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Overview and motivation

De�nition 1. A plane map is an embedding of a �nite connected (multi)graph in
S2, considered up to the action of Homeo+(S2).

For a map m let V (m) be the vertices, E(m) be the edges, F (m) be the faces.

Fact 2. (Euler) #V (m)−#E(m) + #F (m) = 2

De�nition 3. A rooted map is a map, together with a choice of an oriented edge.

Motivation.

• Study maps as discretizations of 2d Riemannian manifolds.
� Consider each face of m as a �at regular polygon where edge lengths
are constant.

• This comes from 2d quantum gravity in which a basic object is the path
integral ∫

R(M)/Diff+(M)

[Dg] exp (−S(g))

� Here M is a 2d orientable manifold, R(M) is the space of Riemannian
metrics on M , Diff+ is the group of orientation-preserving di�eomor-
phisms, S(g) = αAg(M) + βχ(M) is the action.

� [Dg] is the �volume measure�, which is not formally de�ned.
• How to deal with this measure?

� Quantum Liouville Theory (Polyakov, David ...): Write g = e2uh∗g0(µ)
where u is the conformal factor andg0(µ) is the hyperbolic metric,
parametrized by the moduli µ, and h ∈ Diff+(M). Computing a for-
mal �Jacobian� for this transformation gives the following partition
function: ∫

exp (−SL(u, g0(µ)))Du

where SLis the Liouville action (a quadratic form in u) and for the
measure on u can take it to be the Gaussian free �eld. This has been
formalized by Duplantier�She�eld.

� Discretization: Replace∫
R(M)/Diff+(M)

[Dg]→
∑

T∈Tr(M)

δT

where Tr(M) is the set of triangulations of M . Then one takes the
scaling limit.

� This is useful in the setting of 1d path integrals, where random walks
approximate Brownian motion, who law is a Gaussian measure on
paths.

• At the moment the links between the two approaches are not well-understood.

Step 0: Enumeration of maps.



RANDOM MAPS 3

Indirect methods. Tutte used generating function methods to count maps. For
example:

# {Rooted plane maps with n edges} =
2

n+ 2
3n

n+ 1

(
2n
n

)
.

• Matrix integrals provide a new method for obtaining Tutte's generating
function equations, generalizing to maps of all genera and with coloured
edges.

Example 4. We have

1
N2

log
(

1
ZN

∫
HN

exp
{
− t

N
Tr
(
H4

4

)
− Tr

(
H2

2

)}
dH
)

=
∑
g≥0

1
N2g

∑
q∈Q(g)

(−t)#V (q)

Aut(q)

where Q(g) is the set of quadrangulations of genus q and HN is the space of N ×N
Hermitian matrices equipped with Lebesgue measure dH.

Bijective methods. The methods above do not generally apply well to the metric as-
pects of the maps (notable exception: the [non-rigorous] computation by Ambjørn�
Watabiki (1995) of the 2-point function of triangulations). However, an approach
by bijections with decorated trees was initiated by Cori�Vanquelin (1981), Arqès
(1986) and fully developed by Schae�er (1998-).

[Image of a random quadrangulation by J.-F. Marckert; noted that it looks like
a topological sphere but metrically it is fractal and very di�erent from the round
sphere]
Scaling limits.

• Choose a rooted plane quadrangulation Qn ∈ Qn (n faces) uniformly at
random.

• Endow V (Qn) with the graph distance dQn .

• Typically dQn(u, v) ≈ n1/4.

Theorem 5. (Le Gall 2011, Miermont 2011) We have (convergence in distribution,
in the sense of Gromov�Hausdor� topology)(

V (Qn), (8n/9)−1/4dQn

)
(d)−−−−→
n→∞

(S,D)

where (S,D) is the Brownian map.

Most of the course is devoted to the proof of this result. Other topics:

• Topology of the limit is that of S2

• The 3-point function in the limiting space
• Replace quadrangulations with other models of random maps

0. Basic properties of maps

Basic terminology � maps.

• Surfaces will always be orientable, compact and connected. Write Sg for
the surface of genus g (S0 ≈ S2, S1 = T2, . . . ),

• Graphs will be �nite undirected multigraphs without half-edges, formally
thought of as triples (V,E, ι) where V,E are �nite sets (vertices, and edges)
and ι ⊂ E × V is the incidence relation.
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Fix a surface S. An oriented edge on S is a continuous map e : [0, 1] → S where
either e is injective or e �[0,1) is injective and e(1) = e(0), considered up to

reparametrization e 7→ e ◦ h where h ∈ Homeo+([0, 1]). An edge on S is a pair
{e, ē}, where ē is the edge ē(t) = e(1− t). For an oriented edge e write e− = e(0),
e+ = e(1).

De�nition 6. An embedded graph in S is a graph G = (V,E, ι) where V ⊂ S is
�nite, E is a set of edges in S (as de�ned above), the incidence relation is that

v ∈ V is an endpoint of e ∈ E (we suppose that e(0), e(1) ∈ V for all e ∈ ~E),

and such that for any two distinct non-opposite oriented edges e, e′ ∈ ~E we have

e ((0, 1)) ∩ e′ ((0, 1)) = ∅ and e ((0, 1)) ∩ V = ∅. We will write ~E = ∪E for the set
of oriented edges of G.

The support of G is supp(G) = V ∪
⋃
e∈~E e ([0, 1]).

De�nition 7. Amap is an embedded graph m such that the connected components
of S \ supp(m) are homeomorphic to discs.

Lemma 8. A map is always connected as a graph.

De�nition 9. A plane map is a map on S2.

Lemma 10. Every connected embedded graph on S2 is a map.

Remark 11. This is not true for other surfaces. For example, T2 \ {pt} is not
homeomorphic to a disc (it is homotopic to a circle).

De�nition 12. A rooted map is a pair (m, e∗) where m is a map and e∗ ∈ ~E. Call
e−∗ the root vertex of m.

De�nition 13. Let m on S, m′ on S′ be two (rooted) maps. We say that they
are isomorphic if there is a homeomorphism ϕ : S → S′ which induces a graph
isomorphism: u, e are incident i� h(u), h ◦ e are incident (and h ◦ e∗ = e′∗).

From now on we will usually identify isomorphic maps. Of course one works
with speci�c maps, but one cares about isomorphism classes.

Fact 14. An automorphism of a rooted map must �x the oriented edges.

Proof. Amounts to showing that a map is given by the cyclic order of the edges at
each vertex. �

Vertices, Faces and degrees. Fix a map m on a surface S.
Recall that the faces F (m) are the connected components of S \ supp(m). If

e ∈ ~E(m is an oriented edge include it in the face that is to its left which we denote
fe (here we use the orientability of S). Note that it is possible that fe = fē.

De�nition 15. Let v ∈ V (m). Its degree is deg(v) is #
{
e ∈ ~E(m | e− = v

}
. Let

f ∈ F (m). Its degree is deg(f) = #
{
e ∈ ~E(m | fe = f

}
Remark 16 (The �fat graph� representation). Up to isomorphism a map is deter-
mined by the combinatorial data of the degrees of its faces and the incidence relation
of the faces (which edge of each face is glued to which face). It follows that the set
of isomorphism classes of maps is countable.
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Euler's formula.

Theorem 17 (Euler). Let m be a map on a surface Sg. Then #V (m)−#E(m)+

#F (m) = 2− 2g
def
= χ(Sg).

Example 18. Let m be an embedding of K5 on a surface of genus g. Then every
face has degree at least 3, since there are no self-loops (faces of degree 1) and
parallel edges (faces of degree 2). Thus

2#E(m) =
∑

f∈F (m)

deg(f) ≥ 3#F (m)

so #F (m) ≤ 20
3 . Also, by Euler's formula #F (m) = 2 − 2g + 10 − 5 = 7 − 2g. It

follows that 2g ≥ 7− 20
3 > 0 so g > 0 and we �nd that K5is not planar.

Exercise 19. Show that K3,3 is also non-planar.

Lemma 20. A plane map is a tree (as an abstract graph) if and only if it has one
face).

Proof. By the Jordan curve theorem a simple cycle in the underlying graph will
divide the sphere into two discs; the graph complement will have connected com-
ponents on each side hence at least two faces. Conversely, if the underlying graph
is a tree then the complement is connected (trace a polygon around the tree), and
this actually shows that every tree embedded in the sphere is a map. �

Exercise 21. Prove Euler's formula for g = 0 by inductively removing edges until
one is left with a tree (a plane map with one face).

Part 1. Random trees

1. The contour process and its scaling limit

1.1. Random trees. Let T be the set of rooted plane trees, Tn ⊂ T the set of
trees with n edges.

Theorem 22. #Tn = C(n) = 1
n+1

(
2n
n

)
.

Combinatorial Proof. Let A(z) =
∑
n≥0 #Tnz

n. Then A(z) = 1 + z(A(z))2 since
every rooted tree can be written as the union its root and the two trees obtained
by removing the root (oriented by the next edge at each vertex, respectively. �

Geometric Proof. Given a rooted tree t walk around it, starting at the root. Let
Ct(k) be the distance from the root at time k (so C(0) = C(2n) = 0, and add
C(2n+ 1) = −1). Make this into the graph of a function by interpolating linearly.
Conversely, given any sequence (�lattice path�) C(0), C(0), · · · , C(2n) ∈ Z≥0 with
|C(i+ 1)− Ci| = 1 we can de�ne a tree by interpolating linearly in [0, 2n] and
identifying times s1, s2 if C(s1) = C(s2) and the interval [s1, s2] × {C(s2)} lies
entirely below the graph of C(s). Then the map t→ Ct gives a bijection between
trees and walks. �

Note 23. The function C(n) will be called the contour function of the tree.
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Generating random trees. Start a random walk St on Z where S0 = 0. Let τi be
the stopping time min {t | St = −i}, so that 0 = τ0 < τ1 < · · · . Then the �paths�

(Sτi+k − Sτi = i+ Sτi+k)τi+1−τi
k=0 form an iid sequence of excursions. To the ith path

associate the tree T (i)

Lemma 24. The degree of the root of T (0) has distribution Geom
(

1
2

)
, and the

subtrees at the children of the root are of same distribution as T (0).

