
Lecture of 2012-06-08 scribe: Hannah Cairns

1 The limit shape of the height function

We know that the TASEP is the same as last passage percolation, and it can
also be represented in terms of the corner growth process. We also know that
the last passage time converges to a limit, that is, that

1

n
G(nx, ny)→ g(x, y) a.s.

where g(x, y) is homogenous and continuous in (0,∞)2.
We now want to look at the shape of the height function at a certain

time, based on our information about G(nx, ny). Let St be the set of points
that have been reached by time t, using Russian coordinates.

St = {(x, y) : G(x, y) < t}

Let ht be the height function of the TASEP in Russian coordinates:

ht(x) = max{y : (x, y) ∈ St}

If we know approximately what time every point is added to the corner
process, then we know the limit shape of the height function. Suppose that
we have the following convergence property: for every small constant c > 0,∑

x,y

P
[
|G(x, y)− g(x, y)| > cg(x, y)

]
<∞.

Then, by Borel-Cantelli, for all but finitely many squares (x, y), it will
be true that

(1− c)g(x, y) ≤ G(x, y) ≤ (1 + c)g(x, y). (1)

The exceptional squares will eventually be filled, and they will eventually
fall inside the rescaled limit shape as long as g(x, y) > 0 everywhere.

So for large enough t, (1) implies

{(x, y) : (1 + c)g(x, y) < t} ⊂ St ⊂ {(x, y) : (1− c)g(x, y) < t}.

Then {(x, y) : g(x, y) < 1 − ε} ⊂ St/t ⊂ {(x, y) : g(x, y) < 1 + ε}
eventually for every ε, and so, with probability 1, (1/n)St converges to the
limit shape {(x, y) : g(x, y) < 1}.
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We have a monotonicity property which gives us lower bounds on the
shape of h(x). We claim that these lower bounds describe the limit shape.
To show this, we are going to go back to the last-passage formulation and
prove that

h(x) =

{
1
2

+ 1
2
x2 if |x| < 1

|x| otherwise,

or in Russian coordinates g(x) = (
√
x1 +

√
x2)2,

Let U(~x) = G(~x)−G(~x + ~e1), V (~x) = G(~x)−G(~x + ~e2), the increments
along horizontal and vertical edges. We know that the increments are not all
independent, since U(~x) + V (~x − ~e2) = U(~x − ~e1) + V (~x), but we can hope
to find a stationary, independent distribution for the U(~x) or V (~x) alone.

To do this, we cast the TASEP into one final representation in terms of
queues in tandem.

2 Queues in tandem

We state the definition of the M/M/1 queue. The ‘M’ in the first place
means that arrivals are ‘Markovian,’ that is, that they are a Poisson process
with some rate λ. and the ‘M’ in the second place means that the service
times are ‘Markovian’ also, with some Poisson rate µ.

λ // µ //

Arrivals enter into a queue, and at every service time, if there is anyone in
the queue, one person is served and departs. If there is no one in the queue,
nothing happens. This gives us a new process, the process D of departure
times, which is determined by the arrival process A and service process S.

Then we recall that:

• if λ < µ, the queue stays at a finite size and there is a limiting distri-
bution for the number of people in the queue.

• if λ > µ, then the queue becomes infinitely long and there is no sta-
tionary distribution.
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• if λ = µ, then the queue is critically unstable and will become infinitely
long as time goes on. There will be on the order of

√
t people in the

queue at time t.

If λ < µ, then the number of people in the queue will be distributed
like Geom(λ/(µ− λ)).

Suppose you have an arrival process and a departure process. How many
people are in the queue at any particular time?

The approach is to compare the number of departures in an interval [s, t]
from the number of arrivals. Let Q(t) be the length of the queue at time t,
let A(s, t) be the number of arrivals in (s, t], let S(s, t) be the number of
services in (s, t], and let D(s, t) be the number of departures in (s, t]; then

Q(t) = Q(s) + A(s, t)−D(s, t)

≥ Q(s) + A(s, t)− S(s, t)

≥ A(s, t)− S(s, t)

so Q(t) ≥ max{A(s, t)− S(s, t) | s ≤ t}.
In fact, we have equality here. The reason is that if we choose

s0 = sup{s ≤ t | Q(s) = 0},

then Q(s0−) = 0, and the queue was never empty in (s0, t], so all of the
service times in (s0, t] resulted in a departure.

