
1 Background

Definition 1.1. A sequence of random variables (Xn)n≥0 taking values in a space S is called a
Markov chain if for all x0, . . . , xn ∈ S such that P(X0 = x0, . . . , Xn−1 = xn−1) > 0 we have

P(Xn = xn | X0 = x0, . . . , Xn−1 = xn−1) = P(Xn = xn | Xn−1 = xn−1) .

In other words, the future of the process is independent of the past given the present.

For an event A we write Pi(A) to denote P(A | X0 = i).

A Markov chain is defined by its transition matrix P given by

P (i, j) = P(X1 = j | X0 = i) ∀ i, j ∈ S.

A probability distribution π is called stationary/invariant if πP = π, i.e. if X0 ∼ π, then Xn ∼ π
for all n ≥ 0. A Markov chain is called reversible if

π(x)P (x, y) = π(y)P (y, x) ∀x, y.

Definition 1.2. A Markov chain is called irreducible if for all x, y ∈ E there exists n ≥ 0 such
that Pn(x, y) > 0. It is called aperiodic, if g.c.d.{n ≥ 1 : Pn(x, x) > 0} = 1 for all x.

Theorem 1.3. Suppose that X is an irreducible and aperiodic Markov chain on a finite state space
with invariant distribution π. Then for all x, y we have

P t(x, y)→ π(y) as t→∞.

Definition 1.4. Let µ, ν be two probability measures on S. The total variation distance between
µ and ν is defined to be

‖µ− ν‖TV = max
A⊆S

(µ(A)− ν(A)).

Exercise 1.5. Show that

‖µ− ν‖TV = 1
2

∑
x

|µ(x)− ν(x)| =
∑

x:µ(x)>ν(x)

max(µ(x)− ν(x), 0).

Proposition 1.6. Let µ and ν be two probability distributions on S. Then

‖µ− ν‖TV = inf{P(X 6= Y ) : (X,Y ) is a coupling of µ and ν}

and there is a coupling achieving the infimum above. We will call this coupling the optimal coupling
of µ and ν.

Proof. It is easy to see using the definition of total variation that ‖µ− ν‖TV ≤ P(X 6= Y ) for
any coupling (X,Y ). We now construct the optimal coupling. Let p =

∑
x min(µ(x), ν(x)). Toss

a coin with probability of Heads equal to p. If Heads comes up, then sample Z according to
f(x) = min(µ(x), ν(x))/p and set X = Y = Z. If Tails comes up, then sample X according to h
and Y according to g, where

h(x) =
µ(x)− ν(x)

1− p
1(µ(x) > ν(x)) and g(x) =

ν(x)− µ(x)

1− p
1(ν(x) > µ(x)).

It is easy to check that this is indeed an optimal coupling of µ and ν.
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We now define

d(t) = max
x

∥∥P t(x, ·)− π∥∥
TV

and d(t) = max
x,y

∥∥P t(x, ·)− P t(y, ·)∥∥
TV

Proposition 1.7. For all t > 0
d(t) ≤ d(t) ≤ 2d(t).

Moreover, the function d is submultiplicative, i.e. for all s, t > 0

d(t+ s) ≤ d(t)d(s).

Proof. We leave the first assertion as an exercise.

For the second one, fix x and y and let (X,Y ) be the optimal coupling of P s(x, ·) and P s(y, ·). By
the Markov property P s+t(x, z) = E

[
P t(X, z)

]
and P s+t(y, z) = E

[
P t(Y, z)

]
. So

∥∥P s+t(x, ·)− P s+t(y, ·)∥∥
TV
≤ E

[
1(X 6= Y ) · 1

2

∑
z

∣∣P t(X, z)− P t(Y, z)∣∣]
≤ E

[
1(X 6= Y ) · d(t)

]
= P(X 6= Y ) d(t).

Maximising over x and y and using that (X,Y ) is an optimal coupling completes the proof.

Definition 1.8. A coupling of Markov chains with transition matrix P is a process (Xt, Yt)t so
that both X and Y are Markov chains with transition matrix P and with possibly different starting
distributions. A Markovian coupling of P is a coupling of Markov chains which is itself a Markov
chain which also satisfies that for all x, x′, y, y′

P
(
X1 = x′

∣∣ X0 = x, Y0 = y
)

= P (x, x′) and P
(
Y1 = y′

∣∣ X0 = x, Y0 = y
)

= P (y, y′).

A coupling is called coalescent, if whenever there exists s such that Xs = Ys, then Xt = Yt for
all t ≥ s.

Theorem 1.9. Let (X,Y ) be a Markovian coalescent coupling with X0 = x and Y0 = y. Let

τcouple = inf{t ≥ 0 : Xt = Yt}.

Then ∥∥P t(x, ·)− P t(y, ·)∥∥
TV
≤ Px,y(τcouple > t) .

Proof. Since the coupling is Markovian we have

P t(x, x′) = Px,y
(
Xt = x′

)
and P t(y, y′) = Px,y

(
Yt = y′

)
.

So (Xt, Yt) is a coupling of P t(x, ·) and P t(y, ·), and hence we get∥∥P t(x, ·)− P t(y, ·)∥∥
TV
≤ Px,y(Xt 6= Yt) ≤ Px,y(τcouple > t) .

This finishes the proof.
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