Proof. The neighbours of the root consist of the times t ≤ τ1 such that St = 0
(by construction they are all visible from the root). Moreover, at every time where
St = 0 we end the excursion with probability 1

2 . Finally, between consecutive times
where St1 = St2 = 0, S is precisely a bridge starting at 1 at time St1+1 and getting
to 0 for the �rst time at time t2. �

Corollary 25.

(1) T (0) is a Galton�Watson tree with child distribution Geom
(

1
2

)
(2) We have

P
(
T (0) = t

)
=

∏
v∈V (t)

1
2dego(v)+1

= 2−(#V+#E) = 2−(1+2#E)

where dego(v) is the out-degree of v, so that
∑
v dego(v) = #E. We also

used that #V = #E + 1.
(3) Conditioned on #E(T (0)) = n, T (0) is uniform on the set of trees with n

edges.

1.2. The Brownian bridge.

Theorem 26 (Donkers). For t ∈ R≥0 set St = (1− {t})Sbtc + {t}Sdte. Then(
t 7→ S2nt√

2nt

)
(d)−−−−→
n→∞

(t 7→ Bt)

where Bt is a standard Brownian motion, and the convergence in C(R≥0,R) is
uniform on compact sets.

As above, for x ≥ 0 set κx = inf {t | Bt < −x}, κx− = limy→x κy. We then set

e
(x)
t = x+Bκx− for 0 ≤ t ≤ κx − κx−.

Remark 27. {x | κx > κx−} is countable a.s.

The functions e(x) belong to E = ∪ζ>0C ([0, ζ],R), and for f ∈ E let ζ(f) be
the duration of f . With the metric d(f, g) = supt≥0 |f(t ∧ ζ(f))− g(t ∧ ζ(g))| +
|ζ(f)− ζ(g)| this is a Polish space. Enumerating {xi}i∈I the set of x such that
κx > κx−, let N =

∑
i∈I δ(xi,e(xi)) as a measure on the product R× E .

Theorem 28 (Itô). The measure N is a Poisson random measure on R>0×E with
the intensity measure 2 dx⊗n(de) where n is a σ-�nite measure on E (�Itô measure
of BM�).

1.3. Scaling limit. We can now calculate the scaling limit of CT (0) conditioned on
having at least n vertices:
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Corollary 29. Let R1 = inf
{
x ≥ 0 | ζ(e(x)) ≥ 1

}
, so that e(R1) is the �rst arc of

Bt with length≥ 1. Then, conditioned on #E(T (0)) ≥ n,(
CT (0)(2n·)√

2n

)
�»

0,
2#E(T (0)+1

2n

– (d)−−→ e(R1) .

Moreover, the law of e(R1) is n (· | ζ(f) ≥ 1) (here n (E|A) = n(E∩A)
n(A) which makes

sense if 0 < n(A) <∞.

Proof. It is enough to show that
C
T (r1) (2ns)
√

2n
converges to the above limit, where

r1 = inf
{
k | #E(T (k)) ≥ n

}
. Now if the operation of taking the �rst excursion of

duration≥ 1 was continuous in the uniform topology, we'd be done by the weak-*
convergence of the SRW to Brownian motion. However, for BM local minima are
a.s. attained only once, and for x large, κx − κx− 6= 1. �

Properties of n. Let pt(x) = 1√
2πt

e−
x2
2t be the heat kernel, pt(x, y) = pt(y − x),

p+
t (x, y) = pt(x, y) − pt(x,−y), qt(x) = x

t pt(x). Then qt is the probability density
function for κx, for which we use the notation P (κx ∈ dt) = qt(x) dt.

Theorem 30.

(1) For every measurable f : R>0 → R>0 , n
(
f(et)1{ζ(f)>t}

)
=
∫∞

0
dxqt(x)f(x).

(2) (Markov property) of n.

Corollary 31. For all 0 < t1 < · · · < tk, n (et1 ∈ dx1 ∧ · · · ∧ etk ∈ dxk ∧ ζ(x) > tk) =
qt1(x1) dx1 · p+

t2−t1(x1, x2) dx2 · · · p+
tk−tk−1

(xk−1, xk) dxk.

Remark 32. It is possible to disintegrate n so that n =
∫∞

0
n(t)P (ζ(f) ∈ dt) (and the

latter marginal is known). Then n(1) is called the law of the normalized Brownian
excursion e. For example, scaling the time of e(R1) by R1 gives a random function
with law e.

Proposition 33. For every t ∈ (0, 1), F measurable and non-negative on C([0, t]),

n(t)
(
F
(

(s 7→ e(s))0≤s≤t

))
= n

(
F
(

(s 7→ e(s))0≤s≤t

)
· 1ζ(e)>t · 2

√
2πq1−t(e(t))

)
.

In other words, n(t) restricted to the σ-algebra Ft generated by es for s ≤ t is
absolutely continuous with respect to n �Ft 1{ζ(e)>t} with density 2

√
2πq1−t(e(t)).

Exercise 34. Show that if U is uniform in [0, 1] independent of e (with law n(1))

then P (2eU ∈ dx) = xe−
x2
2 dx.

1.4. Main Theorem: the scaling limit of the contour process.

Theorem 35. If Tn is a uniform plane tree with n edges, and Cn is the contour
process of Tn then (

s 7→ Cn(2ns)√
2n

)
0≤s≤1

(d)−−−−→
n→∞

e

in the space C ([0, 1],R) with ‖·‖∞.

Proof. One approach is to show that the �nite marginals converge and then show
tightness of the sequence.
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Alternatively, let F be cts and bounded and let 0 < t < 1, and consider

E

[
F

(
s 7→ Cn(2ns)√

2n

)
0≤s≤t

]
= E

[
F

(
s 7→ S2ns√

2n

)
0≤s≤t

∣∣∣τ1 = 2n+ 1

]

=
E
[
F
(
s 7→ S2ns√

2n

)
0≤s≤t

∧ τ1 = 2n+ 1
]

P (τ1 = 2n+ 1)

=
E
[
F
(
s 7→ S2ns√

2n

)
0≤s≤t

1{τ1>d2nte}PSd2nte (τ1 = 2n+ 1− d2nte)
]

P (τ1 = 2n+ 1)
where we have used the Markov property, and PS0 is the probability when the SRW
is started at S0.

Lemma 36. Pl(τ1 = m) = l+1
m Pl(Sm = −1).

Proof. Pl(τ1 = m) = Pl {Si ≥ 0 for 0 ≤ i ≤ m− 1, Sm−1 = 0, Sm = −1} = 1
2Pl {Si ≥ 0 for 0 ≤ i ≤ m, Sm−1 = 0}

so

Pl(τ1 = m) =
1
2

(Pl {Sm−1 = 0} − Pl {Sm−1 = 0, ∃i : Si < 0})
�

To estimate Pl(Sm = −1) we use the local limit theorem

Fact 37. supl∈Z

∣∣∣√mP0 (Sm = l ∨ Sm = l + 1)− 2p1

(
l√
m

)∣∣∣ −−−−→
m→∞

0, where p1(x)
is the probability density of the standard Gaussian.

It follows that P0 (τ1 = 2n+ 1) =
√

2n+1
(2n+1)3/2

P0 (S2n+1 = −1) ∼ 1
(2n)3/2

×2p1(0) ∼
1

2
√
πn3/2 , and therefore that

P0 (τ1 > d2nte) ∼
1√

πtn1/2
.

With the calculation above this gives:

E

[
F

(
s 7→ Cn(2ns)√

2n

)
0≤s≤t

]
∼ n√

t
E

[
F

(
s 7→ S2ns√

2n

)
0≤s≤t

Sd2nte + 1
2n− d2nte+ 1

PSd2nte (τ1 = 2n+ 1− d2nte)
∣∣∣τ1 > √2nt

]

∼ n
√

2n
√
t (2n(1− t))3/2

E

[
F

(
s 7→ S2ns√

2n

)
0≤s≤t

Sd2nte + 1
√

2n

√
2n− 2ntPSd2nte (τ1 = 2n+ 1− d2nte)

∣∣∣τ1 > √2nt

]

∼ n
√

2n√
t(2n)3/2

E

[
F

(
s 7→ S2ns√

2n

)
0≤s≤t

q1−t

(
S2nt√

2n

) ∣∣∣τ1 > √2nt

]
,

where in the last claim we again used the local limit theorem.
Now recall that, with e(Rt) being the �rst excursion of BM with duration at least

t, (
s 7→ S2ns√

2n

)
0≤s≤ τ12n

conditionally given τ1 > 2nt
(d)−−−−→
n→∞

e(Rt) .

It follows that

E

[
F

(
s 7→ Cn(2ns)√

2n

)
0≤s≤t

]
−−−−→
n→∞

1√
t
n
(
F (e(s))0≤s≤tq1−t(e(t))

∣∣∣ζ(e) > t
)
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and since n (ζ(e) > t) ∼ 1√
2πt

, we see that

E

[
F

(
s 7→ Cn(2ns)√

2n

)
0≤s≤t

]
−−−−→
n→∞

√
2πn

(
F (e(s), 0 ≤ s ≤ t) q1−t(e(t))1{ζ(e)>t}

)
= n(1) (F (e(s), 0 ≤ s ≤ t)) .

