Mixing and hitting times for Markov chains
Overview 1) Equivalence (up to constants) between mixing times and bitting times of large sets
2) Slitting times: comparison for different sizes of sets
3) Refined mixing and lifting equivalence.

Let X be an irreducible Markov chain in a finite state space S.
Let P be the transition matrix of X.

$$
P^{t}(i, j)=P_{i}\left(X_{t=j}\right) \quad \forall i, j \in S .
$$

π : invariant distr., $\pi=\pi P$.
if X is also aperiodic, then $P^{t}(x, y) \rightarrow \pi(y)$ as $t \rightarrow \infty, \forall x, y$ Let μ and ν be 2 prob. distr. on S.

$$
\begin{aligned}
& \|\mu-\nu\|_{T V}=\max _{A C S}\left|{ }_{\mu}(A)-\nu(A)\right| \\
& d(t)=\max _{x}\left\|p^{t}(x, \cdot)-\pi\right\|_{T v} . \\
& \forall \varepsilon \in(0,1) \quad t_{\text {mix }}(\varepsilon)=\min \{t \geqslant 0: d(t) \leq \varepsilon\} \\
& t_{\text {mix }}=\operatorname{t}_{\text {mix }}\left(\frac{1}{4}\right) .
\end{aligned}
$$

X is called reversible $\forall x, y \quad \pi(x) P(x, y)=\pi(y) P(y, x)$ $t_{H}(\alpha)=\max _{x, A: \pi(A) \geqslant \alpha} \mathbb{E}_{x}\left[\tau_{A}\right]$, where $\tau_{A}=\min \left\{t \geqslant 0: X_{t} \in A\right\}$.
lazy version of $X \quad P_{L}=\frac{P+I}{2}$.
Theorem 1 (Oliveira, Peres-S., 2012)
$\forall \alpha<\frac{1}{2} \quad \exists$ positive constants C_{α} and C_{α}^{\prime} s.t. for all reversible lazy Markov chains $C_{\alpha} t_{H}(\alpha) \leqslant t_{\text {mix }} \leqslant C_{\alpha}^{\prime} t_{H}(\alpha)$.
[$t_{\text {mix }} \breve{h}_{\alpha} t_{H}(\alpha)$]

Proof of lower bound twix $\geqslant C_{\alpha} t_{H}(\alpha) \quad \alpha=\frac{1}{8}$
Let $t=t_{\text {mix }}\left(\frac{1}{16}\right) \leqslant 3 t_{\text {mix }}$

$$
\forall x, A \quad P^{t}(x, A) \geqslant \pi(A)-\frac{1}{16}
$$

Take A with $\pi(A) \geqslant \frac{1}{8}$, then $P^{t}(x, A) \geq \frac{1}{16} \quad \forall x$.
So $\quad \tau_{A} \leqslant t \cdot G_{\text {eo }}\left(\frac{1}{16}\right) \Rightarrow \max _{x} \mathbb{E}_{x}\left[\tau_{A}\right] \leqslant 16 t$. D
Aldous '82 For all reversible lazy $M C^{\prime}$'s

$$
\operatorname{tmix} \asymp \max _{x, A} \pi(A) \mathbb{E}_{x}\left[\tau_{A}\right]
$$

Remark Reversibility is essential!
Exercise 1 Consider a biased $R W$ on $\mathbb{Z}_{n}(+$ laziness $)$

Show $\operatorname{tmix} x x^{2}$ and

$$
\forall \alpha \quad t_{H}(\alpha) \asymp n .
$$

Remark If $\alpha>\frac{1}{2}$, then the theorem is false.
Exercise 2

Consider a SRW on the 2 diques joined by an edge. Take its lazy version.

Show that $t_{\text {mix }} \asymp n^{2}$ and $t_{H}(\alpha) \asymp n$ if $\alpha>\frac{1}{2}$.
Proof of Theorem 1 (loper bound)
Definition Mixing at a geometric time
Let Z_{t} be a geometric riv. of parameter $\frac{1}{t}$ taking values in $\{1, \ldots\}$ and index. of X.
Define $\quad d_{G}(t)=\max _{x}\left\|P_{x}\left(X_{z_{t}}=\cdot\right)-\pi\right\|_{T V}$
and $t_{G}=\min \left\{t \geqslant 0: d_{G}(t) \leq \frac{1}{4}\right\}:$ geometric mixing.

Remark If instead of geometric, we take U_{t} to be uniform on $\{1, \ldots, t\}$, then this gives rise to the lesaro mixing time.
Exercise 3 Show that $d_{G}(t)$ is decreasing in t.
Theorem 2 for all reversible chains, $t_{G} \cong$ mix $^{\text {lazy }} \leftarrow$ Ideas
Theorem 3 For all chains, $t_{G} \breve{n}_{\alpha} t_{H}(\alpha) \quad \forall \alpha<\frac{1}{2}$.
Pf of Than 1 Immediate from Thu's 2 and 3 . IB
Pf of The 3 : easy.
We prove $t_{G} \grave{\sim}_{\alpha} t_{H}(\alpha)$. $\alpha=\frac{1}{8}$
Let $t<t_{G}$. We wont to find a set B with $\pi(B) \geqslant \frac{1}{8}$ st. $\max _{x} \mathbb{E}_{x}\left[\tau_{B}\right] \geqslant \vartheta t$ for some positive constant θ.

