty$. In fact, this follows without too much work once we show that

$$
\begin{equation*}
m_{v \rightarrow f}^{s}(\vartheta) \propto \exp \left(-\frac{1}{2 \tau_{s}^{2}}\left(\chi_{v \rightarrow f}^{s}-\vartheta\right)^{2}+o_{p}(1)\right), \tag{1}
\end{equation*}
$$

where $\left(\chi_{v \rightarrow f}^{s}, \theta_{v}\right) \xrightarrow{\mathrm{d}}\left(\Theta+\tau_{s} Z \mu_{v^{\prime} \rightarrow f}^{s}-, \Theta\right)$. This problem focuses on establishing (1). We do so inductively. The base case more-or-less follows the standard inductive step, except that we need to pay some attention to the infinite variance $\tau_{0}^{2}=\infty$. We do not consider the base case here. Throughout, we assume μ_{Θ} has compact support. We do not carefully verify the validity of all approximations. See Celentano, Montanari, Wu. "The estimation error of general first order methods." COLT 2020, for complete details.
(a) Define

$$
\mu_{v \rightarrow f}^{s}=\int \vartheta m_{v \rightarrow f}^{s}(\vartheta) \mu_{\Theta}(\mathrm{d} \vartheta), \quad\left(\tau_{v \rightarrow f}^{s}\right)^{2}=\int \vartheta^{2} m_{v \rightarrow f}^{s}(\vartheta) \mu_{\Theta}(\mathrm{d} \vartheta)-\left(\mu_{v^{\prime} \rightarrow f}^{s}\right)^{2},
$$

and

$$
\tilde{\mu}_{f \rightarrow v}^{s}=\sum_{v^{\prime} \in \partial f \backslash v} X_{f v^{\prime}} \mu_{v^{\prime} \rightarrow f}^{s}, \quad\left(\tilde{\tau}_{f \rightarrow v}^{s}\right)^{2}=\sum_{v^{\prime} \in \partial f \backslash v} X_{f v^{\prime}}^{2}\left(\tau_{v^{\prime} \rightarrow f}^{s}\right)^{2}
$$

Argue (non-rigorously) that we may approximate (up to normalization)

$$
\tilde{m}_{f \rightarrow v}^{s}(\vartheta) \approx \mathbb{E}_{G}\left[p\left(X_{f v} \vartheta+\tilde{\mu}_{f \rightarrow v}^{s}+\tilde{\tau}_{f \rightarrow v}^{s} G-y_{f}\right)\right]
$$

where $G \sim \mathrm{~N}(0,1)$ and $p(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{1}{2 \sigma^{2}} x^{2}}$ is the normal density at variance σ^{2}.
Remark: The quantities $\mu_{v \rightarrow f}^{s}$ and $\left(\tau_{v \rightarrow f}^{s}\right)^{2}$ have a simple statistical interpretation: they are the posterior mean and variance for θ_{v} given observations in the computation tree within distance $2 s$ of node v and excluding the branch in the direction of f.
(b) Using the inductive hypothesis, show that as $n, d \rightarrow \infty, n / d \rightarrow \delta$

$$
\left(\tilde{\tau}_{f \rightarrow v}^{s}\right)^{2} \xrightarrow{\mathrm{p}} \frac{1}{\delta} \operatorname{mmse}_{\Theta}\left(\tau_{s}^{2}\right)=: \tilde{\tau}_{s}^{2}
$$

Further, note $y_{f}-\tilde{\mu}_{f \rightarrow v}^{s}=X_{f v} \theta_{v}+\tilde{Z}_{f \rightarrow v}^{s}$, where

$$
\tilde{Z}_{f \rightarrow v}^{s}=w_{f}+\sum_{v^{\prime} \in \partial f \backslash v} X_{f v^{\prime}}\left(\theta_{v^{\prime}}-\mu_{v^{\prime} \rightarrow f}^{s}\right) .
$$

Argue

$$
\tilde{Z}_{f \rightarrow v}^{s} \xrightarrow{\mathrm{~d}} \mathrm{~N}\left(0, \sigma^{2}+\frac{1}{\delta} \operatorname{mmse}_{\Theta}\left(\tau_{s}^{2}\right)\right)
$$

and is independent of $X_{f v}$ and θ_{v}.
Hint: The (random) functions $m_{v^{\prime} \rightarrow f}^{s}\left(\vartheta_{v^{\prime}}\right)$ as v^{\prime} varies in ∂f are iid and independent of the edge weights $X_{f v^{\prime}}$. Why?
(c) For any smooth probability density $f: \mathbb{R} \rightarrow \mathbb{R}_{>0}, \mu \in \mathbb{R}$, and $\tau>0$, show that

$$
\begin{gathered}
\frac{\mathrm{d}}{\mathrm{~d} \tilde{\mu}} \log \mathbb{E}_{G}[f(\tilde{\mu}+\tilde{\tau} G)]=-\frac{1}{\tilde{\tau}} \mathbb{E}[G \mid S+\tilde{\tau} G=\tilde{\mu}] \\
\frac{\mathrm{d}^{2}}{\mathrm{~d} \tilde{\mu}^{2}} \log \mathbb{E}_{G}[f(\tilde{\mu}+\tilde{\tau} G)]=-\frac{1}{\tilde{\tau}^{2}}(1-\operatorname{Var}[G \mid S+\tilde{\tau} G=\tilde{\mu}]),
\end{gathered}
$$

where $S \sim f(s) \mathrm{d} s$ independent of $G \sim \mathrm{~N}(0,1)$.
(d) We Taylor expand

$$
\log \tilde{m}_{f \rightarrow v}^{s}(\vartheta) \approx \mathrm{const}+X_{f v} \tilde{a}_{f \rightarrow v}^{s} \vartheta-\frac{1}{2} X_{f v}^{2} \tilde{b}_{f \rightarrow v}^{s} \vartheta^{2}+O_{p}\left(n^{-3 / 2}\right)
$$

(We take this to be the definition of $\tilde{a}_{f \rightarrow v}^{s}$ and $\tilde{b}_{f \rightarrow v}^{s}$). Taking the approximation in part (a) to hold with equality, argue

$$
\tilde{a}_{f \rightarrow v}^{s}=\frac{1}{\tau_{s+1}^{2}}\left(y_{f}-\tilde{\mu}_{f \rightarrow v}^{s}\right)+o_{p}(1), \quad \tilde{b}_{f \rightarrow v}^{s}=\frac{1}{\tau_{s+1}^{2}}+o_{p}(1)
$$

(e) Taking the approximations in part (d) to hold with equality and using part (b) to subsitute for $y_{f}-\tilde{\mu}_{f \rightarrow v}^{s}$, Taylor expand $\log m_{v \rightarrow f}^{s+1}(\vartheta)$ to conclude

$$
\log m_{v \rightarrow f}^{s+1}(\vartheta)=\text { const }+\frac{1}{\tau_{s+1}^{2}} \chi_{v \rightarrow f}^{s+1} \vartheta-\frac{1}{\tau_{s+1}^{2}} \vartheta^{2}+o_{p}(1)
$$

where $\left(\chi_{v \rightarrow f}^{s+1}, \Theta\right) \xrightarrow{\text { d }}\left(\Theta+\tau_{s+1} Z, \Theta\right)$. Why do we expect this Taylor expansion to be valid for all $\vartheta=O(1)$? Conclude Eq. (1).

