Pool of lower bound twix
$$3 \ (a \ b_{1}(a)) = \frac{1}{8}$$

Let $t = t_{uix} \left(\frac{1}{56}\right) \leq 3 t_{uix}$
 $\forall x, A = P^{t}(x, A) > \pi(A) = \frac{1}{56}$.
Take A with $\pi(A) \geq \frac{4}{5}$, then $P^{t}(x, A) > \frac{4}{56} = \forall x$.
So $7A \leq t$. Gree($\frac{1}{16}$) \Rightarrow move $E_{A}[7A] \leq 56 t$. Π
Allow '32 For all reversible large MC's
twix \times max $\pi(A)E_{A}[7A]$
Remark Reversibility is essected!
Enercise 1 Consider a biased RW on Zn (+ lastiness)
 $\int_{1}^{1} \frac{1}{5} = P R = PrI$
Zn $fast = R = PrI = PrI$
Zn $fast = P R = PrI$
Zn fa

Remark If instead of geowetric, we take Us to be uniform on
$$\{1, ..., t\}$$

then this gives rise to the lesaro mixing time.
Exercise 3 Show that $d_G(E)$ is decreasing in t.
Theorem 3 For all chains, to Solutions to c.
Theorem 3 For all chains, to Solution 4 a c.
Theorem 3 For all chains, to Solution 3. I
Theorem 3 For all chains, to Solution 3. I
Theorem 3 to solution that a set B with $\pi(B) \ge \frac{1}{2}$ st.
We prove to Solution to find a set B with $\pi(B) \ge \frac{1}{2}$ st.
We prove to Solution to find a set B with $\pi(B) \ge \frac{1}{2}$ st.
We are $E_{1}(T_{0}) \ge 9t$ for some positive constant D.
 $t < t_{0} \Rightarrow A$ s.t. $R(N_{0} \in A) < \pi(A) - \frac{1}{4}$
 $B = \{u_{1}: R(N_{0} \in A) > \pi(A) - \frac{1}{2}$
 $R = \{u_{1}: R(N_{0} \in A) > \pi(A) - \frac{1}{2}$
 $R = \{u_{1}: R(N_{0} \in A) > \pi(A) - \frac{1}{2}$
 $R = \pi(B) \Rightarrow \frac{1}{2}$
 $\pi(A) \le \pi(B) + \pi(A) - \frac{1}{2} \Rightarrow \pi(B) \ge \frac{1}{2}$. II
Ne will prove that assuming $E_{1}(T_{0}) < \Phi$ for a suitable constant D.
 $R = \{N_{0}: S_{1}(B) + \pi(A) - \frac{1}{2} \Rightarrow \pi(B) \ge \frac{1}{2}$. II
Ne will prove that assuming $E_{1}(T_{0}) < \Phi$ for a suitable constant D.
 $R = (N_{0} \le R(N_{0} < A) + \pi(A) - \frac{1}{2} \Rightarrow \pi(B) \ge \frac{1}{2}$.
 $R = (N_{0} \le R(N_{0} < A) + \pi(A) - \frac{1}{2} \Rightarrow \pi(B) \ge \frac{1}{2}$. II
Ne will prove that assuming $E_{1}(T_{0}) < \Phi$ for a suitable constant D.
 $R = (N_{0} < R(N_{0} < 20 Mt) < \frac{1}{2}M$
 $R = (N_{0} < R(N_{0} < R(N_{0} > 20 Mt) < \frac{1}{2}M$
 $R = (N_{0} < R(N_{0} < R(N_{0} > 20 Mt) < \frac{1}{2}M$
 $R = (N_{0} < R(N_{0} < R(N_$

$$\begin{array}{c} & \left(\pi(A) - \frac{t}{8} \right) \cdot P_{8}(\mathbb{Z}_{5} > 20 \text{ Mt}, \mathbb{Z}_{8} < 20 \text{ Mt}) \\ & \mathbb{P}_{8}(\mathbb{Z}_{8} > 20 \text{ Mt}) \cdot P_{2}(\mathbb{Z}_{8} < 20 \text{ Mt}) \\ & \star \geqslant \left(\pi(A) - \frac{t}{8} \right) \cdot \left(1 - \frac{t}{4} \right)^{20 \text{ Mt}} \cdot \left(1 - \frac{t}{2 \text{ M}} \right) \\ & 20 \text{ Mt} > 1 \\ & \geqslant \left(\pi(A) - \frac{t}{8} \right) \cdot \left(1 - 20 \text{ M} \right) \left(1 - \frac{t}{2 \text{ M}} \right) \\ & \mathbb{P}_{1}(A) - \frac{t}{8} \right) \left(1 - 20 \text{ M} \right) \left(1 - \frac{t}{2 \text{ M}} \right) \\ & \mathbb{P}_{1}(A) - \frac{t}{8} \right) \left(1 - 20 \text{ M} \right) \left(1 - \frac{t}{2 \text{ M}} \right) \\ & \mathbb{P}_{1}(A) - \frac{t}{8} \right) \left(\pi(A) - \frac{t}{8} \right) \left(\pi(A) - \frac{t}{8} \right) \\ & \mathbb{P}_{1}(A) - \frac{t}{8} \right) = \frac{t}{4 \text{ M}^{2}} \\ & \mathbb{P}_{2}(A) = \frac{t}{4 \text{ M}^{2}} \\ & \mathbb{P}_{2}(A) = \frac{t}{4 \text{ M}^{2}} \\ & \mathbb{P}_{1}(A) - \frac{t}{8} \right) = \frac{t}{4 \text{ M}^{2}} \\ & \mathbb{P}_{2}(A) = \frac{t}{4 \text{ M}^{2}} \\ &$$

4. Let X be a reversible Markov chain with transition matrix P and invariant distribution π .

(i) Prove that for all x, y

$$\frac{P^{2t}(x,y)}{\pi(y)} \ge \left(1 - \max_{z,w} \left\|P^t(z,\cdot) - P^t(w,\cdot)\right\|_{\mathrm{TV}}\right)^2.$$

Deduce that

$$P^{2t_{\min}}(x,y) \ge \frac{1}{4}\pi(y)$$

and that there exists a transition matrix \widetilde{P} such that

$$P^{2t_{\text{mix}}}(x,y) = \frac{1}{4}\pi(y) + \frac{3}{4}\widetilde{P}(x,y)$$

(ii) Let $t_{\text{stop}} = \max_x \min\{\mathbb{E}_x[\Lambda_x] : \Lambda_x \text{ is a stopping time s.t. } \mathbb{P}_x(X_{\Lambda_x} \in \cdot) = \pi(\cdot)\}$. By defining an appropriate stationary time, prove that