Conclusion. Since we �xed t < 1, we have proved that(
Cn(2ns)√

2n

)
0≤s<1

(d)−−−−→
n→∞

(es)0≤s<1

for the topology of uniform convergence over compact sets of [0, 1). For the endgame,

note that both processes are invariant under re�ection: Cn(2n− ·) (d)
= Cn(·). It fol-

lows that (
Cn(2ns)√

2n

)
0<s≤1

(d)−−−−→
n→∞

(es)0<s≤1 ,

and together we obtain the Theorem. �

1.5. Consequences of the scaling limit. Let Tn ∈ Tn be chosen uniformly.

Proposition 38 (Flajolet�Odlyzko 82). For a rooted tree T let H(T ) = max {dT (root, u) | u ∈ V (T )}.
Then

H(Tn)√
2n

(d)−−−−→
n→∞

sup
0≤s≤1

es .

Proof. Cn(i) = dTn(root, ui) where ui is the ith vertex visited during the contour
process. It follows that H(Tn) = max0≤i≤2n CTn(i) = max0≤s≤1 CTn(2ns). Since
f 7→ sup(f) is continuous in the uniform topology on continuous functions, the
claim follows. �

Proposition 39. Let un be a uniformly chosen vertex of Tn (conditionally given
Tn). Then

dTn(root, un)√
2n

(d)−−−−→
n→∞

eU ,

where U is uniform in [0, 1], independent of e.

Remark 40. As seen above, the law of eU is the Rayleigh distribution.

Proof. Clear that
CTn (2nU)√

2n

(d)−−−−→
n→∞

eU .What needs to be checked is that CTn(2nU)

is close in distribution to dTn(root, un), and this can be checked by starting from
the contour and forming the tree. �

2. Metric convergence: the continuous random tree

For the Continuous Random Tree and the Brownian Snake, see also [9]
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2.1. Recovering the metric from the contour process. From the tree Tn we

obtain the metric space
(
V (Tn), 1√

2n
dTn

)
. We would like to interpret Theorem 35

as stating that this random pointed metric space converges in distribution.
For a plane tree t, let u, v be visited in order by the contour process. Suppose

that the contour process visits u at time i, v at time j and that i < j. Then
mini≤s≤j Ct(s) is the height of the most recent common ancestor of u, v so

dt (u, v) =
(
Ct(i)− min

i≤s≤j
Ct(s)

)
+
(
Ct(j)− min

i≤s≤j
Ct(s)

)
= Ct(i) + Ct(j)− 2 min

i≤s≤j
Ct(s) .

Note that the contour process may visit u twice, but between the visits it remains
in the subtree of descendants of u, so C(s) ≥ C(i) at that time, and hence this
minimum is not a�ected by the choice of i, as long as at time i we visit u. Similarly
for j, and the formula on the right is symmetric in i, j so we can also drop the order
assumption.

2.2. Getting an R-tree from a continuous function.

Remark 41. For a reference on R-trees see [8]

Given f ∈ E recall that that f ≥ 0 and the notation f(0) = f(ζ(f)) = 0. Then
f induces a pseudometric on [0, ζ(f)] by

df (s, t) = f(s) + f(t)− 2 inf {f(u) | s ∧ t ≤ u ≤ s ∨ t} .

Notation 42. f̌s,t = {f(u) | s ∧ t ≤ u ≤ s ∨ t}.

De�nition 43. Let Tf = ([0, ζ(f)] / ∼, df/ ∼) be the quotient metric space (s ∼ t
if df (s, t) = 0).

Lemma 44. Note that pf : [0, ζ(f)] → Tf be the obvious projection. Then this is
continuous for the standard topology on [0, 1] and the metric topology of Tf .

Proof. df (pf (s), pf (t)) = df (s, t) = f(s)+f(t)−2f̌s,t. It follows that limt→s df (pf (s), pf (t)) =
2f(s)− 2f(s) = 0. �

Notation 45. Write ρf = pf (0) and call it the root of Tf .
We now identify some geodesics in Tf . For this note that df (0, s) = f(s) so the

distance from the root to pf (s) is f(s). For s ∈ [0, ζ(s)] and r ∈ [0, f(s)] set

Γ−s (r) = sup {t ≥ s | f(t) = r}
Γ+
s (r) = inf {t ≤ s | f(t) = r} .

Since f(t) ≥ r for all t ∈ [Γ−s (r),Γ+
s (r)], pf (Γ−s (r)) = pf (Γ+

s (r)) and we call this
common value γs(r).

Lemma 46. γs : [0, f(s)]→ Tf is a geodesic connecting 0, pf (s).

Proof. Let 0 ≤ r ≤ r′ ≤ f(s). Then for every u ∈ [Γ+(r′),Γ+
s (r)], f(u) ≥ r =

f (Γ+
s (r)). It follows that df (Γ+(r′),Γ+

s (r)) = r + r′ − 2r = |r′ − r|. �

Lemma 47. Let 0 ≤ s ≤ t ≤ ζ(f), and let u ∈ [s, t] be such that f(u) = f̌s,t.
Then a geodesic from a = pf (s) to b = pf (t) is obtained by connecting the pieces of
geodesics to ρ that lie above c = pf (u).
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Proposition 48. Tf is an R-tree.

Proof. See [9, Thm. 2.2] �

2.3. Gromov�Hausdor� convergence.

Remark 49. For a reference on metric geometry [6, 5]

De�nition 50. Let (Z, δ) be a metric space. The Hausdor� distance between
A,B ⊂ Z is

δH (A,B) = sup
a∈A

δ(a,B) + sup
b∈B

δ(A, b) .

This de�nes a pseduometric.

De�nition 51. Let (X, d), (X ′, d′) be compact metric spaces. Set

dGH (X,X ′) = inf {δZ (f(X), f ′(X ′)) | (Z, δ) metric space, f : X → Z, f ′ : X ′ → Z isometric embeddings} .

Example 52. If X is a Euclidean isosceles triangle, X ′ a point, then dGH (X,X ′) =
1
2 , where Z = X qX ′ and δ(x, x′) = 1

2 for all x ∈ X, where X ′ = {x′}.

Proposition 53. There is a set M of non-isometric compact metric spaces con-
taining a representative of every isometry class of such metric spaces (this is since
every compact metric space has a countable dense subset). Then (M, dGH) is a
compact metric space.

De�nition 54. A subset R ⊂ X ×X ′ is a correspondence if for all x ∈ X, x′ ∈ X ′
we have {x}×X ′∩R 6= ∅ and X×{x′}∩R 6= ∅. The distortion of R is the number

dist (R) = sup
(x,x′)∈R
(y,y′)∈R

|d(x, y)− d′(x′, y′)| .

Proposition 55. Let (X, d), (X ′, d′)

Remark 56. For pointed spaces, set

dGH (X,X ′) = inf {δZ (f(X), f ′(X ′)) + δZ(f(x), f(x′) | f : (X, d)→ (Z, δ), f ′ : (X ′, d′)→ (Z, δ) isom embeddings} .

Then the claims above still hold, with M the space of pointed compact metric
spaces. For the formula with correspondences, insist also that (x, x′) ∈ R where
x, x′ are the base points.

Proposition 57. The map E →M given by f 7→ (Tf , df , ρf ) is 2-Lipschitz.

Proof. Given f, g ∈ E let R = {(pf (t ∧ ζ(f)), pg(t ∧ ζ(g))) | t ≥ 0} ⊂ Tf×Tf . Then

dist(R) = sup
s,t≥0

|df (s ∧ ζ(f), t ∧ ζ(f))− dg (s ∧ ζ(g), t ∧ ζ(g))|

= sup
s,t≥0

∣∣[f(s ∧ ζ(f))− g(s ∧ ζ(g))] + [f(t ∧ ζ(f))− g(t ∧ ζ(g))]− 2
(
f̌s,t − ǧs,t

)∣∣
≤ 4dE(f, g) .

�
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2.4. The Theorem.

Theorem 58 (Duquesne�Le Gall). Let Tn be a uniform element of Tn. Then(
V (Tn),

dTn√
2n
, root

)
(d)−−−−→
n→∞

(Te, d, ρ)

De�nition 59. The random metric space (Te, d, ρ) is called the (Brownian) Con-
tinuous Random Tree.

Remark 60. The CRT was introduced by Aldous [1] with a di�erent construction.
The construction above is due to Aldous [2] and Le Gall.

Proof of Theorem 58. From the fact that Cn(2n·)√
2n

(d)−−−−→
n→∞

e and the continuity of

f 7→ Tf we get

TCn(2n·)√
2n

(d)−−−−→
n→∞

(Te, d, ρ) .

Moreover, if the contour process visits ui, uj ∈ V (Tn) at times i, j respectively then
dTn(ui, uj) = dCn(i, j). It follows that (V (Tn), dTn , root) is isometrically embedded
in (TCn , dCn , root). Moreover, TCn is within distance 1 of the image (for all s,
dCn(s, bsc) ≤ 1). It follows that

dGH

((
V (Tn),

dTn√
2n
, root

)
,

(
TCn(2n·)√

2n
,distance, root

))
≤ 1√

2n
and we are done. �

Remark 61. Theorem 58 is strictly weaker than Theorem 35, since we have only
retained the metric structure of the tree but have lost the embedding in the plane,
that is the cyclic order of the vertices.

2.5. Applications.

Proposition 62. The CRT has almost surely in�nite total length.

Proof. e has in�nite total variation almost surely. In fact, e is
(

1
2 − ε

)
-Hölder

continuous for all ε > 0 but not 1
2 -Hölder continuous, almost surely (this is inherited

from the analogous property of Brownian motion). �

Proposition 63 (Re-rooting principle). Fix s ∈ [0, 1]. Then (Te, de, pe(s))
(d)
=

(Te, de, pe(0)).