$$
\begin{aligned}
& t<t_{G} \Rightarrow \exists z, A \text { s.t. } \mathbb{P}_{z}\left(X_{z_{t}} \in A\right)<\pi(A)-\frac{1}{4} \\
& \Rightarrow \pi(A)>\frac{1}{4} . \\
& B=\left\{y: \mathbb{P}_{y}\left(X_{z_{t}} \in A\right) \geqslant \pi(A)-\frac{1}{8}\right\} .
\end{aligned}
$$

(lain $\pi(B) \geqslant \frac{1}{8}$

$$
\begin{aligned}
\pi=\pi P \Rightarrow \pi(A) & =\underbrace{\sum_{y \in B} \pi(y) \underbrace{}_{y 1}\left(X_{z_{t}} \in A\right)}_{\leqslant \pi(B)}+\underbrace{\sum_{j \in B^{c}} \pi(y)}_{\leqslant 1} \underbrace{}_{\leqslant \pi y}\left(X_{\left.z_{t} \in A\right)}^{0}\right) \\
& \pi(A) \leqslant \pi(B)+\pi(A)-\frac{1}{8} \Rightarrow \pi(B) \geqslant \frac{1}{8} .0
\end{aligned}
$$

We will prove that assuming $\mathbb{E}_{z}\left[\tau_{B}\right] \leq \theta t$ for a suitable constant θ leads to a contradiction.
By Markov's ineq. $\mathbb{P}_{z}\left(\tau_{B} \geqslant 2 \theta M t\right) \leqslant \frac{1}{2 M} \quad *$

$$
\begin{gathered}
M \in \mathbb{N} \\
\mathbb{P}_{z}\left(X_{z_{t}} \in A\right) \geqslant \mathbb{P}_{z}\left(X_{z_{t}} \in A \mid Z_{t} \geqslant \tau_{B}, \tau_{B}<2 \theta M t\right) \mathbb{P}_{z}\left(Z_{t} \geqslant \tau_{B}, \tau_{B}<2 \theta M t\right) \\
\min _{y \in B} \mathbb{P}_{y}\left(X_{\left.z_{t} \in A\right)}\right) \\
\text { and memonless property Markov at } \tau_{B}
\end{gathered}
$$

$$
\begin{gathered}
\geqslant\left(\pi(A)-\frac{1}{8}\right) \cdot P_{z}\left(z_{t}>2 \theta M t, \tau_{B}<2 \theta M t\right) \\
P_{z}\left(z_{t}>2 \theta M t\right) \cdot \mathbb{P}_{z}\left(\tau_{B}<2 \theta M t\right) \\
* \geqslant\left(\pi(A)-\frac{1}{8}\right) \cdot\left(1-\frac{1}{t}\right)^{2 \theta H t} \cdot\left(1-\frac{1}{2 M}\right)
\end{gathered}
$$

$20 M t>1$

$$
\geqslant\left(\pi(A)-\frac{1}{8}\right)(1-28 M)\left(1-\frac{1}{2 M}\right)
$$

Choosing $\quad \theta=\frac{1}{4 M^{2}} \rightarrow \mathbb{P}_{z}\left(X_{z_{t}} \in A\right) \geqslant\left(\pi(A)-\frac{1}{8}\right)\left(1-\frac{1}{2 M}\right)^{2}$
Taking M large enough shows $\mathbb{P}_{z}\left(X_{z_{t} \in A}\right)>\pi(A)-\frac{1}{4}$ which is a contradiction.

Idea of geometric mixing: due to Doled Schramm
$t_{\text {stop }}=\max _{x} \min \left\{\mathbb{E}_{x}\left[\Lambda_{x}\right]: \Lambda_{x}\right.$ is a randomised stopping time sit.

$$
\left.P_{x}\left(X_{A_{x}}=\cdot\right)=\pi(\cdot)\right\}
$$

filling rule Baxter and Chacon 776
Aldous, Lov'asz-Winller.
Thar 2 reversible Estop \simeq tmix

$$
\text { Estop } \leqslant 8 t_{\text {mix }} \text { easy. }
$$

The hard direction is to show $t_{\text {stop }} \approx t_{\text {mix }}$.
Exercise 4 Prove that for reversible chains tstop 5 mix.
Lint: Use separation distance to define an appropriate stopping time.
4. Let X be a reversible Markov chain with transition matrix P and invariant distribution π.
(i) Prove that for all x, y

$$
\frac{P^{2 t}(x, y)}{\pi(y)} \geq\left(1-\max _{z, w}\left\|P^{t}(z, \cdot)-P^{t}(w, \cdot)\right\|_{\mathrm{TV}}\right)^{2}
$$

Deduce that

$$
P^{2 t_{\operatorname{mix}}}(x, y) \geq \frac{1}{4} \pi(y)
$$

and that there exists a transition matrix \widetilde{P} such that

$$
P^{2 t_{\operatorname{mix}}}(x, y)=\frac{1}{4} \pi(y)+\frac{3}{4} \widetilde{P}(x, y)
$$

(ii) Let $t_{\text {stop }}=\max _{x} \min \left\{\mathbb{E}_{x}\left[\Lambda_{x}\right]: \Lambda_{x}\right.$ is a stopping time s.t. $\left.\mathbb{P}_{x}\left(X_{\Lambda_{x}} \in \cdot\right)=\pi(\cdot)\right\}$. By defining an appropriate stationary time, prove that

$$
t_{\text {stop }} \leq 8 t_{\text {mix }}
$$

