1 Spectral decomposition and relaxation time

Let X be a reversible Markov chain on the finite state space S with transition matrix P and invariant distribution π. Let $f, g: S \rightarrow \mathbb{R}$. Their inner product is defined to be

$$
\langle f, g\rangle_{\pi}=\sum_{x} f(x) g(x) \pi(x) .
$$

Theorem 1.1. Let P be reversible with respect to π. The inner product space $\left(\mathbb{R}^{S},\langle\cdot, \cdot\rangle_{\pi}\right)$ has an orthonormal basis of real-valued eigenfunctions $\left(f_{j}\right)_{j \leq|S|}$ corresponding to real eigenvalues $\left(\lambda_{j}\right)$ and the eigenfunction f_{1} corresponding to $\lambda_{1}=1$ can be taken to be the constant vector $(1, \ldots, 1)$. Moreover, the transition matrix P^{t} can be decomposed as

$$
\frac{P^{t}(x, y)}{\pi(y)}=1+\sum_{j=2}^{|E|} f_{j}(x) f_{j}(y) \lambda_{j}^{t}
$$

Proof. We consider the matrix $A(x, y)=\sqrt{\pi(x)} P(x, y) / \sqrt{\pi(y)}$ which using reversibility of P is easily seen to be symmetric. Therefore, we can apply the spectral theorem for symmetric matrices and get the existence of an orthonormal basis $\left(g_{j}\right)$ corresponding to real eigenvalues. It is easy to check that $\sqrt{\pi}$ is an eigenfunction of A with eigenvalue 1 . Let D be the diagonal matrix with elements $(\sqrt{\pi(x)})$. Then $A=D P D^{-1}$ and it is easy to check that $f_{j}=D^{-1} g_{j}$ are eigenfunctions of P and $\left\langle f_{j}, f_{i}\right\rangle_{\pi}=\mathbf{l}(i=j)$. So we have $P^{t} f_{j}=\lambda_{j}^{t} f_{j}$ and hence

$$
P^{t}(x, y)=\left(P^{t} \mathbf{1}_{y}\right)(x)=\sum_{j=1}^{|S|} \lambda_{j}^{t} f_{j}(x)\left\langle f_{j}, \mathbf{1}_{y}\right\rangle_{\pi}=\sum_{j=1}^{|S|} \lambda_{j}^{t} f_{j}(x) f_{j}(y) \pi(y) .
$$

Using that $f_{1}=1$ and $\lambda_{1}=1$ gives the desired decomposition.
Let P be a reversible matrix with respect to π. We order its eigenvalues

$$
1=\lambda_{1}>\lambda_{2} \geq \ldots \lambda_{|S|} \geq-1
$$

We let $\lambda_{*}=\max \{|\lambda|: \lambda$ is an eigenvalue of $P, \lambda \neq 1\}$ and define $\gamma_{*}=1-\lambda_{*}$ to be the absolute spectral gap. The spectral gap is defined to be $\gamma=1-\lambda_{2}$.

Exercise 1.2. Check that if the chain is lazy then $\gamma_{*}=\gamma$.
Definition 1.3. The relaxation time for a reversible Markov chain is defined to be

$$
t_{\mathrm{rel}}=\frac{1}{\gamma_{*}} .
$$

Let $f: S \rightarrow \mathbb{R}$. We write

$$
\mathbb{E}_{\pi}[f]=\sum_{x} f(x) \pi(x) \quad \text { and } \quad \operatorname{Var}_{\pi}(f)=\mathbb{E}_{\pi}\left[\left(f-\mathbb{E}_{\pi}[f]\right)^{2}\right]
$$

Exercise 1.4 (Poincaré inequality). Let P be a lazy and reversible matrix with respect to the invariant distribution π. Then for all $f: S \rightarrow \mathbb{R}$ and all $t \geq 0$

$$
\operatorname{Var}_{\pi}\left(P^{t} f\right) \leq e^{-2 t / t_{\text {rel }}} \operatorname{Var}_{\pi}(f)
$$

(Hint: Use the spectral theorem)