Proof. The same is true for Tn: there is an obvious automorphism of Tn obtained
by re-rooting at the ith edge seen during the contour process. It follows that(
V (Tn), dTn , e

−
i

) (d)
=
(
V (Tn), dTn , e

−
0

)
. To complete the proof choose in so that

in√
2n
−−−−→
n→∞

s ∈ [0, 1] apply the main Theorem. �

Corollary 64. If U is uniform in [0, 1], independent of e then (Te, de, pe(U))
(d)
=

(Te, de, pe(0)).
Thus, if we let me be the pushforward to Te via pe of Lebesgue measure on [0, 1]

then (conditionally given e).

Theorem 65 (Duquesne�Le Gall). The measure me can be recovered from Te: it
is the Hausdor� measure on this space with respect to a particular gauge function
(x2 log log 1

x) with a deterministic scaling.
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Corollary 66. Let U, V are independent and uniform in [0, 1] thende(U, V )
(d)
=

de(U, 0) = eU . In other words, if x1, x2 ∈ Te are chosen independently according to

the measure me then de(x1, x2)
(d)
= de(x1, ρ).

Proposition 67. Almost surely dimH (Te, de) ≥ 2.

Proof. However, we know that P(2eU ∈ dx) = xe−x
2/2 dx so

Eme (Bd2e(ρ, r)) =
∫ r

0

xe−
x2
2 dx ∼r→0

r2

2
.

By re-rooting we see that the same holds for any ball, and therefore

E

[∫
Tf

dme(x)1{me(Bd2e (x,r))>r2−ε}

]
Markov
≤ rε−2E

[∫
Tf

dme(x) ·me (Bd2e(x, r))

]

= rε−2E [meBd2e(ρ, r)] ∼r→0
rε

2
.

Now choose r = 2−k, k ≥ k0. The set of probabilities is then summable, so by Borel�

Cantelli, we see that Prob-a.s. the set of x for which me (Bd2e(x, r)) >
(
2−k

)2−ε
for in�nitely many k has me-measure zero. Consequently, for me-a.e. x ∈ Te,

lim sup
r→0

me (Bd2e(x, r))
r2−ε ≤ C <∞

where C is a non-random constant. �

Lemma 68. Almost surely, the projection pe : [0, 1] → Te is Hölder continuous of
order 1

2 − ε.

Proof. de(s, t) = (e(s)− ěs,t) + (e(t)− ěs,t) ≤ |es − eu| + |et − eu| for some u
between s, t. It follows that

de(s, t) ≤ 2 ‖e‖C0,α |t− s|α .
�

Corollary 69. Almost surely, dimH (Te, de) ≤ 2.

Proof. If f : X → Y is surjective and Hölder continuous of order α then dimH Y ≤
1
α dimHX by pushing forward arbitrary covers of X to Y via f . �

In summary, we obtain:

Theorem 70. Almost surely, dimH (Te, de) = 2.

Remark 71. Recall that the same holds for the trace of Brownian motion in Rd,
d ≥ 2.

3. Decorated trees

3.1. Combinatorics.

De�nition 72. Let t be a a tree. An admissible labeling on t is a 1-Lipschitz
function ` : V (t) → Z such that `(root) = 0. Write Tn for the set of labeled trees
on n edges.

Lemma 73. #Tn = 3n#Tn = 3n

n+1

(
2n
n

)
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Proof. DFS the tree. Whenever we visit a new vertex we have 3 choices for the
label (given the label of its parent, which is already known). �

Now let (tn, `n) ∈ Tn. tn may be encoded using its contour process Cn = Ctn .
If ui is the vertex visited by the contour process at time i then let Ln(i) = `n(ui).
We call Ln the �label process� of the labeled tree. It is important to realize that
when the tree is chosen at random Ln is not a nice process. For example, every
vertex is visited twice by the contour process and at both times Ln must take the
same value.

We will now consider random labeled trees and try to work out their scaling
limit. Since every tree in Tn has the same number (3n) of labelings, a uniform
element (tn, `n) ∈ Tn is given by choosing tn ∈ Tn uniformly and choosing `n
uniformly, conditioned in tn. Note that, conditioned on tn, the labels on a given
simple path are then given by a lazy standard random walk on Z. In particular,
the labels of the tree are a tree-indexed random walk, and their limit should be an
R-tree indexed Brownian motion.

To identify the scaling exponent note that a one-dimensional SRW reaches dis-
tance about

√
t at time t. Since the branches of a random tree on n vertices have

length about
√
n, we will need to scale the labels by n1/4.

3.2. Brownian labels on R-trees. Let f ∈ E and let (Tf , df , ρf ) be the associated
R-tree. We'd like to de�ne a process

{
Zfa
}
a∈Tf

so that on each path [ρf , a] we see
Brownian motion, but for a, b ∈ Tf the restriction [ρf , a ∧ b] are equal while the
restrictions to [a ∧ b, a] , [a ∧ b, b] are independent.

Proposition 74. Let Zfs be the centered Gaussian process on [0, t] with covariance

function Cov
(
Zfs , Z

f
t

)
= f̌s,t. Then, almost surely, Zf is de�ned on Tf and has

this property.

Proof. We need to check �rst that f̌s,t is a positive de�nite kernel. Indeed, for any
continuous g : [0, ζ(f)]→ C we have∫∫

(s,t)∈[0,ζ(f)]2
g(s)g(t)f̌s,t dsdt =

∫∫
(s,t)∈[0,ζ(f)]2

g(s)g(t)
∫ ∞

0

dx1{x<f̌s,t} dsdt

Fubini=
∫ ∞

0

dx
∫∫

(s,t)∈[0,ζ(f)]2
g(s)g(t)1{x<f̌s,t} dsdt

=
∫ ∞

0

dx
∑

I∈I(x)

∫∫
(s,t)∈I2

g(s)g(t)

where I(x) are the connected components of the set {u | f(u) ≥ x}. The reason
for this is that if s, t belong to di�erent intervals in this set then there is a point
between s, t where f dips below x and so f̌s,t < x, while if they are in the same

interval then f does not dip below them so that f̌s,t ≥ x also. We can rewrite this
identity as∫∫

(s,t)∈[0,ζ(f)]2
g(s)g(t)f̌s,t dsdt =

∫ ∞
0

dx
∑

I∈I(x)

∣∣∣∣∫
s∈I

g(s) ds
∣∣∣∣2 ≥ 0 .

To see that Zf is de�ned on Tf , let I◦(x) be the connected components of the
open set {u | f(u) > x}. This is a disjoint union of intervals, and if (a, b) is such
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an interval then df (a, b) = 0. Let J =
{

(a, b) ∈ R2 | ∃q ∈ Q : (a, b) ∈ I(q)
}
. This

is a countable set, and for each (a, b) ∈ J we have E
[∣∣∣Zfa − Zfb ∣∣∣2] = df (a, b) = 0;

taking a countable union we have a.s. that for every (a, b) ∈ J , Zfa = Zfb . Finally,
check that if df (s, t) = 0 then (s, t) ∈ R2 is a limit point of J .

Next, let s ≤ u ≤ t ∈ [0, ζ(f)] with pf (u) = pf (s)∧pf (t), that is with f(u) = f̌s,t.

Finally, we need to show that Zfs − Zfu , Z
f
t − Zfu are independent. It su�ces to

check that they are uncorrelated, and indeed

E
[(
Zfs − Zfu

) (
Zft − Zfu

)]
= E

[
Zfs Z

f
t − Zfs Zfu − Z

f
t Z

f
u + ZfuZ

f
u

]
= f̌s,t − f̌s,u − f̌t,u + f̌u,u

= f(u)− f(u)− f(u) + f(u)
= 0 .

�

Lemma 75. Suppose f is Hölder continuous of order α > 0. Then the process
Zf admits a modi�cation which is almost surely Hölder continuous of any order
β ∈

(
0, α2

)
.

Proof. By Kolmogorov's criterion it is enough to estimate the moments E
[∣∣∣Zfs − Zft ∣∣∣2p].

Since Zfs − Z
f
t is a centered Gaussian with variance

E
[∣∣∣Zfs − Zft ∣∣∣2] = f̌s,s + f̌t,t − 2f̌s,t = df (s, t)

we have

E
[∣∣∣Zfs − Zft ∣∣∣2p] = E

[
N (0, df (s, t))2p

]
= df (s, t)pE

[
N (0, 1)2p

]
�p ‖f‖C0,α |s− t|αp

and therefore Zf can be modi�ed to be
(
αp−1

2p

)
-Hölder continuous for every p >

0. �

From now on we work with the continuous modi�cation.

Corollary 76. Almost surely for every s, t such that df (s, t) = 0 we have Zfs = Zft .

We now specialize to the case where f = e (recalling that e is a.s. Hölder
continuous of every order α < 1

2 ), writing Z = Ze.

De�nition 77 (Le Gall). The pair (e, Z) is called the �head of the Brownian snake�.

Remark 78. We will need several properties of this process that are best proved
using the full �Brownian snake� process, which we will not consider.
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3.3. The scaling limit of random labeled trees.

Theorem 79 (Chassing�Schae�er, Janson�Marckert). Let (tn, `n) be uniform in
Tn, and let Cn, Ln be the associated contour and label processes (linearly interpolated
in [0, 2n]). Then((

s 7→ Cn(2ns)√
2n

)
,

(
s 7→

(
9

8n

)1/4

Ln(2ns)

))
(d)−−−−→
n→∞

(e, Z)

in (C([0, 1],R))2
with the topology of uniform convergence.

Remark 80. There is an analogous metric convergence in the space of pairs (X, f)
where X is a compact metric space and f a bounded function on X,

Proof. We will �rst show that the �nite-dimensional marginals converge, and then
establish tightness.

