
Lecture of 2012-06-21 scribe: B. Kolesnik

1 Hammersley’s process

In the previous lecture we defined Hammersley’s process:

1. particles occupy points on R

2. ω is a Poisson point process on R2 (space-time)

3. if (x, t) ∈ ω then at time t the particle closest to x among those to the left
of x moves to x

In this lecture we will discuss a connection between the Hammersely’s process
and maximal increasing subsequences in random permutations, and then investi-
gate an interplay between the dynamics of Hammersely’s process and multi-type
TASEP dynamics.

1.1 Some preliminaries

Before we explain a interesting connection between Hammersley’s process and
permutations, we review some classical results on permutations. For more de-
tails, refer to e.g. [Sag01].

A Ferrers diagram is a finite array with left-justified rows of weakly decreas-
ing lengths.

A standard Young tableau (SYT) of size n and shape ξ1 ≥ ξ2 ≥ · · · ≥ ξ` is
a filling of a Ferrers diagram with row lengths ξ1, ξ2, . . . , ξ` with the numbers
1, 2, . . . , n so that each column, as read from top to bottom, and each row, as
read from left to right, is an increasing subsequence of (1, 2, . . . , n) (we require∑
ξi = n).
The Robinson-Schensted algorithm (RSA) provides a bijection between the

symmetric group Sn and pairs of standard Young tableaux of the same shape
and of size n. Simply put, the RSA takes in a permutation(

1 2 · · · n
π1 π2 · · · πn

)
and, after n iterations, returns a pair (Pπ, Qπ) of SYT of the same shape and of
size n. Each iteration of RSA returns a pair of tableaux (P k, Qk), each of size
k. The ith iteration consists of adding πi to the end of the first row of P i−1 if
πi is larger than all elements of the row; or else replacing the least element, x
say, in the row which is greater than πi with πi and then adding x to P i−1 less
its first row by the same method. In whatever position this process terminates
— thus forming P i — we place an i in the corresponding entry in Qi−1 to form
Qi. We define (Pπ, Qπ) = (Pn, Qn). For example, see Figure 1.
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Figure 1: RSA with input π = 31254.

By carefully analysing RSA, we see that the pair (Pπ, Qπ) encodes some
important information about π. For instance, the length of the first row (col-
umn) of Pπ (and Qπ) is equal to the length of maximal increasing (decreasing)
subsequences of π.

Viennot’s geometric construction [Vie77] of the RSA yields an elegant proof

of the fact π
RS−−→ (P,Q) if and only if π−1

RS−−→ (Q,P ) (cf. [Sch63]). For a
permutation π ∈ Sn we define the ith shadow box of π as

Bi = {(x, y) ∈ R2 : x ≥ i, y ≥ π(i)}.

For example, the third shadow box for π = 31254 appears in Figure 2.
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Figure 2: B3 for π = 31254

The shadow lines of π ∈ Sn are built recursively:

L1 = ∂
⋃
i∈I1

Bi

Lj = ∂
⋃
i∈Ij

Bi, 1 < j ≤ k

where
I1 = {1, 2, . . . , n}

Ij =

{
q : (q, π(q)) ∩

j−1⋃
i=1

Li = ∅

}
, 1 < j < k,
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k is the smallest integer so that

{1, 2, . . . , n} ⊂
k⋃
i=1

Li

and ∂A denotes the boundary of a set A.
For example, the permutation π = 31254 has three shadow lines; as seen in

Figure 3.
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Figure 3: Shadow lines for π = 31254.

Observe that in Figure 3, the vertical rays point towards the first row of
Pπ, and the horizontal rays points towards the first row of Qπ. This is no
coincidence, and is indeed, preciously what Viennot proved (Hint: Every vertical
cut along an integer in the shadow line display intersects a shadow line at a point,
finite line segment, or vertical ray. Every step of RSA either places an integer
at the end of the first row or displaces an element of the first row. Likewise,
each element of the first row is either displaced or its position is maintained.)
Moreover, the entire tableaux pair (Pπ, Qπ) can be recovered by this geometric
method. To acquire the ith rows we perform the shadow box procedure on the
partial permutation defined by the upper corners (dual points) in the (i−1)th set
of shadow lines. See Figure 4. Viennot completes the proof by simply reflecting
in the line y = x and repeating his procedure one last time. Incredible!

1.2 Maximal increasing subsequences and Hammersely’s
process

To see a connection between Hammersely’s process and maximal increasing
subsequences in random permutations, consider the following situation. We
begin with an infinite stack of particles at the origin (with priority given to
particles closest to the axis), then plot the configuration evolution in space and
time as in Figure 5. The open circles denote events (x, t) ∈ ω, the dotted
polygonal paths track the position of particles in time, and the closed circles
below display the configuration at time t0.
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Figure 4: The upper corners (dual points) of first set of shadow lines of π =
31254 are (2, 3) and (5, 5). Hence to get the second rows of (Pπ, Qπ) we repeat
the shadow line procedure on the partial permutation π2 defined by π2(2) = 3
and π2(5) = 5.
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Figure 5: Graphical representation of Hammersely’s process with stack initial
conditions.

