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Problem Session 1

Problem 1: from Gordon’s objective to the fixed point equations

Recall Gordon’s min-max problem is
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In lecture, we claimed that by analyzing Gordon’s objective we can show that the Lasso solution is described
in terms of the solutions 7*, * to the fized point equations
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where 7 is the solution of the 1-dimensional problem
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1 is commonly known as soft-thresholding. In this problem, we will outline how to derive the fixed point
equations from Gordon’s min-max problem.
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(a) Define 8y = \/n@y and @ = \/nu. Prove that B*(g, h) has the same distribution as
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(b) Argue (heuristically) that we may approximate the optimization above by
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Remark: If we maximize over S > 0 explicitly, we get
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Note that the objective on the right-hand side is locally strongly convex around any point @ at which
the first term is positive. When n <d), the Lasso objective is nowhere locally strongly convex. This
convenient feature of the new form of Gordon’s problem is very useful for its analysis. We do not explore
this further here.
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(c) Argue that the quantity in Eq. (3) is equal to
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(d) Write
~ . B -2 _ ~ _
i arg i {3l - Al @) + Algo +
in terms of the soft-thresholding operator.
(e) Compute
(i) the derivative of mingcpa {%H'&HQ — Blg, ) + |60 + 11||1} with respect to 7.

(ii) the derivative of mingcga {f7||11||2 — Blg, @) + N[00 + 11||1} with respect to 3.
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(f) Write LE[||@[/?] and LE[(g, u)] as an expectation over the random variables (0, Z) ~ fg, ® N(0,1). For

the latter, rewrite it using Gaussian integration by parts.

(g) Take the derivative of the objective in Eq. (4) with respect to 7 and with respect to 8. Show that setting
the expectations of these derivatives to 0 is equivalent to the fixed point equations.
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Problem 2: Gordon’s objective for max-margin classification 4
The use of Gordon’s technique extends well beyond linear models. In logistic regression, we receive iid
samples according to

Yi ~ Rad(f(<wi’00>))’ €L~ N(Ovld)v

_ exp(z)
@) = @) + exp(=a)

For a certain §* > 0 the following occurs: when n/p — 6 < 6*, n,p — oo, with high probability there exists 0
such that y;(x;,0) > 0 for alli = 1,...,n. In such a regime, the data is linearly separable. The max-margin
classifier is defined as

be argmgx{ngnyxmi,w o < 1}, (5)

and the value of the optimization problem, which we denote by k(y, X), is called the mazimum margin.
To simplify notation, we assume in this problem that ||@o|| = 1. In this problem, we outline how to set up
Gordon’s problem for max-margin classification. The analysis of Gordon’s objective is complicated, and we
do not describe it here. See Montanari, Ruan, Sohn, Yan (2019+). “The generalization error of max-margin
linear classifiers: High-dimensional asymptotics in the overparameterized regime.” arxiv:1911.01544.



(a) Show that

k(y, X) > k if and only if Hmln (k1 — (y ® X0)), |2 =0.

Argue that
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(b) Why can’t we use Gordon’s inequality to compare the preceding min-max problem to
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(c) Let € = X6y. Show that the min-max problem is equivalent to
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Here Hgé is the projection operator onto the orthogonal complement of the space spaned by 8y. Argue
that
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and likewise for the comparison of the probabilities that the min-max values exceed t, where g ~ N(0,1,)
and h ~ N(0,I,) independent of everything else.

(d) What is the limit in Wasserstein-2 distance of £ 37" | 8, 7. n)?