Then

Q(t) = lim
s→s0−

Q(s) + A(s, t)−D(s, t)

= A(s0, t)−D(s0, t)

almost surely, because the probability of an arrival at any time is zero.
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3 TASEP is the same as queues in tandem

We have one last representation of the TASEP in terms of an infinite series
of queues.

We think of the holes in the TASEP as queues which are served with
rate 1, and the particles to the immediate left of a hole as the people waiting
at that queue.

Our usual starting position for the TASEP from the queue perspective
looks like infinitely many queues, the first one with infinitely many people
waiting at it, and the rest initially empty. Each person has to wait at each
of the queues in order one by one. When they get out of one queue, they go
to the next queue. This process is called “queues in tandem.”*

TASEP.

Queues in tandem.

∞ 0 0 0
The correspondence in operation.

∞０００

∞ 1 ００

∞００ １

∞０ ３ １

*Or sometimes “England.”
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In the figure above, the number in each of the queues is the number of
people (particles) to the left of it.

In the TASEP, every hole switches with the particle before it with rate 1,
unless there is no particle before it. In the representation in terms of tandem
queues, every queue passes people through at rate 1, unless there is no one
waiting. It is clear that the TASEP and queues in tandem can be coupled
together, by choosing the service times of the queue at position n + 1 to be
the same as the swapping times of the pair (n, n+ 1).

We could change the starting condition. For example, the starting con-
dition for the TASEP that has particles in positions . . . ,−2, 0, 2, 4, . . .,

Another starting condition.

looks from the queue point of view like this:

From the queue point of view.

1 1 1 1

Or we could have Geom(p̄) people at each queue.

4 The stationary measure for a chain of queues

Our queues serve people at times given by a Poisson process with rate 1,
but the arrival process is general. If we start with some distribution on the
number of people in the queues and then run the process for some time, we
will get a new distribution.

What are the stationary distributions for this process? It turns out that,
if they are also translation-invariant, then the only possibilities are µp =
Geom(p̄)Z. We will prove that in this section.

We start with the observation that the chain of queues is Markov in the
sense that the behaviour of a particular queue only depends on its service
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process and the departure process of the queue immediately previous to it.
The latter process tells us the arrival times of our queue.

So we are given an arrival process, and we produce a departure process.
Burke’s theorem. Provided that we allow the processes to run for

infinite negative time as well as infinite positive time, if the arrival process
is a Poisson process Pois(λ), with λ ≤ 1, then the output process will also be
Pois(λ).

Digression:
How can the process even be defined for negative time, since we

need to know how many people are in the queue? We use the formula
earlier as a definition:

Q(t) = max{A(s, t)− S(s, t) | s ≤ t}.

Then we have a departure whenever there is a service and Q(t) > 0.
Here Q(t) will be infinite for every time t if λ = 1, since the

unbiased random walk gets arbitrarily large with probability one, so
the output process will just be the service process. So this case is
trivial. From now on we take λ < 1.
If A ∼ Pois(λ) with λ < 1, this difference is a continuous time random

walk with a negative drift, since λ < 1, so it will go to −∞, and Q(t) will be
finite. This makes sense, because with an arrival rate lower than the service
rate, the queue should empty once in a while.

Proof: We prove this theorem by writing the arrival and service pro-
cesses in terms of reversible processes, and then we realize that when we
reverse the process, the arrival times and departure times just switch.

The queue Q is M/M/1 and has been running for infinite time. It is
therefore at the stationary distribution and therefore reversible, so the ran-
dom process Q̄(t) = Q(−t+), by which we mean the limit from above of Q
at −t, has the same distribution as Q.

The process of service times that occur when the queue is empty is also
reversible. To see this, just let R be the process which matches S when-
ever Q = 0 (that is, if the queue is empty, the events in R are just the service
times in S), and is an independent Pois(1) random process on the set Q > 0.