The events in ω up to a given time (i.e. the open circles as in Figure 5)
can be viewed as a representation for a permutation. Suppose k events have
occurred up to time t0:

(x1, t1), (x2, t2), . . . , (xk, tk)

where xi > xi+1 > 0 and 0 < ti ≤ t0 for all i. For each i, let φ(ti) = ` if ti is the
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`th smallest of the tj . Then, to this sequence of events, assign the permuation(
1 2 · · · k

φ(t1) φ(t2) · · · φ(tk)

)
.

For example, the events up to time t0 in Figure 5 correspond to the permutation

σ =

(
1 2 3 4 5 6 7
2 4 3 7 1 5 6

)
.

Notice that if we rotate Figure 5 by 180◦ the dotted lines coincide with the
(first set of) shadow lines for the permutation σ in Viennot’s geometric con-
struction of RSA, as discussed in the previous subsection. Therein we observed
that the number of vertical rays in the first set of shadow lines of a permutation
is equal to the maximal length of increasing subsequences of the permutation.
Hence, we see that if k events in ω have occurred up to time t0, then the num-
ber of particles in Hammersely’s process (with the initial conditions described
above) at time t0 is equal to the maximal length of increasing subsequences in
a random permutation of Sk.

Exploiting this connection Aldous and Diaconis [AD95] showed that

lim
n→∞

n−1/2ELn = 2

where Ln is the maximal length of increasing subsequences in a uniformly se-
lected permutation of Sn (cf. [KV77], [LS77]).

1.3 Basic coupling of Hammersely processes and multi-
type TASEP dynamics

For details regarding the remainder to today’s notes, refer to [Ang06] and
[FM07].

To apply the basic coupling, under the Hammersely’s process dynamics, to
a pair of configurations, one contained in the other, we can once again make use
of first and second particles. See Figure 6.

We can generalise the scenario depicted in the middle diagram in Figure 6
as follows: if an event at x occurs directly to the right of a string of the form
122 · · · 2x, then after the event the string becomes 222 · · · 1. That is, the topmost
particle in the 1 and the particle in the rightmost 2 move to x and there form
a 1. As a result, the position previously occupied by the rightmost 2 becomes
unoccupied and the 1 becomes a 2.

Naturally, we can extend this coupling to any number of lines. A scenario
with three lines is depicted in Figure 7. We can generalise the scenario depicted
in the figure: if an event at x occurs directly to the right of a string of the form
1γ1γ2 · · · γ`23 · · · 33x, for γi ∈ {0, 1}, then after the event the string becomes
2γ1γ2 · · · γ`33 · · · 31. In words, the topmost particle in the 1, the topmost particle
in the rightmost 2, and the particle in the rightmost 3 move to x and there
form a 1. Hence, the position previously occupied by the rightmost 3 becomes
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Figure 6: Top: Coupled Hammersley processes. Midldle: Event occurs to right
of 12 — as a result: 12→ 21. Bottom: Event occurs between 12 — as a result:
12→ 12.

unoccupied, the 1 becomes a 2, and the rightmost 2 becomes a 3. Similarly, we
can analyse events of the form 1γ1γ2 · · · γ`2x.

We conclude this section with an important observation: the basic coupling
of Hammersely processes implicitly defines a multi-type TASEP dynamical sys-
tem.

1.4 Stationary measures for multi-type TASEP

As discussed in the previous lecture, Poisson measures µλ with intensity λ are
stationary for Hammersely’s process. In this subsection we investigate station-
ary measures for the multi-type TASEP defined in the previous subsection. For
this study, a method, known as ‘collapsing,’ will prove very useful.

Suppose we have two configurations of particles on R. We can collapse these
configurations onto each other in the following way: we draw the configurations
on top of each other, then connect each particle in the top row to the particle on
the bottom row closest to its right. Positions in the bottom row corresponding to
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Figure 7: Top: Coupling three Hammersely processes. Bottom: Event occurs
to right of 123 — as a result: 123→ 231.

a connection are labelled 1, and positions corresponding to unconnected particles
are labelled 2. See Figure 8. The resulting collapsed configuration has an
interpretation as a queue: the particles in the top row can be viewed as customer
arrivals and the bottom particles as attempted services. In this interpretation,
the collapsing procedure identifies customers with their service times, denoted
by 1’s, and so 2’s denote unused services. Note that, e.g. in Figure 8, the
number of intersections of identification lines with a vertical line at t is equal to
the number of customers in the queue at time t.

The collapsing procedure can be generalised, in the natural way, to accom-
modate any number of configurations. Formally, the collapsing procedure sends
a point process Ωk to a k-type process:

C : Ωk 7→ Ωk.

