Simplicity and Complexity of Belief-Propagation

 \#2Elchanan Mossel ${ }^{1}$
${ }^{1}$ MIT

July 2020

A simple Mathematical model for Phylogentic reconstruction

- Consider broadcast process on trees for h levels X_{h} and $d=2$.
- Unknown permutation $\sigma \in S_{2^{d}}$.
- Input: i.i.d samples from $Y_{s} \sim \tilde{X}_{h}, 1 \leq s \leq m$, where $\tilde{X}_{h}(i)=X_{h}(\sigma(i))$.
- Goal: recover T, i.e. $\sigma \bmod \Gamma$, where $\Gamma=$ ways to draw.
- E.G: 3 possible trees on when $h=2$ and $7 \times 5 \times 3 \times 3$ when $h=3$.

An inference procedure

- Estimate the covariance $r_{i, j}=\operatorname{Cov}\left[\tilde{X}_{h}(i), \tilde{X}_{h}(j)\right]$.
- Identify siblings as maximizing correlation.
- For each sample i, let Z_{i} be a 2^{d-1} dimensional vector where

$$
Z_{i}(w)=\operatorname{maj}\left(Y_{v}: v \text { descendant of } w\right)
$$

- Repeat.
- Let $p(m, h):=$ probability of recovering the tree from m samples.
- Exercise: If $2 \theta^{2}>1$, and $m \geq C_{\theta} h$, then $p(m, h) \geq 0.9$.
- Exercise: If $2 \theta^{2}<1$, then $p(m, h) \leq m c_{\theta}^{h}$, where $c_{\theta}<1$.

$2 \theta^{2}<1 \Longrightarrow$ need $\exp (C h)$ samples to recover the tree

- Exercise: $\left\|P_{T}^{+}-P_{T}^{-}\right\|_{T V} \leq 2 E_{T}\left[\left|M_{h}\right|\right] \leq 2 \times\left(2 \theta^{2}\right)^{h / 2}$
- \Longrightarrow If two $h+2$-level trees T, T^{\prime} have the same topology in the last h levels then:

$$
\left\|X_{h+2}-X_{h+2}^{\prime}\right\|_{T V} \leq 8 \times\left(2 \theta^{2}\right)^{h / 2} \Longrightarrow
$$

-

$$
\left\|\left(X_{h+2}\right)^{\otimes m}-\left(X_{h+2}^{\prime}\right)^{\otimes m}\right\|_{T V} \leq 8 m \times\left(2 \theta^{2}\right)^{h / 2} \Longrightarrow
$$

- To distinguish between two topologies need at least $m=\Omega\left(\left(2 \theta^{2}\right)^{-h / 2}\right)$ samples.

Application 2: The Block Model

- Random graph $G=(V, E)$ on n nodes.
- Half blue / half red (\pm).
- Two nodes of the same color are connected with probability $2 d \theta / n+d(1-\theta) / n$.
- Two nodes with different colors are connected with probability $d(1-\theta) / n$.
- Note: average degree is d and if $u \sim v$ then $E\left[X_{u} X_{v}\right]=\theta$.
- Inference: which nodes are likely red/blue ?
- Conjecture (Decelle, Krzakala, Moore and Zdeborova, 11): "Belief-Propagation" is the optimal algorithm.
- and ... possible to do better than random iff $d \theta^{2}>1$.

The Block Model in pictures

A sample from the model

The easier direction ...

Elchanan Mossel
Simplicity \& Complexity of BP

The Conjecture is Correct

Theorem (M-Neeman-Sly, Massoulie 14)
If $d \theta^{2}>1$ then possible to detect (infer better than random).

