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Problem 1: from belief propagation to Bayes AMP state evolution

Below I have depicted the computation tree.
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We observe the edge weights Xfv and for each factor node the outcome

yf =
∑
v′∈∂f

Xfv′θv′ + wf .

Recall
Xfv

iid∼ N(0, 1/n), θv
iid∼ µΘ, and wf

iid∼ N(0, σ2).

The belief propagation algorithm on the computation tree exactly computes the posterior pv(ϑ|Tv,2t), where
Tv,2t is the σ-algebra generated by the obervations corresponding to nodes and edges within a 2t-radius ball
of v. The iteration is

m0
v→f (ϑ) = 1,

m̃s
f→v(ϑ) ∝

∫
exp

− 1

2σ2

(
yf −Xfvϑ−

∑
v′∈∂f\v

Xfv′ϑv′
)2

 ∏
v′∈∂f\v

ms
v′→f (ϑv′)

∏
v′∈∂f\v

µΘ(dϑv′),

ms+1
v→f (ϑ) ∝

∏
f ′∈∂v\f

m̃s
f ′→v(ϑ),

with normalization
∫
m̃t
f→v(ϑ)µΘ|V (vv,dϑ) =

∫
mt
v→f (ϑ)µΘ|V (vv,dϑ) = 1. One can show that for any

variable node v, the posterior density with respect to measure µΘ is

pv(ϑ|Tv,2t) ∝
∏
f∈∂v

m̃t−1
f→v(ϑ).

This equation is exact. Our goal is to show that when n, d→∞, n/d→ δ

pv(ϑ|Tv,2t) ∝ exp

(
− 1

2τ2
t

(χtv − ϑ)2 + op(1)

)
,
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where (χtv, θv)
d→ (Θ + τtZ,Θ), Θ ∼ µΘ, G ∼ N(0, 1) independent of Θ, and τt is given by the Bayes AMP

state evolution equations

τ2
t+1 = σ2 +

1

δ
mmseΘ(τ2

t ),

initialized by τ2
0 =∞. In fact, this follows without too much work once we show that

ms
v→f (ϑ) ∝ exp

(
− 1

2τ2
s

(χsv→f − ϑ)2 + op(1)

)
, (1)

where (χsv→f , θv)
d→ (Θ + τsZµ

s
v′→f−,Θ). This problem focuses on establishing (1). We do so inductively.

The base case more-or-less follows the standard inductive step, except that we need to pay some attention
to the infinite variance τ2

0 = ∞. We do not consider the base case here. Throughout, we assume µΘ has
compact support. We do not carefully verify the validity of all approximations. See Celentano, Montanari,
Wu. “The estimation error of general first order methods.” COLT 2020, for complete details.
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(a) Define

µsv→f =

∫
ϑms

v→f (ϑ)µΘ(dϑ), (τsv→f )2 =

∫
ϑ2ms

v→f (ϑ)µΘ(dϑ)− (µsv′→f )2,

and
µ̃sf→v =

∑
v′∈∂f\v

Xfv′µ
s
v′→f , (τ̃sf→v)

2 =
∑

v′∈∂f\v

X2
fv′(τ

s
v′→f )2.

Argue (non-rigorously) that we may approximate (up to normalization)

m̃s
f→v(ϑ) ≈ EG

[
p(Xfvϑ+ µ̃sf→v + τ̃sf→vG− yf )

]
,

where G ∼ N(0, 1) and p(x) = 1√
2πσ

e−
1

2σ2 x
2

is the normal density at variance σ2.

Remark: The quantities µsv→f and (τsv→f )2 have a simple statistical interpretation: they are the pos-
terior mean and variance for θv given observations in the computation tree within distance 2s of node v
and excluding the branch in the direction of f .

(b) Using the inductive hypothesis, show that as n, d→∞, n/d→ δ

(τ̃sf→v)
2 p→ 1

δ
mmseΘ(τ2

s ) =: τ̃2
s .

Further, note yf − µ̃sf→v = Xfvθv + Z̃sf→v, where

Z̃sf→v = wf +
∑

v′∈∂f\v

Xfv′(θv′ − µsv′→f ).

Argue

Z̃sf→v
d→ N

(
0, σ2 +

1

δ
mmseΘ(τ2

s )

)
and is independent of Xfv and θv.

Hint: The (random) functions ms
v′→f (ϑv′) as v′ varies in ∂f are iid and independent of the edge weights

Xfv′ . Why?

(c) For any smooth probability density f : R→ R>0, µ ∈ R, and τ > 0, show that

d

dµ̃
logEG[f(µ̃+ τ̃G)] = −1

τ̃
E[G|S + τ̃G = µ̃],

d2

dµ̃2
logEG[f(µ̃+ τ̃G)] = − 1

τ̃2
(1−Var[G|S + τ̃G = µ̃]),

where S ∼ f(s)ds independent of G ∼ N(0, 1).

(d) We Taylor expand

log m̃s
f→v(ϑ) ≈ const +Xfvã

s
f→vϑ−

1

2
X2
fv b̃

s
f→vϑ

2 +Op(n
−3/2).

(We take this to be the definition of ãsf→v and b̃sf→v). Taking the approximation in part (a) to hold with
equality, argue

ãsf→v =
1

τ2
s+1

(yf − µ̃sf→v) + op(1), b̃sf→v =
1

τ2
s+1

+ op(1).
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(e) Taking the approximations in part (d) to hold with equality and using part (b) to subsitute for yf−µ̃sf→v,
Taylor expand logms+1

v→f (ϑ) to conclude

logms+1
v→f (ϑ) = const +

1

τ2
s+1

χs+1
v→fϑ−

1

τ2
s+1

ϑ2 + op(1),

where (χs+1
v→f ,Θ)

d→ (Θ+τs+1Z,Θ). Why do we expect this Taylor expansion to be valid for all ϑ = O(1)?
Conclude Eq. (1).
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