
1 Filling rule

This section follows closely [1] and [4, 5].

The following notion of mixing was first introduced by Aldous in [2] in the continuous time case
and later studied in discrete time by Lovász and Winkler in [4, 5]. It is defined as follows:

tstop = max
x

min{Ex[Λx] : Λx is a randomised stopping time s.t. Px(XΛx ∈ ·) = π(·)}. (1.1)

The definition does not make it clear why stopping times achieving the minimum always exist. We
now give the construction of such a stopping time T that achieves stationarity, i.e. for all x, y we
have that Px(XT = y) = π(y), and also for a fixed x attains the minimum in the definition of tstop
in (1.1), i.e.

Eµ[T ] = min{Ex[Λx] : Λx is a stopping time s.t. Px(XΛx ∈ ·) = π(·)}. (1.2)

The stopping time that we will construct is called the filling rule and it was first discussed by
Baxter and Chacon in [3]. This construction can also be found in [1, Chapter 9].

First for any stopping time S and any starting distribution µ one can define a sequence of vectors

θx(t) = Pµ(Xt = x, S ≥ t), σx(t) = Pµ(Xt = x, S = t). (1.3)

These vectors clearly satisfy

0 ≤ σ(t) ≤ θ(t), (θ(t)− σ(t))P = θ(t+ 1) ∀t; θ(0) = µ. (1.4)

We can also do the converse, namely given vectors (θ(t),σ(t); t ≥ 0) satisfying (1.4) we can construct
a stopping time S satisfying (1.3). We want to define S so that

P(S = t|S > t− 1, Xt = x,Xt−1 = xt−1, . . . , X0 = x0) =
σx(t)

θx(t)
. (1.5)

Formally we define the random variable S as follows: Let (Ui)i≥0 be a sequence of independent
random variables uniform on [0, 1]. We now define S via

S = inf

!
t ≥ 0 : Ut ≤

σXt(t)

θXt(t)

"
.

From this definition it is clear that (1.5) is satisfied and that S is a stopping time with respect to an
enlarged filtration containing also the random variables (Ui)i≥0, namely Fs = σ(X0, U0, . . . , Xs, Us).
Also, equations (1.3) are satisfied. Indeed, setting xt = x we have

Pµ(Xt = x, S ≥ t) =
#

x0,x1,...,xt−1

µ(x0)

t−1$

k=0

%
1− σxk

(k)

θxk
(k)

&
P (xk, xk+1) = θx(t),

since θy(0) = µ(y) for all y and also θ(t+1) = (θ(t)− σ(t))P so cancelations happen. Similarly we
get the other equality of (1.3).

We are now ready to give the construction of the filling rule T . Before defining it formally, we
give the intuition behind it. Every state x has a quota which is equal to π(x). Starting from an
initial distribution µ we want to calculate inductively the probability that we have stopped so far
at each state. When we reach a new state, we decide to stop there if doing so does not increase
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the probability of stopping at that state above the quota. Otherwise we stop there with the right
probability to exactly fill the quota and we continue with the complementary probability.

We will now give the rigorous construction by defining the sequence of vectors (θ(t),σ(t); t ≥ 0)
for any starting distribution µ. If we start from x, then simply µ = δx. First we set θ(0) = µ. We
now introduce another sequence of vectors (Σ(t); t ≥ −1). Let Σx(−1) = 0 for all x. We define
inductively

σx(t) =

'
θx(t), if Σx(t− 1) + θx(t) ≤ π(x);

π(x)− Σx(t− 1), otherwise.

Then we let Σx(t) =
(

s≤t σx(s) and define θ(t + 1) via (1.4). Then σ will satisfy (1.3) and
Σx(t) = Pµ(XT = x, T ≤ t). Also note from the description above it follows that Σx(t) ≤ π(x), for
all x and all t. Thus we get that

Pµ(XT = x) = lim
t→∞

Σx(t) ≤ π(x)

and since both Pµ(XT = ·) and π(·) are probability distributions, we get that they must be equal.
Hence the above construction yielded a stationary stopping time. It only remains to prove the
mean-optimality (1.2). Before doing so we give a definition.

Definition 1.1. Let S be a stopping time. A state z is called a halting state for the stopping
time if S ≤ Tz a.s. where Tz is the first hitting time of state z.

We will now prove that the filling rule has a halting state, i.e. that there exists z such that T ≤ Tz

a.s. For each x we define
tx = min{t : Σx(t) = π(x)} ≤ ∞.

Take z such that tz = max
x

tx ≤ ∞. We will show that T ≤ Tz a.s. If there exists a t such that

Pµ(T > t, Tz = t) > 0, then Σx(t) = π(x), for all x, since the state z is the last one to be filled. So
if the above probability is positive, then we get that

Pµ(T ≤ t) =
#

x

Σx(t) = 1,

which is a contradiction. Hence, we obtain that Pµ(T > t, Tz = t) = 0 and thus by summing over
all t we deduce that Pµ(T ≤ Tz) = 1.

The next theorem is a criterion for mean-optimality of a stopping rule.

Theorem 1.2 (Lovász and Winkler). Let µ and ρ be two distributions. Let S be a stopping time
such that Pµ(XS = x) = ρ(x) for all x. Then S is mean optimal in the sense that

Eµ[S] = min{Eµ[U ] : U is a stopping time s.t. Pµ(XU ∈ ·) = ρ(·)}

if and only if it has a halting state.

Using this criterion, we see that the filling rule is mean-optimal.

Proof of Theorem 1.2. We define the exit frequencies for S via νx = Eµ

)
S−1#

k=0

1(Xk = x)

*
, for

all x.
Since Pµ(XS = ·) = ρ(·), we can write

Eµ

)
S#

k=0

1(Xk = x)

*
= Eµ

)
S−1#

k=0

1(Xk = x)

*
+ ρ(x) = νx + ρ(x).
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We also have that

Eµ

)
S#

k=0

1(Xk = x)

*
= µ(x) + Eµ

)
S#

k=1

1(Xk = x)

*
.

Since S is a stopping time, it is easy to see that

Eµ

)
S#

k=1

1(Xk = x)

*
=

#

y

νyP (y, x).

Hence we get that

νx + ρ(x) = µ(x) +
#

y

νyP (y, x). (1.6)

Let T be another stopping time with Pµ(XT = ·) = ρ(·) and let ν ′x be its exit frequencies. Then
they would satisfy (1.6), i.e.

ν ′x + ρ(x) = µ(x) +
#

y

ν ′yP (y, x).

Thus if we set d = ν ′ − ν, then d as a vector satisfies

d = dP,

and hence d must be a multiple of the stationary distribution, i.e. for a constant α we have that
d = απ.

Suppose first that S has a halting state, i.e. there exists a state z such that νz = 0. Therefore we
get that ν ′z = απ(z), and hence α ≥ 0. Thus ν ′x ≥ νx for all x and

Eµ[T ] =
#

x

ν ′(x) ≥
#

x

νx = E[S]µ,

and hence proving mean-optimality.

We will now show the converse, namely that if S is mean-optimal then it should have a halting
state. The filling rule was proved to have a halting state and thus is mean-optimal. Hence using
the same argument as above we get that S is mean optimal if and only if min

x
νx = 0, which is the

definition of a halting state.

Remark 1.3. Note that the first part, i.e. assuming that a stopping rule has a halting state and
then showing that it is mean optimal, did not use the filling rule.
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