Step 1. We already know that Cn(2n·)√
2n

(d)−−−−→
n→∞

e. By the Skorokhod representation

Theorem, we can assume that on the underlying probability space this convergence
occurs almost surely. Recall that the trees may be recovered from the contour
functions. Accordingly, we assume that the probability space further carries a
family of random variables (Y ne )e∈E(Tn) which are iid on {0, 1,−1}, conditionally
given (Tn)n≥1, and such that the label function Ln satis�es Ln(u) =

∑
e`u Y

n
e

(e ` u means that e is on the path from the root to u). Now, conditionally given
(Cn)n≥1 and e, for each t ∈ (0, 1) we have that(

9
8n

)1/4

Ln(2nt)
(d)−−−−→
n→∞

N (0, et) .

Indeed, since |Ln(2nt)− Ln(b2ntc)| ≤ 1 we can use Ln(b2ntc) instead. This is∑
e`ub2ntc Y

n
e , a sum of Cn (b2ntc) iid centered random variables. Since Var(Y ne ) =

2
3 , we have

Ln(b2ntc) (d)
=

Cn(b2ntc)∑
i=1

Ỹi =
∑Cn(b2ntc)
i=1 Ỹi√
2
3Cn (b2ntc)

×
√

2
3
Cn (b2ntc)

where Ỹi are iid uniform in {0,±1}. Now using the central limit theorem and the
convergence of Cn√

2n
we have:

Ln(b2ntc)
(8n/9)1/4

(d)
=

 ∑Cn(b2ntc)
i=1 Ỹi√
2
3Cn (b2ntc)

×(√Cn (b2ntc)√
2n

)
(d)−−−−→
n→∞

N (0, 1)×
√

et

(d)
= N (0, et) .

We next consider the convergence of two-point marginals. For this let 0 < t1 <
t2 < 1. We want to show that, given (Cn)n≥1,(

9
8n

)1/4

(Ln(b2nt1c), Ln(b2nt2c))
(d)−−−−→
n→∞

(Zt1 , Zt2) .
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Note that, given e, (Zt1 , Zt2) is a centered Gaussian vector with covariance matrix(
et1 ět1,t2

ět1,t2 et2

)
. Write ǔn for the last common ancestor of ub2nt1c, ub2nt2c in Tn.

Then
Ln (b2ntic) = An +Bni

where An =
∑
e`ǔn Y

n
e and

Bni =
∑

ǔn`e`ub2ntic

Y ne .

Also, the three variables An, Bn1 , B
n
2 are independent, and each is a sum of some

number of iid Ỹ . Since the distance of ǔn to the root is Čn (b2nt1c , b2nt2c) we can
apply the same argument as for the one-point function to conclude that(

9
8n

)1/4

(An, Bn1 , B
n
2 )

(d)−−−−→
n→∞

(A,B1, B2)

where on the RHS we have three independent Gaussians with respective variances
ět1,t2 , et1 − ět1,t2 , et2 − ět1,t2 . It follows that(

9
8n

)1/4

(An +Bn1 , A
n +Bn2 )

(d)−−−−→
n→∞

(A+B1, A+B2)
(d)
= (Zt1 , Zt2) .

Now suppose we have 0 < t1 < t2 < · · · < tk < 1. Drawing the subtree of Tn
spanned by those points (whose combinatorial type eventually does not depend on
n by convergence of the Cn) one can write random variables An (corresponding
to the most recent common ancestor of all times) and Bnp (corresponding to the
paths between various ancestors in the tree) so that these are all independent sums

of iid Ỹ of lengths that depend on the contour process so that Ln(b2ntic) can be
written as the sum of An and those Bnp so that the paths together add up to a path
from the root to the appropriate vertex. Now the by the CLT and the convergence
of (Cn)n≥1 the scaled An, Bnp will converge to independent Gaussians A,Bp, with
variances given by values to e, and it will follow that the Ln converge to vector of
the Zti .
Tightness. By Kolmogorov's criterion it is enough to show that, for all 0 ≤ s < t ≤
1,

E

[∣∣∣∣Ln(b2nsc)− Ln(b2ntc)
n1/4

∣∣∣∣2p ∣∣∣ (Cn)n≥1

]
≤ Cp(e) |t− s|p

where Cp(e) is almost surely �nite. Indeed, for 0 ≤ i < j ≤ 2n we have

E
[
|Ln(i)− Ln(j)|2p

∣∣∣ (Cn)n≥1

]
= E


∣∣∣∣∣∣
dTn (ui,uj)∑

i=1

Ỹi

∣∣∣∣∣∣
2p
 ≤ KpdTn(ui, uj)2p

by a quantitative CLT. Writing the distance in terms of Cn we �nd that, uncondi-
tionally,

E
[
|Ln(i)− Ln(j)|2p

]
≤ KpE

[∣∣Cn(i) + Cn(j)− 2Č(i, j)
∣∣2p] .

By the re-rooting invariance of the random tree, the expectation in the RHS is equal

to E
[
|C(j − i)|2p

]
=
∑∞
l=0 P (Cn(j − i) = l) l2p, and the latter can be estimated by

counting paths. �



RANDOM MAPS 18

Part 2. Random maps

4. The Cori�Vanquelin�Schaeffer bijection

Our �rst goal is obtaining the following enumeration.

Theorem 81 (Tutte). There are 2
n+2

3n

n+1

(
2n
n

)
rooted planar maps with n edges.

Recall that a planar map is a quadrangulation if all its faces have degree 4.

4.1. The �trivial� bijection. Start with be a planar map m. Add a (dual) vertex
in each face, and connect each of those vertices to every �corner� in boundary of
the corresponding face (there are in bijection with the oriented edges along the
boundary by associating to each oriented edge its tail vertex. Note that this is not
the same as vertices on the boundary, since a vertex can appear several times in the
boundary cycle of an edge. Now every undirected edge is the union of two oriented
edges, each connected to a single dual vertex. Removing the two oriented edges we
are left with a quadrangle, whose vertices are the two endpoints of the edge and
the two dual vertices at the two sides (these don't have to be distinct).

This process converts a planar map with n edges to a quadrangulation with n
faces, together with a 2-coloring of the vertices (we know which vertices of the
quadrangulation come from vertices of the map, which from dual vertices). We
move the root by �xing its source vertex and moving the endpoint to the next
vertex of the quadrangle formed from the original root edge.

For the converse we need the following:

Lemma 82. Planar quadrangulations are bipartite graphs.

Proof. A simple cycle in a plane map is a Jordan curve and divides the sphere into
two parts; apply Euler's formula to one of those parts. �

Now given a rooted planar map q, the root edge gives a choice of one side of the
bipartition (the side containing its tail). We then let m be the planar map with
vertices being the vertices on that side, and edges being those �diagonals� of the
quadrangles which connect vertices in the chosen side.

Corollary 83. Let Qn = {rooted plane quadrangulations with n faces}, Q•n =
{(q, v∗) | q ∈ Qn, v∗ ∈ V (q)}. Then Tutte's Theorem 81 is equivalent to the as-

sertion #Q•n = 2 3n

n+1

(
2n
n

)
.

Proof. First, since rooted plane maps have no automorphisms and every quadran-
gulation with n faces has n + 2 vertices (apply Euler's formula, using 4#F (q) =
2#E(q)), #Q•n = (n + 2)#Qn. Second, the bijection just constructed shows that
#Qn is the number of plane maps. �

Lemma 84. Let G be a connected bipartite graph, and let u, v, w ∈ V (G) with u, v
adjacent. Then |dG(w, u)− dG(w, u)| = 1.

4.2. The C�V�S bijection. Given (q, v∗) ∈ Q•n let ¯̀: V (q)→ Z be the distance
to v∗. By the last Lemma, if u, v are adjacent

∣∣¯̀(u)− ¯̀(v)
∣∣ = 1. It follows that the

labels around a face must have one of the patterns (`, `+ 1, `+ 2, `+ 1) (in cyclic
order around the face) or (`, `+ 1, `, `+ 1) (in cyclic order). Construct a map t
consisting of the vertices of q and new edges as follows: for each face of the �rst
type take an edge between the second and third vertices inside the face, in the
second case the two opposite vertices with label `+ 1.
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Claim 85. t is a tree (as yet, unrooted).

Proof. We show that #V (t) = n+ 1, that #E(t) = n, and that t has no cycles.
First, let v 6= v∗ be any vertex. Then d(v, v∗) > 0 and there is a neighbour v′ of

v with `
def= d(v′, v∗) = d(v, v∗) − 1. Let e be the directed edge from v to v′, and

let f be the face to the right of e. The labels along e′ are ` + 1 (at tail) and ` (at
head). There are several possibilities for the labels of the other two vertices in that
face, but one checks that in any case the t-edge associated to this face is incident
to v, the tail of e. It follows that every v ∈ V (q) \ {v∗} is incident to at least one
edge in tt. Since v∗ itself is not incident to an edge we have #V (t) = n + 1. By
construction we have #E(t) = #F (q) = n.

Finally, suppose t had a simple cycle. By the Jordan Theorem this cycle divides
the sphere into two connected parts, and v∗ belongs to one of them. Let u be a
vertex on the cycle with minimal label `. Suppose �rst that it has a t-neighbour v
along the cycle with the same label. Then u, v belong to a quadrangle with labels
`−1, `, `−1, `, with the two vertices with labels `−1 on di�erent sides of the cycle.
This is impossible: consider the vertex with label ` − 1 which is in the part not
containing v∗� any shortest q-path from v∗ to w must cross the cycle and therefore
meet a vertex with label at least `, a contradiction. Otherwise, the two t-neighbours
of u along the cycle, say v1, v2, have labels `+ 1. It follows that (v1, u) and (u, v2)
are edges of q belonging to faces of q, one inside the cycle and one outside, and
each contains a vertex with label `− 1, again a contradiction. �

Remark 86. This was the original proof, which is speci�c to the sphere via the
Jordan Curve Theorem, but there are proofs which generalize to surfaces of any
genus.

