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Problem Session 1

Problem 1: from Gordon’s objective to the fixed point equations

Recall Gordon’s min-max problem is
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In lecture, we claimed that by analyzing Gordon’s objective we can show that the Lasso solution is described

in terms of the solutions ⌧⇤,�⇤
to the fixed point equations
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where ⌘ is the solution of the 1-dimensional problem

⌘(y;↵) := argmin
x2R
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⌘ is commonly known as soft-thresholding. In this problem, we will outline how to derive the fixed point

equations from Gordon’s min-max problem.

 



(a) Define ✓̃0 =
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(b) Argue (heuristically) that we may approximate the optimization above by
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Remark: If we maximize over � � 0 explicitly, we get
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ũ2Ũ

8
<

:
1

2

 r
kũk2
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Note that the objective on the right-hand side is locally strongly convex around any point ũ at which

the first term is positive. When n < p, the Lasso objective is nowhere locally strongly convex. This

convenient feature of the new form of Gordon’s problem is very useful for its analysis. We do not explore

this further here.



(c) Argue that the quantity in Eq. (3) is equal to
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Hint: Recall the identity
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(d) Write
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in terms of the soft-thresholding operator.

(e) Compute
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n
�
2⌧ kũk
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(f) Write
1
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1
nE[hg, bui] as an expectation over the random variables (⇥, Z) ⇠ bµ✓0 ⌦N(0, 1). For

the latter, rewrite it using Gaussian integration by parts.

(g) Take the derivative of the objective in Eq. (4) with respect to ⌧ and with respect to �. Show that setting

the expectations of these derivatives to 0 is equivalent to the fixed point equations.



Problem 2: Gordon’s objective for max-margin classification

The use of Gordon’s technique extends well beyond linear models. In logistic regression, we receive iid

samples according to

yi ⇠ Rad(f(hxi,✓0i)), xi ⇠ N(0, Id),

f(x) =
exp(x)

exp(x) + exp(�x)
.

For a certain �⇤ > 0 the following occurs: when n/p ! � < �⇤, n, p ! 1, with high probability there exists ✓
such that yihxi,✓i > 0 for all i = 1, . . . , n. In such a regime, the data is linearly separable. The max-margin

classifier is defined as
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and the value of the optimization problem, which we denote by (y,X), is called the maximum margin.
To simplify notation, we assume in this problem that k✓0k = 1. In this problem, we outline how to set up

Gordon’s problem for max-margin classification. The analysis of Gordon’s objective is complicated, and we

do not describe it here. See Montanari, Ruan, Sohn, Yan (2019+). “The generalization error of max-margin

linear classifiers: High-dimensional asymptotics in the overparameterized regime.” arxiv:1911.01544.



(a) Show that
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(c) Let x̃ = X✓0. Show that the min-max problem is equivalent to
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and likewise for the comparison of the probabilities that the min-max values exceed t, where g ⇠ N(0, Id)
and h ⇠ N(0, In) independent of everything else.

(d) What is the limit in Wasserstein-2 distance of
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