This is really an independent Pois(1) process, since the service times when
Q = 0 don’t affect the value of Q. So it is clearly reversible, and (Q,R) has
the exact same distribution as (Q̄, R̄).

We have represented the process in terms of reversible processes.
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We can recover the arrival and service processes if we know (Q,R), since
arrival shows up as increases in Q, and services show up as decreases in Q
or event times in R. But if we reverse (Q,R) and try to reconstruct the
arrival and service processes with (Q̄, R̄), the processes that we recover are
different. Arrivals in A show up as increases in Q, which are decreases in
Q̄, which appear as departures in the reversed process. Departures show up
as decreases in Q, which appear as arrivals in the reversed process. Events
in R still correspond to service times when the queue is empty or nothing in
particular when the queue has things in it.

Since (Q,R) has the same distribution as (Q̄, R̄), (A,D) has the same dis-
tribution as (D̄, Ā). It follows that the reversed departure process is Pois(λ),
and because this is reversible so is the original departure process.

This proves the result.

5 Stationary measures for last-passage per-

colation.

We go back to the last-passage percolation formulation of the TASEP. Recall
that the last passage time G(~x) was the amount of time it took to visit the
square ~x from 0. In the TASEP, G(i, `) is the time it takes for particle i to
switch with hole `.

Suppose G(i, ` − 1) is known, and I want to find out G(k, `). Any path
to the square (j, `) can be broken up at its last vertical step, and it becomes
a path to some square (i, `− 1), a vertical step to (i, `), and then horizontal
movement to (k, `). So

G(k, `) = max
i≤k

{ k∑
j=i

X(j,`) +G(i, `− 1)

}
.

And G(i, `) are exactly the service times for the `-th queue.
This is sort of like our last problem in that we have a series of random

variables and we’re coming up with a new series. There is a stationary
measure for this problem too, provided that we change the process a little.

We said before that G(i, 0) = G(0, j) = 0, that all the squares along the
left and bottom edges were already filled, but now we are going to let them
be filled randomly with independent increments.
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Remember U(i, j) = G(i, j)−G(i, j − 1) and similarly there are vertical
increments V (i, j) = G(i, j)−G(i− 1, j).

Our boundary conditions will be that the horizontal increments along the

first row are i.i.d. with distribution U(i, 0)
D
= Exp(α), and that the vertical

increments on the first column are i.i.d. with distribution V (0, j)
D
= Exp(ᾱ),

where we define as before α = 1− ᾱ.
So the horizontal increments along the row (0, j) are independent with

distribution Exp(α); we claim that the horizontal increments along every
row (i, j) are independent with the same distribution! Of course, they aren’t
independent of the increments in other rows. We also claim that the vertical
increments along every column are independent with distribution Exp(ᾱ).

This is true for every ᾱ.
I want to show you a direct proof of this claim, although you can get it

indirectly from Burke’s theorem.
Suppose that we define U ′, V ′, U, V as follows.

Increments.

(i, j − 1) oo U
′

V
��

(i, j)

V ′

��

(i−1, j−1) oo U (i− 1, j)

Let X = X(i,j). We assume U, V,X are independent with the respective
distributions Exp(α),Exp(ᾱ),Exp(1).

Here G(i, j) = G(i, j− 1)∨G(i− 1, j) +X = G(i− 1, j− 1) +U ∨V +X.
We have the relations

U ′ = G(i, j)−G(i, j − 1)

= [G(i− 1, j − 1) + U ∨ V +X]− [G(i− 1, j − 1) + V ]

= U ∨ V +X − V

and V ′ = G(i, j)−G(i− 1, j) = U ∨ V +X − U .

8



Lemma. U ′, V ′, U ∧ V have the same joint distribution as U, V,X.

Proof. First, U ′−V ′ = U−V , which is immediate from the definitions.
And it is not difficult to see that U ′ = X+(U−V )+ and V ′ = X+(V −U)+.

We need a property of the exponential. If U, V are independent variables
with distributions Exp(λ1),Exp(λ2), then U − V is independent of U ∧ V .
So U ′ and V ′ are also independent of U ∧ V , because they are deterministic
functions of X and U − V .