Thus given (q, v∗) we have a tree t on n+1 vertices, hence n edges. To construct
an admissible labeling of this tree, let v0 be that endpoint of the root e∗ with the

larger label, and set `(v) = ¯̀(v) − ¯̀(v0). Let ε =

{
+1 v0 = e−∗
−1 v0 = e+

∗
. It is clear from

the de�nition of the edges of t that ` is an admissible labeling of t, if we root t at
the vertex v0 and the edge begin the edge of t associated to the face of q lying to
the right of that orientation of e∗ which beings at v0.

Theorem 87. (C�V�S) The map Φ: Q•n → Tn × {±1} given by Φ(q, v∗) =
((t, `) , ε) is a bijection.

Proof. We exhibit an inverse Ψ: Tn × {±1} → Q•n (which is, in fact, the more
useful direction of the bijection).

Accordingly, given ((t, `) , ε), let {ej}2n−1
j=0 be the oriented edges in the contour

(DFS) exploration of t,with e0 being the root edge of t, and extend this by e2n+j =
ej . Also, set `(e) = `(e−) for each e ∈ ~E(t).

First, add a vertex v∗ not in supp(t) incident to a single oriented edge e∞. Next,
for each i ≥ 0 set s(i) = inf {j ≥ i | `(ej) = `(ei)− 1} = inf {j > i | `(ej) < `(ei)}
(here inf ∅ = ∞), and set s(ei) = es(i). Now for each e ∈ ~E(t) draw an arc from e
to s(e).

Let q = Ψ ((t, `) , ε) be the graph with vertices V (t) ∪ {v∗} and edges the new
arcs, rooted at the edge from the root edge of t to its successor if ε = +1, at the
reverse of this edge if ε = −1.
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Remark 88. The reason for extending {ej} cyclically is that �nding successor to a
given edge might require going around the tree past the root.

The rest of the proof is subdivided into several claims.

Claim 89. The arcs can be drawn in non-crossing fashion, that is q is a plane map.

Track the contour process of a plane tree as running on the boundary of a
convex polygon with 2n sides. Each corner of the tree corresponds to a vertex of
the polygon, so that a vertex in the tree of degree d corresponds to d vertices of
the polygon, with the identi�cation being such that the convex hulls of the sets of
polygon vertices corresponding to di�erent tree vertices are disjoint (one can think
of the tree as coming from collapsing the polygon). Now the (single) face of the
tree corresponds to the outside face of the polygon.

Next, we label the vertices of the polygon according to the labels from the tree,
and consider the edges of q. First, all vertices with minimal label are connected
to a new vertex in the outside face. Next, each other vertex is connected to its
successor, that being the next vertex of the polygon (going clockwise) with a smaller
label. There is no intersection of the edges: suppose a vertex vi of the polygon is
connected in q to its successor vj . Now consider vk with i < k < j in the cyclic
order (clockwise around the polygon). Then the label of vk is at least that of vi
(since it comes before vj). Since the label of vj is strictly less than that of vi, it's
also less than the label of vk, so the successor of vk occurs before vi and we can
draw the edge leaving vk without crossing. A similar argument applies if k occurs
after j but before i.

Claim 90. q is a quadrangulation.

Proof. Suppose we have a tree edge e connecting vertices with labels `, `+1 in that
order. Let e′ be the next edge leaving the vertex of label `+1. Then s(e) = s(s(e′))
and we get a degree-4 face containing the edge. Suppose that e connects vertices
with the same label `. Then there is an edge e′ leaving the head of e so that
s(e) = s(e′) has label ` − 1, and similarly e′′ so that s(ē) = s(e′′) has label ` + 1,
and we obtain a face of q of degree 4.

This shows that q has at least n faces of degree 4. But q has 2n edges (one for
each corner of the polygon) and exactly n+ 2 vertices (the vertices of the tree plus
one) so by Euler's formula exactly n faces. It follows that q is a quadrangulation.

�

Lemma 91 (Key lemma). Let (q, v∗) = Ψ ((t, `) , ε). Then for every v ∈ V (q) \
{v∗} = V (t), dq(v, v∗) = ¯̀(v)

def
= `(v)−min ` (V (t)) + 1 (could include v∗ by setting

¯̀(v∗) appropriately)

Proof. Note that |`(u)− `(v)| =
∣∣¯̀(u)− ¯̀(v)

∣∣ = 1 if u, v are connected by an arc of
q. Since vertices of minimal label are connected to v∗, the triangle inequality gives
that ¯̀(v) ≤ dq(v, v∗). For the converse let e be any edge leaving v, and consider
the chain e → s(e) → s2(e) → s3(e) and so on, which are edges of q. The labels
are strictly decreasing along this path, so the length of this chain is at most ¯̀(v)
and we have dq(v, v∗) ≤ ¯̀(v). �

Claim 92. Ψ is a right inverse to Φ (Φ ◦Ψ = id).
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Proof. The proof of the claim 90 shows that the edge Φ would associate to every
face of Ψ ((t, `) , ε) is precisely the edge of t corresponding to that face [we have
shifted the labels by a constant, but that does not change the property that the
vertices of a face have labels like `, `+ 1, `, `+ 1), while the Lemma shows that the
labels are the ones Φ uses. One also needs to verify that the rooting convention is
recovered. �

Claim 93. Ψ is a left inverse to Φ (proof omitted; see [7, 4]).

�

4.3. An alternative point of view of the CVS bijection. Replace every vertex
of a planar map q with a �roundabout�: a circle in the plane which meets edges at
the vertex at distinct points.

Now cars leave v∗ at take unit time to traverse an edge. Flows meeting at
vertices follow the roundabout rule: if tra�c has arrived into the vertex from an
edge it travels right (counter-clockwise) and takes exits as long as no tra�c has
already come in through those edges. Otherwise the tra�c is jammed. It is easy
to check that eventually every edge will carry tra�c in some direction, and that if
we only include the arcs of the roundabout that actually carry tra�c together with
these edges we'll get a spanning tree of q. Also, if we let a bud leave the vertex at
each arc of the roundabout where there is no tra�c (since tra�c is incoming rather
than outgoing at the edge to the right) then every face of q will have exactly two
incoming buds which we are connected in a tree-edge. One can check what this
means in terms of the labels.

• The CVS bijection is thus a discrete analogue to the cut locus on a Rie-
mannian manifold (the cut locus of p ∈ M is the set of points q for which
there are at least two minimizing geodesics between p, q).

• But note that while on the sphere the cut locus of a point is exactly the
antipodal point, on any quadrangulation of the sphere the discrete cut locus
is practically dense, since there are many short cycles.

5. Random quadrangulations

Remark 94. Let Qn ∈ Qn be uniform. Then if we randomly choose a vertex
v∗ ∈ V (Qn), uniformly conditioned on Qn, the pair (Qn, v∗) is a uniform element
of Q•n.

From now on assume that (Qn, v∗) = Φ ((Tn, `n) , ε) where (Tn, `n) ∈ Tn is
uniform and ε is independent and uniform in ±1.

We start by considering basic statistics of q:

De�nition 95. The radius of q (as seen from v∗) is

R (q, v∗) = max {dq(u, v∗) | u ∈ V (q)} .

The pro�le of q (as seen from v∗) is the sequence of volumes

Iq,v∗(k) = # {dq(u, v∗) = k | u ∈ V (q)} .

Theorem 96 ((1),(3) in Chassing�Schae�er 2004, (2) in Le Gall 2005). Let Qn

be uniform in Qn, v∗, v∗∗ two independent uniform vertices of Qn (given Qn). Let
(e, Z) be the head of the Brownian snake. Then:
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(1)
(

9
8n

)1/4R (Qn, v∗)
(d)−−−−→
n→∞

supZ − inf Z;

(2)
(

9
8n

)1/4
dq (v∗, v∗∗)

(d)−−−−→
n→∞

supZ;

(3) The random measures

µ(Qn,v∗) =
∑
k≥0

I(Qn,v∗)(k)
n+ 2

δ( 9
8n )1/4

k
=

1
#V (q)

∑
v∈V (q)

δ( 9
8n )1/4

dq(v,v∗)

converge weak-* in distribution to the random probability measure on R≥0

µ(e,Z)(g) =
∫ 1

0

g (Zs − inf Z) ds

Remark 97. The �Integrated super-Brownian excursion� (Aldous 90's) is the related

random measure ISE(g) =
∫ 1

0
g(Zs) ds.

Proof of Theorem. (1) For the �rst claim, recall that if (Qn, v∗) = Φ ((Tn, `n) , ε)
then dQn(v, v∗) = `n(v)−minu∈V (Tn) `(u) + 1 so

R(Qn, v∗) = max `n −min `n + 1
= maxLn −minLn + 1

where Ln is the label process Ln(i) = `n(ui). It follows that(
9

8n

)1/4

R (Qn, v∗) = max
s∈[0,1]

Ln(2ns)
(8n/9)1/4

− min
t∈[0,1]

Ln(2nt)
(8n/9)1/4

+
1

(8n/9)1/4
.

Now, since Ln(2ns)
(8n/9)1/4

(d)−−−−→
n→∞

Z in the uniform topology, in which max,min
are continuous, it follows that(

9
8n

)1/4

R (Qn, v∗)
(d)−−−−→
n→∞

maxZ −minZ + 0 .

(2) It su�ces to prove the result if v∗∗ is uniform in V (Qn)\{v∗, root} (the root
of Tn) since the event v∗∗ ∈ {v∗, root } occurs with probability 2

n+2 → 0.
Now V (Qn) \ {v∗, e−∗ } = V (Tn) \ {root}. We have seen that one way to
choose a random element of this set is to let U be uniform in [0, 1] and take
the vertex u〈U〉nwhere

〈U〉n =

{
b2nUc dCn(2nU)

dx = −1
d2nUe dCn(2nU)

dx = +1
,

so we may assume that v∗∗ = u〈U〉n . In that case,

dQn(v∗, v∗∗) = `n(u〈U〉n)−min `n + 1

= Ln(2nU)−minLn + 1 +
(
`n(u〈U〉n)− Ln(2nU)

)
.