BP and a New Type of Random Matrix

- Thm If $d \theta^{2}>1$ then possible to detect.
- Conj:(Krzakala,Moore,M,Neeman,Sly, Zdebrovoa,Zhang 13): If A is the adjacency matrix, then w.h.p the second eigenvector of

$$
N=\left(\begin{array}{cc}
0 & D-I \\
-I & A
\end{array}\right), \quad D=\operatorname{diag}\left(d_{v_{1}}, \ldots, d_{v_{n}}\right)
$$

is correlated with the partition and the second eigenvalue is $d(1-2 \varepsilon)+o_{n}(1)$.

- No orthogonal structure! N is not symmetric or normal. Singular vector of N are useless.
- KMMNSZZ derived N by Linearizing Belief Propagation and applying a number-theory identity by Hashimoto (89).
- Note: conjectured linear algebra algorithm is deterministic.
- Conjecture established by Bordenave-Lelarge-Massoulie 15.

The Eigenvalues of N

$$
d=3, \quad d(1-2 \varepsilon)=2, \quad \sqrt{d}=1.732 \ldots
$$

The spectrum on real networks

Part 2: Large q - nonlinear theory

Part 2: NON-LINEAR THEORY Large q

Generalizations for large q

- Claim:For all q if $d \theta^{2}>1$ then:
- For the tree broadcast model, can distinguish.
- Can detect the in the block model.
- Recover phylogenies from sequences of length $O(\log n)$.
 one + and the other - .
- More generally, this is true for broadcast process with Markov chains M on edges where

$$
\theta=\max (|s|: s \in \sigma(A) \backslash\{1\})
$$

- Pfs:
- For tree broadcast models: Kesten-Stigum 66.
- For block models: Bordenave, Lelarge, Massouile-15, Abbe-Sandon-15..
- For phylogeny, M-Roch-Sly-15.

Doing Better for large q ?

Thm: For large $q, \exists \theta_{q}$ with $d \theta_{q}^{2}<1$ and such that for $\theta>\theta_{q}$:

- For the tree broadcast model, can distinguish (M-01,Sly-09 ...)
- But not using linear or robust estimators (M-Peres-03, Janson-M-04)
- Can detect the in the block model.
- But believed to have computational/statistical gap (Abbe-Sandon-15, Banks-Moore-Neeman-Netrapalli-16)
- Recover phylogenies from sequences of length $O(\log n)$.
- Not written (Conjecture: cannot be done robustly).

Linear reconstruction for large q

Theorem (Count Reconstruction, Robust Reconstruction (Mossel-Peres, Janson-Peres))

For all q and d-ary tree, $d \theta^{2}=1$ is the threshold for:

- Count reconstruction : inference of root better than random, based only on the census of $c_{h} \in Z^{q}$.
$c_{h}(a)=\left|\left\{v \in L_{h}: X_{v}=a\right\}\right|, \quad \operatorname{Var}\left[\mathbb{E}\left[X_{0} \mid c_{h}\right]\right] \rightarrow 0$ iff $d \theta^{2} \leq 1$
- Robust Reconstruction : inference given noisy versions of the leaves $\left(Y_{v}: v \in L_{h}\right)$, where $Y_{v}=X_{v}$ with probability η and $Y_{v} \sim U[q]$ with probability $1-\eta$ for some fixed $\eta>0$.

$$
\operatorname{Var}\left[\mathbb{E}\left[X_{0} \mid Y_{L_{h}}\right]\right] \rightarrow 0 \text { iff } d \theta^{2} \leq 1
$$

A Double phase transition for large q

Theorem (Count Reconstruction, Robust Reconstruction (Mossel-Peres, Janson-Peres))

For all q and d-ary tree, $d \theta^{2}=1$ is the threshold for: census and robust reconstruction.

Theorem (Reconstruction for large q (Mossel 00))

If $d \theta>1$ then for $q>q_{\theta}$ can distinguish the root better than random:

$$
\lim _{h \rightarrow \infty} \operatorname{Var}\left[\mathbb{E}\left[X_{0} \mid X_{L_{h}}\right]\right]>0
$$

\Longrightarrow Non-linear estimators are superior.
Pf: Shows fractal nature of information.

