Simplicity and Complexity of Belief-Propagation

Elchanan Mossel ${ }^{1}$

${ }^{1}$ MIT

Dec 2020

Markov Random Fields and Information Flow on Trees

Consider the following process on a tree.

Color the root randomly.
Repeat: Copy color of parent with probability θ. Otherwise, chose color $\sim U[q]$.

Will mostly consider full d-ary tree / Branching process trees.

Inference - Machine Learning Perspective

- Inference problem (V1): Infer root color from leaf colors?
- A: No! Even in one level, \exists randomness in root given children.
- Inference Problem (V2): How much can infer on the root color from leaf colors?
- Machine Learning: We can compute the posterior exactly!
- Moreover: Belief-Propagation does it in linear time.
- Remark: Belief Propagation is often applied to non-tree graphs [Pearl 82]. Applications to trees where known in biology and statistical physics before [Hidden 1970, Preston 1974].

Part 1: $q=2$ - linear theory

Part 1: LINEAR THEORY
 $q=2$

Inference - Asymptotic Perspective

- Let $q=2$, fix the d-ary tree of h levels and call the two colors $+1,-1$. Let X_{v} be the color of node v. Let X_{0} denote the root color and X_{h} are labels at level h of the tree.
- Inference Problem (V2): How much can infer on the root color from leaf colors?
- Q1: Can we analyze the optimal estimator (BP)?
- Q2: Is Majority $=\operatorname{sgn}\left(\sum_{i} X_{h}(i)\right)$ a good estimator as $h \rightarrow \infty$?
- Question asked in Statistical Physics in terms of the extremality of the free measure of the Ising/Potts model on the Bethe lattice.

The Majority Estimator

- Let $S_{h}=\sum_{i} X_{h}(i)$.
- Exercise 1. $\mathbb{E}\left[S_{h} \mid X_{0}\right]=(d \theta)^{h} X_{0}$ and

$$
\frac{\mathbb{E}\left[S_{h} \mid X_{0}\right]^{2}}{\operatorname{Var}\left[S_{h} \mid X_{0}\right]}=\frac{(d \theta)^{2 h}}{\operatorname{Var}\left[S_{h} \mid X_{0}\right]} \rightarrow\left\{\begin{array}{ll}
C(\theta), & d \theta^{2}>1 \\
0, & d \theta^{2} \leq 1
\end{array}\right\}
$$

- $\Longrightarrow \lim _{h \rightarrow \infty} d_{\mathrm{TV}}\left(S_{h}\left|X_{0}=+, S_{h}\right| X_{0}=-\right)>0$ if $d \theta^{2}>1$.
- $\Longrightarrow \lim _{h \rightarrow \infty} \mathbb{E}\left[\operatorname{sgn}\left(S_{h}\right) X_{0}\right]>0$ if $d \theta^{2}>1$.
- Analyzing Fourier Transform of S_{h} Kesten-Stigum-66 proved:
- $d \theta^{2} \leq 1 \Longrightarrow S_{h} \rightarrow_{h \rightarrow \infty}$ a normal law independent of $X_{0}(*)$.
- $d \theta^{2}>1 \Longrightarrow S_{h} \rightarrow_{h \rightarrow \infty}$ a non-normal law dependent on X_{0}.
- $d \theta^{2}=1$ is referred to as the Kesten-Stigum threshold.
- Exercise: Apply the martingale CLT, to prove the normal case.

Perspectives United:

- Thm for $q=2$: If $d \theta^{2} \leq 1$ then $\mathbb{P}\left[B P \rightarrow_{h \rightarrow \infty}(0.5,0.5)\right]=1$.
- $\Longrightarrow B P$ infers non-trivially iff Majority infers non-trivially.
- Multiple proofs: Bleher, Ruiz, and Zagrebnov (95), loffe (96), Evans-Kenyon-Peres-Schulmann (00), Borg, Tour-Chayes, M, Roch (06), etc. (also: Chayes, Chayes, , Sethna, Thouless, (1986)).
- EKPS: Also for random trees, where d is the average degree.
- All use some concavity of the functionals of the distribution.
- Next: A proof sketch and applications areas of the linear theory.

Recursion of Random Variables for Binary Tree

- Let P_{T}^{+}denote the measure of X_{h} when root is + , let $P^{T}=0.5\left(P_{T}^{-}+P_{T}^{+}\right)$.
- $M:=M_{T}:=P_{T}\left[X_{0}=+\mid X_{h}\right]-P_{T}\left[X_{0}=-\mid X_{h}\right]$.
- Ex: (Bayes): $\frac{d P_{T}^{ \pm}}{d P_{T}}=1 \pm M, \quad E_{T}^{+}[M]=E_{T}\left[M^{2}\right]=E_{T}^{+}\left[M^{2}\right]$.
- Claim 1: If $T=0->S, M=M_{T}, N=M_{S}$:
- $M=\theta N, E_{T}^{+}[N]=\theta E_{S}^{+}[N], E_{T}^{+}\left[N^{2}\right]=$ $\theta E_{S}^{+}\left[N^{2}\right]+(1-\theta) E_{S}\left[N^{2}\right]$.
- Claim 2:: If T_{1}, T_{2} are two trees joined at the root to form T and $N_{i}=X_{T_{i}}$ then:

$$
M=\frac{N_{1}+N_{2}}{1+N_{1} N_{2}}
$$

\Longrightarrow Belief Propagation Recursion : $M_{n+1}=\theta \frac{M_{n}+M_{n}^{\prime}}{1+\theta^{2} M_{n} M_{n}^{\prime}}$.

$2 \theta^{2}<1 \Longrightarrow E\left[M_{n}^{2}\right] \rightarrow 0$, i.e., asymptotic indpendence

$$
\begin{aligned}
& M=\theta \frac{N_{1}+N_{2}}{1+\theta^{2} N_{1} N_{2}}, \quad \frac{1}{1+r}=1-r+\frac{r^{2}}{1+r} \Longrightarrow \\
& M=\theta\left(N_{1}+N_{2}\right)-\theta^{3} N_{1} N_{2}\left(N_{1}+N_{2}\right)+\theta^{4} N_{1}^{2} N_{2}^{2} M \\
& M \leq \theta\left(N_{1}+N_{2}\right)-\theta^{3} N_{1} N_{2}\left(N_{1}+N_{2}\right)+\theta^{4} N_{1}^{2} N_{2}^{2}
\end{aligned}
$$

$\Longrightarrow\left(\right.$ taking E_{T}^{+}recalling $\left.E_{T}^{+}[M]=E_{T}\left[M^{2}\right]\right)$

$$
E_{T}\left[M^{2}\right] \leq 2 \theta^{2} E_{S}\left[N^{2}\right]-\theta^{4} E_{S^{+}}\left[N^{2}\right]
$$

$$
E\left[M_{n}^{2}\right] \leq\left(2 \theta^{2}\right)^{n}
$$

Application 1: The Phylogenetic Inference Problem