Since
∣∣`n(u〈U〉n)− Ln(2nU)

∣∣ ≤ 1 It follows that(
9

8n

)1/4

dQn(v∗, v∗∗) =

((
9

8n

)1/4

Ln(2nU)

)
−

(
min
t

(
9

8n

)1/4

Ln(2nt)

)
+
(

9
8n

)1/4

X

where |X| ≤ 2, and hence that(
9

8n

)1/4

dQn(v∗, v∗∗)
(d)−−−−→
n→∞

ZU − inf Z .
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It remains to show that ZU − inf Z
(d)
= supZ. For this, note that re-

rooting Tn at ei and shifting the labels by −Ln(i) leaves the label measure
on the label process invariant. In other words, for i �xed the function
(j 7→ (Ln(j + i)− Ln(i))) has the same distribution as Ln. Taking the

limit as n → ∞ we see that (t 7→ (Zt+s − Zs))
(d)
= Z. Now taking in�mum

in s and choosing t uniformly gives the claim.
(3) Again, if we integrate s ∈ [0, 1] w.r.t. Lebesgue measure, u〈s〉n ranges over

all the vertices of the tree with equal weights. It follows that

1
n

∑
u∈V (Qn)

g(u) =
∫ 1

0

dsg
(
dQn

(
v∗, u〈s〉n

))
+

1
n

(g(0) + g (dQn (v∗, rootTn))) .

Rescaling and using |Ln(2ns)− Ln(〈s〉n)| ≤ 1 we see that

µ(Qn,v∗)(g) =
∫ 1

0

dsg
(
Ln(2ns)−minLn

(8n/9)1/4

)
+ og(1)

and hence that

µ(Qn,v∗)(g)
(d)−−−−→
n→∞

∫ 1

0

dsg (Zs −minZ) .

�

Exercise 98. (Speci�c vertices)

(1) Show that
R(Qn,e−∗ )
(8n/9)1/4

(d)−−−−→
n→∞

supZ − inf Z.

Hint : Show that if e∗∗ is uniform in ~E(Qn) then Qn re-rooted at e∗∗ has
the same law as Qn.

(2) Show that
dQn(v∗,e−∗ )
(8n/9)1/4

(d)−−−−→
n→∞

supZ.

Hint : Couple e−∗ with a vertex v∗∗, uniform in V (Qn).

6. The metric space

(
V (Qn),

(
9

8n

)1/4
dQn

)
6.1. Tightness in the Gromov�Hausdor� topology. Let (q, v∗) ∈ Q•n be
coded by (t, `) ∈ Tn via the CVS bijection, so that V (t) = V (q) \ {v∗}. Let
Ľ(i→ j) denote the minimal label along the cyclic interval from ei to ej around t.

Lemma 99. dq(ui, uj) ≤ L(i) + L(j)− 2Ľ(i→ j) + 2

Proof. Look at the arcs ei → s(ei) → s2(ei) → · · · , and let e′ = s(e) be the �rst
corner visited which lies outside the cyclic interval [ei, ej ]. Then `(e) = `(e′) + 1 =
Ľ(i→ j): Also, the chain from e−i to (e′)− has length `(ei)− `(e′) = L(i)− Ľ(i→
j)+1. Now look at the chain ej → s(ej)→ s2(ej)→ · · · . e′ must belong here, since
it is the �rst edge after ei (hence ej) with label Ľ(i → j) − 1. The length of the

chain from ej to e
′ is therefore `(ej)− `(e′) = L(j)− Ľ(i→ j) + 1. Concatenating

the two chains, we obtain the claim. �

Corollary 100. dq(ui, uj) ≤ L(i) + L(j)− 2 max
{
Ľ(i→ j), Ľ(j → i)

}
+ 2
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Remark 101. Note that one of
{
Ľ(i→ j), Ľ(j → i)

}
is the minimal label, and so

will not intervene. Also, the estimate cannot be precise. In fact, L(i) + L(j) −
2 max

{
Ľ(i→ j), Ľ(j → i)

}
de�nes a tree metric, basically the distance dL. This

tree is precisely the tree we saw in the roundabout construction above.

Observation 102. dq(u, v) ≥ |`(u)− `(v)|, since |`(e)− `(s(e))| = 1.

Exercise 103. dq(u, v) ≥ `(u)+`(v)−2 minw∈[u,v]t `(w) where [u, v]t is the unique
geodesic in t connecting u, v.

We now couple the di�erent metric spaces under consideration by settingD(n)(i, j) =
dQn(ui, uj) for 0 ≤ i, j ≤ 2n, and adding an extra point ∂ /∈ Z for which D(n)(δ, i) =
dQn(v∗, ui). Then

(
{0, 1, · · · , 2n, ∂} ,D(n)

)
is a pseudometric space and its natural

quotient is isometric to (V (Qn), dQn). Extend D(n) to [0, 2n]2 bilinearly, in other
words set:

(6.1)

D(n)(x, y) = (1− {x})(1− {y})D(n) (bxc , byc) + (1− {x}) {y}D(n) (bxc , dye)
+ {x} (1− {y})D(n) (dxe , byc) + {x} {y}D(n) (dxe , dye) .

Lemma 104. D(n) : [0, 2n]2 → R≥0 is continuous and satis�es the triangle in-
equality. Moreover,

D(n)(x, y) ≤ L(x) + L(y)− 2Ľ(x, y) + 2

where L(x) is de�ned by linear interpolation.

Finally, rescale by setting

Dn(s, t) =
(

9
8n

)1/4

D(n)(2ns, snt)

Theorem 105. The sequence (Dn)n≥1 is tight in C
(
[0, 1]2,R

)
for the uniform

topology.

Proof. Since Dn(0, 0) = 0 , by the Arzela�Ascoli theorem it is enough to estimate
the modulus of continuity of the functions Dn. Moreover, by the triangle inequality

|Dn(s, t)−Dn(s′, t′)| ≤ Dn(s, s′) +Dn(t, t′)

so
sup

|s−s′|,|t−t′|≤δ
|Dn(s, t)−Dn(s′, t′)| ≤ 2 sup

|t−t′|
Dn(t, t′) .

By the �nal claim of Lemma 104, we see that (if we order t, t′ so that t→ t′ is the
shorter interval)

Dn(t, t′) ≤
(

9
8n

)1/4 (
Ln(2nt) + Ln(2nt′)− Ľn(2nt→ 2nt′) + 2

)
≤ 2ω

(
Ln(2n·)

(8n/9)1/4
, |t− t′|

)
+

2
(8n/9)1/4

.

Since Ln(2n·)
(8n/9)1/4

(d)−−−−→
n→∞

Z in the uniform topology, their moduli of continuity converge

in probability (see [3]): for every ε, η > 0 there is δ > 0 so that

lim sup
n≥1

P
(
ω

(
Ln(2n·)

(8n/9)1/4
, δ

)
> ε

)
≤ η .
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Therefore, ∀ε, η > 0∃δ > 0 such that

lim sup
n≥1

P (ω(Dn, δ) > ε) ≤ η .

Now, given ε > 0, for every k ≥ 1 there is δk > 0 such that

sup
n≥1

P
(
ω(Dn, δk) >

1
2k

)
≤ ε

2k
.

For this �rst apply the previous claim (with ε = 2−k) to get a δ that holds for n
large

Fixing n and summing over k we �nd:

P
(
∀k : ω(Dn, δk) ≤ 1

2k

)
≥ 1− ε ,

which is a uniform bound on the modulus of continuity of the Dn. �

6.2. The Brownian map. Since (Dn)n≥1 is tight, the same is true for the sequence
of triples ((

Cn(2n·)√
2n

)
,

(
Ln(2n·)

(8n/9)1/4

)
,Dn

)
n≥1

.

We can therefore choose a subsequential limit of this triple. More precisely, we can
choose a sequence (nk)k≥1 along which this triple convergence to a limit (e, Z,D).

Remark 106. Until further notice we �x the subsequence, and
(d)−−−−→
n→∞

will mean

convergence in distribution along this subsequence. By the Skorokhod Theorem we
may assume the convergence holds almost surely.

Notation 107. s∗ = arg mins∈[0,1] Zs.

Lemma 108. s∗ is uniquely de�ned almost surely.

Proposition 109. Almost surely for every t ∈ [0, 1],

D(t, s∗) = Zt − Zs∗
= Zt −minZ .

Proof.
(

9
8n

)1/4
dQn (ui, v∗) = Ln(i)−minLn+1

(8n/9)1/4
. Now choose i∗ = i∗(n) so that ui∗ is

the last visited vertex in a geodesic from ui to v∗. Then dQn (ui, ui∗) = dQn (ui, v∗)−
1 = Ln(i)−minLn so Ln(i∗) = minLn. Passing to a subsequence we may assume{
i∗(n)

2n

}
n≥1

converges almost surely. The uniqueness of s∗ and the convergence

of Ln(2n·)
(8n/9)1/4

to Z shoes that i∗(n)
2n → s∗ along the subsequence. Now also choose

i = i(n) so that i(n)
2n → t. We now get(

9
8n

)1/4

dQn (ui, v∗) =
(

9
8n

)1/4 (
D(n) (i, i∗) + 1

)
=

(
9

8n

)1/4

Dn
(
i

2n
,
i∗
2n

)
+ o(1)

−−−−→
n→∞

D(t, s∗)

while Ln(i)
(8n/9)1/4

−→ Zt,
minLn−1
(8n/9)1/4

−→ Zs∗ . �
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De�nition 110. Let (S,D) = ([0, 1],D)
/
{D = 0}. Write π : [0, 1] → D for the

quotient map.