Not only that, but U ∧ V has the same marginal distribution as X, since
it’s the minimum of U ∼ Exp(α) and V ∼ Exp(ᾱ). So we can just switch
out U ∧ V for X.

U ′ = X + (U − V )+ V ′ = X + (V − U)+

U = U ∧ V + (U − V )+ V = U ∧ V + (V − U)+

In each sum, the summands are independent random variables, so U ′, V ′

clearly have the same joint distribution as U, V .
It follows immediately from the independence of U ∧ V from U ′ and V ′

that U ′, V ′, U ∧ V have the same joint distribution as U, V,X.

We now prove the property of the exponential that we needed.

Lemma. If U ∼ Exp(α), V ∼ Exp(ᾱ), then U∧V is independent of U−V .

Proof. The joint characteristic function is∫
x,y≥0

(αᾱ)e−αx−ᾱy−is(x∧y)−it(x−y) dx dy.

Make the variable substitution µ = x ∧ y, δ = x − y, which is bijective
and which has Jacobian ±1.

This turns the integral above into∫
µ,δ:µ≥0

(αᾱ)e(−1−is)µ+(−α−it)δ++(−α+it)δ− dµ dδ = f(s)g(t).

So U ∧ V ⊥ U − V .

Now that we have this lemma, we can use it over and over to get the
main theorem. Suppose we start with a path in the quarter-plane which
only moves down and right. Our induction assumption will be that we know
that all of the increments along this path are independent, and are Exp(α)
if they’re horizontal or Exp(ᾱ) if they’re vertical.
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Filling in a corner.

If we fill in a corner on the path, then we throw away the increments U
and V and add the increments U ′ and V ′ to the path. These new increments
are Exp(α) and Exp(ᾱ) random variables which are independent of each
other, and they are independent of every other increment on the path by the
assumption.

So our new path also has the property that all the increments are inde-
pendent, and that horizontal increments are Exp(α) and vertical increments
are Exp(ᾱ).

We start with the infinite path

C0 = . . . , (3, 0), (2, 0), (1, 0), (0, 0), (0, 1), (0, 2), (0, 3) . . .

and fill in corners. The property is preserved every time we add a corner
anywhere, and it’s true when we start, so it’s always true.

We have therefore proved the theorem,
Theorem. The increments on any path that we can get from the path

above by filling in finitely many corners are independent and Exp(α) if they
are horizontal, or Exp(ᾱ) if they are vertical.

This proof only deals with paths that have had finitely many corners filled
in, but a special case of this is that any finite number of increments on any
row are independent, and that means that they are all independent.

If we use this fact, we can prove a concentration property for the last-
passage times with our modified boundary condition.
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6 A concentration property for the last-pas-

sage times in the modified system

Lemma. Let Gα be the last-passage percolation time for our modified system.
There exist K, c so that we have

P
[∣∣∣∣Gα(x)− x1

α
− x2

1− α

∣∣∣∣ > a
√
x1 + b

√
x2

]
< Ke−ca−cb

Proof. By the definition of an increment,

Gα(x) =

x1∑
k=1

V (k, 0) +

x2∑
`=1

U(x1, `).

We have just proved that U(i, `) with i fixed and V (k, j) with j fixed are
independent random variables with distributions Exp() and Exp() respec-
tively, so each summand is really a sum of independent random variables.
Exponential random variables are nice enough to be concentrated around
their mean.

The mean of the first sum is x1/(α), and the mean of the second sum
is x2/(1− α).

The sums are not independent of each other, but they are both concen-
trated near their mean: P(|

∑
V (k, 0)−x1/(1−α)| > a

√
x1) < Ke−ca. Adding

two concentrated random variables together will not ruin the concentration,
so we have proved the claim above.

This tells us that
∑

x1,x2
P(|Gα(x)− x1/(1−α) + x2/α| > c||x||) <∞, so

Gα(x) =
x1

1− α
+
x2

α
+ o(||x||).

We have proved this for the situation with particular independent incre-
ments on the edges, not for our original problem.

We will finish the proof of the shape of last-passage percolation in the
next lecture.
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