Figure 9 provides an example in the three-dimensional setting. In drawing
the connection lines, priority is given to particles which are connected to more
particles in rows above. Again, we can interpret the result of the collapsing
procedure as the status of a queue in which customers are served in order with
respect to how many queues they have departed from in the past.

We are specifically interested in finding a stationary measure for the multi-
type TASEP of the following form:

Definition 1. For 0 < λ1 < λ2 < · · · < λk, let µλ be the stationary measure

7



1 1 1 2 1 2 2 1 2 2

1 1 1 2 1 2 2 1 2 2

t1 t3t2

Figure 8: Top: Collapsing of two configurations onto a 2-type particle config-
uration. Bottom: Two customers in the queue at time t1; no customers in the
queue at time t2; one customer in the queue at time t3.

1 12 223 3 3

Figure 9: Collapsing of three configurations onto a 3-type particle configuration.

on Ωk with intensity λi for the total number of particles of classes 1 through
i. Furthermore, let νλ be the product measure on Ωk where the ith line has
intensity λi.

As we shall see, the stationary measure µλ and the product measure νλ
satisfy the following relation:

Theorem 2. With C, µλ and νλ as defined above:

µλ = C ◦ νλ.

Before proving Theorem 2, we look further into the connection between
collapsing and the dynamics of Hammersely’s process.

Let Hω be the dynamics of Hammersley’s process with ω driving process.
Then, given X0 ∈ Ωk, put Xt = Hω|[0,t](X0). The dynamics on a single line

induces dynamics for the multi-line system Ωk: given (x, t) ∈ ω, the particle in
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line k (the bottom line) nearest to and on the left of x, at position xk say, moves
to x. Then the particle nearest to and on the left of xk in line k− 1, at position
xk−1 say, moves to xk. The rule continues as such until a jump occurs in the
first line. Although the rule is defined recursively, we think of the k jumps as
occurring simultaneously. See Figure 10.

ω

Figure 10: Hω induced dynamics on Ω4.

As we shall see, the action of collapsing commutes with the dynamics of
Hammersely’s process. This fact plays a significant role in the proof of Theo-
rem 2 below. In Figures 10 and 11 we verify one particular case.

Lemma 3. With C and Hω as defined above:

C ◦Hω = Hω ◦ C.

Proof. We prove the result by induction on the number of lines (number of
types).

Consider the base case with two lines. There are (essentially) two cases to
be checked. We verify the statement of the theorem for these cases in Figure 12.
Technically there are other cases to consider, but in all cases the proofs are very
similar. All cases rely on the fact that in the collapsing procedure, particles in
the top row are matched with particles in the bottom row immediately to their
right.

To complete the proof, we assume the statement holds for systems with up
to k− 1 lines. Then, to verify the result for a system with k lines we can apply
the inductive hypothesis for the bottom k − 1 lines and then apply the base
case to add in the first line (maintaining labels of 1 for particles in the bottom
row corresponding to connection lines involved in this addition, and decreasing
labels of all particles corresponding to uninvolved connection lines).

Having established Lemma 3, we shall easily deduce Theorem 2 after making
the following observation:

Lemma 4. νλ is stationary for the multi-line dynamics, as defined above, on
Ωk. In other words, the multi-line dynamics preserve the product measure.
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Figure 11: (cf. Figure 10) Top: Collapsing after Hammersely dynamics, i.e. C ◦
Hω. Middle: Collapsing before Hammersely dynamics. Bottom: Hammersely
dynamics after collapsing, i.e. Hω ◦ C. Note: C ◦Hω = Hω ◦ C.

Proof. Recall from the previous lecture that if ω is a Poisson point process, then
the set of dual points (open circles in diagrams)

ω̂ = {(x, t) : a particle jumps from x at time t}

is again a Poisson point process: ω̂ =d ω. This follows from considering the
time-space reversal on any finite time interval.

Hence, by induction, we see that each line in the multi-line dynamics is
driven by a Poisson point process.
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Figure 12: Base cases for inductive proof of Lemma 3.

Moreover, up to any time t the driving process of dual points is independent
of the initial configuration on line k (the bottom line). Therefore at time t we
still have independence between lines.

Finally, we are in a position to prove Theorem 2.

Proof. (of Theorem 2) The multi-type process Ωk is a collapsed multi-line
process. Hence, by Lemmas 3 and 4, we see that C ◦ νλ is stationary for Ωk:

Hω(C ◦ νλ) = (Hω ◦ C)(νλ) = (C ◦Hω)(νλ) = C ◦ νλ.

The fact that C ◦ νλ has intensity λi for the total number of particles of classes
1 through i, for all 1 ≤ i ≤ k, is evident by the very nature of the collapsing
procedure. Hence C ◦ νλ = µλ.

1.5 Discrete collapsing

Discrete analogues for the results in the previous subsection can be obtained.
The results and proof methods are distinct in some respects. For example, in
the discrete setting some attempted particle jumps need to be suppressed if
there is a particle in an adjacent position. This leads to several different natural
choices for couplings of processes.

Some details will be given in the next lecture.
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