d⁴(A, C)
$$\leq \frac{1}{4}H(1-\beta)$$
 and d⁻(C, A) > $(\frac{1}{4}-1)$ th $(1-\beta)$
So $\pi(A) \geq \frac{1}{1+\frac{1}{4}-1} = \alpha$ which is a controduction, because $\pi(A) > \alpha$. The $\frac{1}{1+\frac{1}{4}-1}$
Proof of Lemma 1
Lemma 2. Let X be an irreducible finite Markov choin with values in S.
Let p be a pool. distribution and γ a stopping time s.t.
 $P(X_{C} = x) = p(x) \quad \forall x$.
Then $\mathbb{E}_{p}\left[\sum_{i=0}^{2^{-1}} 1(X_{i} \in A)\right] = \pi(A) \cdot \mathbb{E}_{p}[T], \forall A \in S$.
Proof Exercise uniters: $x_{i} = x_{i}^{2}$
Must $V(x) = \mathbb{E}_{x_{i}}\left[\sum_{i=0}^{2^{-1}} 1(X_{i} = x)\right] \quad \gg \nu = \nu P \implies \pi$
Define $\widehat{V}(x) = \mathbb{E}_{p}\left[\sum_{i=0}^{2^{-1}} 1(X_{i} = x)\right]$. Show $\widehat{V} = \widehat{VP} \implies \widehat{V}$ has to be a multiple of π .
Pf of L1 Define $\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} +$

This now completes the proof, because $\pi(A) \leq \underline{d^{+}(A,B)} \longrightarrow \pi(A) d^{-}(B,A) \leq (1-\pi(A)) d^{+}(A,B)$ $d^{+}(A,B) + d^{-}(B,A)$ and E, [74] > d(B, A) and Er[78] < d+(A, B) (v is supported on B and p is supported on A). D