
 

Mixing and hitting times for Markov chains

Overview 1 Equivalence up to constants between mixing times and

hitting times of large sets

2 flitting times comparison for differentsizesof sets
3 Refined mixing and hitting equivalence

Let X be an irreducible Markov chain in a finite state space S

Let P be the transition matrix of X
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Remark Reversibility is essential
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Definition Mixing at a geometric time

Let Ze be a geometric v.v of parameter taking values in 1

and indep of X
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Remark If instead of geometric we take Ut to be uniform on 7 t

then this gives rise to the Cesaro mixing time
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leads to a contradiction

By Markov's ineq Rz 2B 7 20Mt E 1
2M

ME IN

Pz XZt e Al Pz Xzt cAtZt 2B 2B L 20Mt Pz 73213,213 28Mt

ymeifgPy XZtEA memoryless property of Ztand strong Markov at EB



HCA Ig Pz It 201ft CBC 20Mt

Patt 20Mt Pz TBC20Mt
ICA Lg I

20Mt
L
gu

20Mt 1

fun g I 20M L Fm
Choosing D qq.rs PzCXztCA 74TH f I 2

Taking M large enough shows Pz Xzt EA ICA I
which is a contradiction I

Idea of geometric mixing due to Oded Schramm
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