Exercises from Perla Sousi's OOPS-course

June 15-18

See the slides or video for definitions and context.

Lecture 1

Exercise 1. Show that the random walk on the cycle of length n biased to move to the right with probability $2 / 3$ has $t_{m i x} \asymp n^{2}$ but $t_{H}(\alpha) \asymp n$ for any α.

Exercise 2. Let G be the graph consisting of two cliques of size n, with a single edge connecting them. Prove that the random walk on this graph has $t_{\text {mix }} \asymp n^{2}$ but for $\alpha>1 / 2$ has $t_{H}(\alpha) \asymp n$.

Exercise 3. Show that $d_{G}(t)$ is decreasing in t.
Exercise 4. Prove that for reversible Markov chains, $t_{s t o p} \leq 8 t_{m i x}$. (Hint: use the searation distance to define a stopping time.)

Lecture 2.

Exercise 5. Prove the following lemma: For an irreducible M.C. X, , measure μ and stopping time τ such that for all x,

$$
\mathbb{P}_{\mu}\left(X_{\tau}=x\right)=\mu(x)
$$

Then for any set A,

$$
\mathbb{E}_{\mu}\left[\sum_{i=0}^{\tau-1} 1\left(X_{i} \in A\right)\right]=\pi(A) \mathbb{E}_{\mu}(\tau)
$$

(See hint on slides.)
Exercise 6. Check that if the chain is lazy then $\gamma_{*}=\gamma$. (See spectral methods note for definitions.)
Exercise 7. (Poincare inequality). Let P be a lazy and reversible matrix with respect to the invariant distribution π. Then for all $f: S \rightarrow \mathbb{R}$ and all $t \geq 0$

$$
\operatorname{Var}_{\pi}\left(P^{t} f\right) \leq e^{-2 t / t_{\text {rel }}} \operatorname{Var}_{\pi}(f)
$$

(Hint: Use the spectral theorem.)

Lecture 3.

Exercise 8. Prove the second part of the Basu-Hermon-Peres theorem:

$$
t_{m i x}(1-\epsilon) \leq h i t_{1-\epsilon}(1-2 \epsilon)+2 t_{\text {rel }} \log \left(8 / \epsilon^{3}\right)
$$