Corollary 111. (Along nk) We have the following convergence in the Gromov�
Hausdor� metric:(

V (Qn),
(

9
8n

)1/4

dQn , v∗

)
(d)−−−−→
n→∞

(S,D, s∗) .

Proof. By the Skorokhod Representation Theorem we may assume that Dn
a.s.−−−−→
n→∞

D. Certainly D is non-negative on [0, 1] and satis�es the triangle inequality there,

since the Dn do. It vanishes on the diagonal since Dn(t, t) ≤
(

9
8n

)1/4 −−−−→
n→∞

0,
so it is a pseudometric. To estimate the Gromov�Hausdor� distance we use the
correspondence

R = {(t, b2ntc) | t ∈ [0, 1]} ∪ {(s∗, ∂)} ⊂ [0, 1]× {0, 1, · · · , 2n, ∂} .

Its distortion is at most

sup
t,t′∈[0,1]

∣∣∣∣∣D(t, t′)−
(

9
8n

)1/4

D(n) (b2ntc , b2nt′c)

∣∣∣∣∣+ sup
t∈[0,1]

∣∣∣∣∣D(t, s∗)−
(

9
8n

)1/4

D(n) (b2ntc , ∂)

∣∣∣∣∣ .
The �rst term is

sup
t,t′∈[0,1]

∣∣∣∣∣D(t, t′)−
(

9
8n

)1/4

Dn
(
b2ntc

2n
,
b2nt′c

2n

)∣∣∣∣∣ −−−−→n→∞
0

since Dn → D in the uniform topology, and we have an a-priori bound on the
modulus of continuity of D.

For the second term,(
9

8n

)1/4

D(n) (b2ntc , ∂) =
(

9
8n

)1/4

dQn
(
ub2ntc, v∗

)
=

Ln(b2ntc)−minLn + 1
(8n/9)1/4

−→ Zt −minZ = Zt − Zs∗
= D(t, s∗)

for the coupling de�ned above. �

De�nition 112. The pair (S,D) is called a Brownian map.

6.3. Basic Properties of the Brownian map.

• D(x, x∗) = Zx−minZ where x = π(s), x∗ = π(s∗) (note that almost surely
for all s, t if D(s, t) = 0 then Zs = Zt, so the notation Zπ(s) for Zs makes
sense)

• De�ne dZ(s, t) = Zs + Zt − 2 max
(
Žs→t, Žt→s

)
where the notation refers

to the cyclic order on [0, 1]. Then the natural quotient of ([0, 1], dZ) is an

R-tree TZ . It is isometric to the R-tree TZ̃ where Z̃ = Zs+s∗ − Zs∗ where
the addition is mod 1.

Proposition 113. Almost surely, for all s, t ∈ [0, 1] D(s, t) ≤ dZ(s, t).
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Proof. Immediate from dQn (ui, uj) ≤ Ln(i)+Ln(j)−2 max
(
Ľ(i→ j), Ľ(j → i)

)
+

2. �

Remark 114. So far we have concentrated on D, a function given by the labels,
which encode distances in the map. But we also have the tree coded by e, which
parametrizes the vertices of the map.

Lemma 115. Suppose de(s, t) = 0. We can the �nd 0 ≤ in, jn ≤ 2n for each n so

that in
2n → s, jn

2n → t and uin = ujn .

Proof. [Omitted] �

Proposition 116. Almost surely, for every s, t ∈ [0, 1] if de(s, t) = 0 then D(s, t) =
0.

Proof. Choose in, jn as in the lemma. ThenDn
(
in
2n ,

jn
2n

)
= D(n) (in, jn) = dQn (in, jn) =

0. By the uniform continuity of the Dn we can pass to the limit and get Dn(s, t) =
0. �

Corollary 117. The relation D(s, t) = 0 is a re�nement of the transitive closure
of the union of de(s, t) = 0 and dZ(s, t) = 0.

Proof. Combine Propositions 113 and 116. �

Claim 118. In fact, we have equality here.

Consider now the set of all pseudometrics d on [0, 1] such that d ≤ dZ and de(s, t) =
0 ⇒ d(s, t) = 0. For such d let s, t be �xed, and consider a �nite sequence s =
s1, t1, s2, t2, . . . , sk, tk = t such that de(ti, si+1) = 0 for 1 ≤ i ≤ k − 1. Then

d(s, t) ≤
k∑
i=1

d(si, ti) +
k−1∑
i=1

d(ti, si+1)

≤
k∑
i=1

dZ(si, ti) + 0 .

It follows that d(s, t) ≤ D∗(s, t) for the pseudometric

D∗(s, t) def= inf

{
k∑
i=1

dZ(si, ti) | {si}ki=1 , {ti}
k
i=1 ⊂ [0, 1] with s1 = s, tk = t , de(ti, si+1) = 0

}
.

It is easy to check that this is a pseudometric (analogue of the �path metric� con-
struction). Since D∗(s, t) ≤ dZ(s, t) and de(s, t) = 0 ⇒ D∗(s, t) = 0, D∗ is the
maximal element of the class, and in particular D ≤ D∗ ≤ dZ .

Theorem 119 (Main Theorem of these lectures; Le Gall 2011, Miermont 2011).
Almost surely, D = D∗.

Corollary 120. We have almost sure convergence along the full sequence(
V (Qn),

(
9

8n

)1/4

dQn , v∗

)
(a.s.)−−−−→
n→∞

(S,D∗, x∗)

in the Gromov�Hausdor� topology.
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Proof of Corollary. The metricD∗ only depends on e, Z and hence so does [0, 1]
/
{D∗ = 0} =

[0, 1]
/
{D = 0} = S. It follows that (S,D∗, x∗) is equal to every subsequential limit,

so the whole sequence converges. �

Note �rst that for every x ∈ S we have D(x, x∗) = Zx − Zx∗ = dZ(s, s∗)
where π(s) = x and π(s∗) = x∗. Let pZ be the quotient map [0, 1] → TZ =
[0, 1]/ {dZ = 0}. Then:

Proposition 121. The identity from [0, 1] to itself induces a continuous map
φ : TZ → S. Furthermore, φ∗ [pZ(s∗), pZ(s)]TZ is a geodesic in (S,D) from x∗
to x = π(s).

Proof. For any 0 ≤ r ≤ r′ ≤ dZ(s, s∗) = D(s, s∗) let pZ(t), pZ(t′) be the points at
dZ-distance r, r

′ from pZ(s∗) along the geodesic. Then

|r − r′| = |D (π(t), x∗)−D (π(t′), x∗)| ≤ D (φ(pZ(t)), φ(pZ(t′))) ≤ dZ(t, t′) = r′−r ,

so the restriction of φ to the geodesic is an isometry. �

6.4. The volume measure. The projection π is Hölder continuous of any order
α < 1

4 since D(π(s), π(t)) ≤ dZ(s, t) ≤ 2 ‖Z‖C0,α |t− s|α where ‖Z‖C0,α < ∞
almost surely (which gives an alternate proof that (S,D) is compact). An immediate
corolla of the Hölder continuity is the following bound:

Proposition 122. dimH (S,D) ≤ 4 almost surely.

In fact, we can say more. For this m be Lebesgue measure on [0, 1], λ = π∗m, a
Borel measure on S. It is then enough to show the following:

Proposition 123. Almost surely ∀ε > 0∃random c, η > 0 such that for every
x ∈ S, r ∈ (0, η)

λ (BD(x, r)) ≥ cr4+ε .

Proof. For any s such that π(s) = x,

λ (BD(x, r)) = m ({t | D(s, t) ≤ r})
≥ m ({t | dZ(s, t) ≤ r})
≥ 2h

where h is such that 2 ‖Z‖C0,α hα ≤ r. Choosing α = 1
4+ε gives the claim. �

Theorem 124 (Le Gall). Almost surely ∀ε ∈ (0, 4), there exist a random C ∈
(0,∞) such that for all x ∈ cS, r > 0

λ (BD(x, r)) ≤ Cr4−ε .

Corollary 125. dimH (S,D) ≥ 4 almost surely.

And we obtain equality.

Proposition 126 (Re-rooting the Brownian map). Let (S,D, x∗) be �the� Brow-
nian map, and let x∗∗ ∈ S be chosen with law λ, conditionally given (e, Z,D) (in
practice, x∗∗ = π(U) where U is uniform in [0, 1] and independent of (e, Z,D)).
Then

(S,D, x∗)
(d)
= (S,D, x∗∗) .
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Proof. Recall that (V (Qn), dQn , v∗)
(d)
= (V (Qn), dQn , v∗∗) where v∗∗ is uniform in

V rq. We now replace v∗∗ with u∗∗ = u〈U〉n where U is uniform in [0, 1]. Then u∗∗
and v∗∗ do not precisely have the same law, but they can be coupled with error
that goes to 0 as n→∞. Then(

V (Qn),
(

9
8n

)1/4

dQn , u∗∗

)
(a.s.)−−−−→
n→∞

(S,D, x∗∗)

where x∗∗ = π(U). To show this, we introduce the correspondenceRn =
{(
ub2ntc, π(t)

)}
t∈[0,1]

∪{
(v∗, x∗) ,

(
u〈U〉n , π(U)

)}
. Checking that the distortion of Rn tends to zero with n

almost surely is left as an exercise. �

We will need the following generalization

Proposition 127. If {xi}ki=1 are iid (λ) in S then (S,D, x∗, x2, . . . , xk)
(d)
= (S,D, x1, x2, . . . , xk)

in the sense of k-pointed spaces, with the Gromov�Hausdor� metric dGH ((X, dX , x1, . . . , xk) , (Y, dY , y1, . . . , yk)) =
1
2 inf {dist(R) | R ∈ Corr(X,Y ), ∀i : (xi, yi) ∈ R}.
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