Simplicity and Complexity of Belief-Propagation

Elchanan Mossel ${ }^{1}$

${ }^{1}$ MIT

July 2020

A Double phase transition for large q

Theorem (Count Reconstruction, Robust Reconstruction (Mossel-Peres, Janson-Peres))

For all q and d-ary tree, $d \theta^{2}=1$ is the threshold for: census and robust reconstruction.

Theorem (Reconstruction for large q (Mossel 00))

If $d \theta>1$ then for $q>q_{\theta}$ can distinguish the root better than random:

$$
\lim _{h \rightarrow \infty} \operatorname{Var}\left[\mathbb{E}\left[X_{0} \mid X_{L_{h}}\right]\right]>0
$$

\Longrightarrow Non-linear estimators are superior.
Pf: Shows fractal nature of information.

Proof sketch

- For $q=\infty$, clearly threshold is $d \theta=1$.
- For finite $q, d=2$, fix θ such that $d \theta>1$.
- Inference: Infer root color to be c if there is an ℓ-diluted binary subtree $T^{\prime} \subset T$ with root at 0 and where all leaves have color c.
- Exercise 1: There exists an $\ell, \varepsilon>0$ such that if the root is c, the probability that such a tree exists is at least ε.
- Exercise 2: For all $\varepsilon>0$, if q is sufficiently large, and if the root is not c, the probability that there is an ℓ-diluted $2^{\ell}-1$ tree with all the leaves of color $\neq c$ is at least $1-\varepsilon / 10$.
- Exercise 3: Prove that if $d \lambda \leq 1$, then the root and leaves are asymptotically independent.

More detailed Picture

- Sly 11: Defined magnetization $m_{n}=E\left[M_{n}\right]$ such that if m_{n} is small then:

$$
m_{n+1}=d \theta^{2} m_{n}+(1+o(1)) \frac{d(d-1)}{2} \frac{q(q-4)}{q-1} \theta^{4} m_{n}^{2}
$$

- \Longrightarrow if $q \geq 5$, the KS bound is not tight.
- Also proved that if $q=3$ and $d \geq d_{\text {min }}$ is large then KS bound is tight.
- M-01: For general Markov chains, can have $\lambda_{2}(M)=0$, yet root and leaves are not independent.
- Exercise: Prove this for following chain on F_{2}^{2}.
$M(x, y)=(r, r \oplus x)$ or $(r, r \oplus y)$ with probability $1 / 2$ each.
- More sophisticated examples in Mossel-Peres.

Two conjectures about inference

- Consider a model where different edges have different θ 's.
- Let q so that for $\theta \in\left(\theta_{R}, \theta_{K S}\right), \operatorname{Var}\left[\mathbb{E}\left[X_{0} \mid X_{h}\right]\right] \rightarrow \alpha>0$.
- Conj 1: There is no estimator f such that $f\left(X_{h}\right)$ and X_{0} have no negligible correlation for all models with $\theta(e) \in\left(\theta_{R}, \theta_{K S}\right)$ for all edges.
- Conj 2: It is "impossible" to recover phylogenetic trees using $O(h)$ samples under the conditions above.
- Strong version of impossible would mean information theoretically. Weak version would mean computationally.

Part 3: Complexity of BP

Part 3: Complexity of BP

Complexity of BP

- What is the complexity of BP?
- Low: Runs in linear time.
- But: Uses real numbers - it this necessary?
- But: Uses depth - is this necessary?
- Fractal picture suggests maybe depth is needed.

Understanding the Omnipresence

- What is everywhere and understand everything?
- "Omnipresence".
- A: The deep-net on your smartphone that understands you.

Deep Inference?

Mathematically, it is natural to ask if there are data generative process satisfying 3 natural criteria:

- 1. Realism: Reasonable data models.
- V
- 2. Reconstruction: Provable efficient algorithms to reverse engineer the generative process.
- \vee (phylogenetic reconstruction).
- 3. Depth: Proof that depth is needed.
- ???
- 4. Also: why does BP use real numbers, when the generating process is discrete?

Precision in BP

- Q: What are the memory requirements for BP?
- Conjecture (EKPS-00): For $q=2$, any recursive algorithm on the tree which uses at most B bits of memory per node can only distinguish the root value better then random if $\theta<\theta(B)$ where $d \theta(B)^{2}>1$.
- Thm:(Jain-Koehler-Liu-M-19): Conjecture is true: $\theta(B)-\theta=B^{-O(1)}$.

Problem Setup

generation tree (broadcast model)
reconstruction (message passing)

Problem Setup (cont.)

- Broadcast process on d-regular tree of height h.
- Each reconstruction $Y_{i}=f_{i}\left(Y_{2 i}, Y_{2 i+1}\right)$ is an arbitrary $\log L$-bit string (memory constraint).

AC^{0}

- $\mathbf{A C}^{0}:=$ class of bounded depth circuits with AND/OR (unbounded fan) and NOT gates.
- Thm: Moitra-M-Sandon-20:
- $\mathrm{AC}^{0}\left(X_{h}\right)$ cannot classify X_{0} better than random.
- Is this trivial?
- Maybe not: Thm MMS-20: $\mathbf{A C}^{0}$ generates leaf distributions.
- $\mathbf{T C}^{0}:=$ like $\mathbf{A C}^{0}$ but with Majority gates.
- "Bounded depth deep nets".
- Thm (MMS-20): When $q=2$ and $0.9999<\theta<1$, there exists an algorithm A in $\mathbf{T C}^{0}$ such that $\lim _{h} P\left[A\left(X_{h}\right)=X_{0}\right]=\lim _{h} P\left[B P\left(X_{h}\right)=X_{0}\right]$.
- Conj: This is true for all θ when $q=2$.
- So maybe we can classify optimally in $\mathbf{T C}^{0}$?
- Maybe bounded depth nets suffice?

$N^{1}{ }^{1}$

- $\mathbf{N C}^{1}:=$ class of $O(\log n)$ depth circuits with AND/OR (fan 2$)$ and NOT gates.
- Known that $\mathbf{T C}^{0} \subset \mathbf{N C}^{1}$. Open if they are the same.
- Thm (MMS-20): One can classify as well as BP in $\mathbf{N C}^{1}$.
- Thm (MMS-20): There is a broadcast process for which classifying better than random is $\mathbf{N C}^{1}$-complete.
- So, unless $\mathbf{T C}^{0}=\mathbf{N C}^{1}$, $\log n$ depth is needed.

The KS bound and Circuit Complexity

- The threshold $2 \theta^{2}=1$ is called the Kesten-Stigum threshold.
- Above this threshold it is known that one neuron can classify the root better than random (Kesten-Stigum-66).
- Below this threshold, one neuron cannot (M-Peres-04).
- Below this threshold, with enough i.i.d. noise on the leaves, BP becomes trivial (Janson-M-05).
- Related to "Replica Symmetry Breaking" in statistical physics models (Mezard-Montanari-06).
- Conjecture (MMS-20): For any broadcast process, below the KS bound and where BP classifies better than random, classification is $\mathbf{N C}^{1}$-complete.

Conclusion

- BP is simple:
- Runs in linear time.
- Above KS bound behaves like a Linear Algorithm.
- BP is complex:
- Below KS bound, tend to be fractal.
- Statistical/computation gaps.
- Requires depth / precision.

