
Lecture of 2012-06-14 scribe: B. Kolesnik

1 Last passage percolation trees vs. random in-

dependent trees

The lecture began by looking at computer simulation output comparing the Z2
+-

LPP tree and the random independent tree (as discussed in the previous lecture).
See Figure 1. Recall that the independent tree is formed by independently
selecting an edge from each corner with selection probably biased towards the
farthest of the two axes.

Figure 1: At left: Last passage percolation tree. At right: Random independent
tree.

There are appreciable differences between the two trees. For instance, in the
LPP tree there are several long stretches of vertical edges above the line y = x,
and similarly many long stretches of horizontal edges below the line y = x.
This makes sense, since if there is a heavy vertex below the line y = x in the
tree somewhere it is very likely that LPP paths will pass through this vertex
and continue in the horizontal direction for some time (and vice versa for heavy
vertices above the line y = x.). On the other hand, the random independent
tree is more homogenous.

Note that any path in the LPP tree connects to the origin either through
the point z1 = (0, 0) + e1 or the point z2 = (0, 0) + e2. We looked at computer
output depicting the interface between the subtree through z1 (coloured black)
and the subtree through z2 (coloured red). See Figure 2. Note the blue line is
a path from the origin to (n, n). The interface between the red and black trees
corresponds to an infinite path in the dual LPP tree. However, since the x-axis
and y-axis are infinite paths in the LPP tree, the existence of this infinite path
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in the dual does not imply the existence of a non-trivial infinite path in the LPP
tree. If we can show that there exists another infinite path in the dual tree then
we will have shown that there is a non-trivial path in the LPP tree.

Figure 2: Dual path interface.

2 Last passage paths in Z
2
+

The purpose of this section is to investigate the infinite geodesic paths in the
Z
2
+-LPP tree.
First of all, we examine LPP paths from 0 to a point x ∈ N

2.

2.1 The last passage path from 0 to x is approximately

straight

Our goal in this subsection is to show that the LPP path from 0 to x (for |x|
sufficiently large) is approximately a straight line. The general idea is to show
that for any point y far away from the straight line from 0 to x, the LPP path
from 0 to x passes through y with small probability. The essential ingredients
in what follows are the super-additivity of G and the concavity of g, the limit
shape of G.

Recall from previous lectures that G(u, v) denotes the maximum weight over
paths from u to v (since exponential weights are assigned, this path is unique
a.s.). Simultaneously for all x,

G(0, nx)/n
a.s.−−→ g(x) (1)
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where
g(x) = (

√
x1 +

√
x2)

2.

In what follows, let ‘0 → y → x’ denote the event that the LPP path from
0 to x passes through the point y. As discussed above, our aim is to show that
P(0 → y → x) is small. From previous lectures, we know that G is super-
additive:

G(0, x) ≥ G(0, y) +G(y, x). (2)

Note that the event 0 → y → x occurs if and only if equality is attained in (2).
g is a concave function. As can easily be checked, the Hessian of g has

eigenvalues 0 and −(x2 + y2)/2(xy)3/2 < 0. Hence, for y < x,

g(x) ≥ g(y) + g(x− y). (3)

Furthermore, if y = (αx1, βx2) for some 0 < α 6= β ≤ 1; since 1 >
√
αβ +

√

(1− α)(1− β) unless α = β < 1, we have that equality holds in (3) if and
only if x and y are colinear.

By translation invariance,

G(y, x) ≈ g(x− y).

Thus, in light of (2) and (3) and the discussion following it, we look into the
accuracy of the approximation G(x) = G(0, x) ≈ g(x).

Recall Talagrand’s inequality:

P(|G(x)−EG(x)| > s) ≤ exp(−cs2/|x|). (4)

Inequality (4) will prove useful for us, however, since EG(x) 6= g(x) its applica-
tion will not be direct. Before proceeding, we establish an elementary result.

Lemma 1. Suppose Z1, Z2, . . . , Zn =d Exp(β). Then

E

(

max
1≤i≤n

Zi

)

. log n/β

Proof. We have

E

(

max
1≤i≤n

Zi

)

≤ log n/β + n

∫ ∞

0

P(Z > log n/β + t)dt

≤ log n/β +

∫ ∞

0

exp(−βt)dt

= (1 + log n)/β.

The result follows.

We are ready to prove our main lemma.

Lemma 2. For sufficiently large |x|, there is a constant C such that

0 ≤ g(x)−EG(x) ≤ C
√

|x| log |x|.
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Proof. To get the first inequality, note that by super-additivity and translation
invariance

EG(nx) ≥ nEG(x).

Hence, dividing by n, taking limits and applying (1), we obtain

g(x) ≥ EG(x).

Before we argue for the second inequality, we prove a preliminary claim.

Claim 3. For sufficiently large |x|, there exists a constant C1 such that

E(G(2x)− 2G(x)) ≤ C1

√

|x| log |x|.

Proof. By L denote the line with slope −1 and passing through the point x.
See Figure 3. Note that the LPP path from 0 to 2x necessarily passes through
L; and thus

G(2x) = max
y∈L

(G(0, y) +G(y, 2x)). (5)

L

x

2x

Figure 3: The line L corresponding to x

We apply (4) to y:

P(|G(y)−EG(y)| > s) ≤ exp(−cs2/|y|) ≤ exp(−cs2/|x|).

We see that each |G(y) − EG(y)| has an exponential tail with decay rate ≈
1/
√

|x|. Applying Lemma 1 we find that

E

(

max
y∈L

|G(y)−EG(y)|
)

.
√

|x| log |x|. (6)

Note that
G(y) ≤ EG(y) + |G(y)−EG(y)|.

Hence
G(y) +G(y, 2x) ≤ EG(y) +G(y, 2x) + |G(y)−EG(y)|
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So by (5), (6) and the approximate concavity of G, there is a constant, C1 say,
so that

EG(2x) ≤ max
y∈L

E(G(0, y) +G(y, 2x)) + C1

√

|x| log |x|

= 2 ·EG(0, x) + C1

√

|x| log |x|

The claim follows.

Suppose now the second inequality is invalid . Then for arbitrarily large K,

EG(x) < g(x)−K
√

|x| log |x|.

Applying Claim 3,

EG(2x) ≤ 2EG(x) + C1

√

|x| log |x|
< 2g(x)− (2K − C1)

√

|x| log |x|
= g(2x)− (2K − C1)

√

|x| log |x|.

If this is the case for x = nx for infinitely many n, then along a subsequence we
would find

EG(2nx)/n → ℓ < g(2x);

and impossibility as per (1). Hence, the second inequality holds.
The lemma is proved.

Consequently, we have

Corollary 4. If |x| is sufficiently large and s > |x|1/2+ǫ, then

P(|G(x)− g(x)| > s) < exp(−cs2/|x|).

Proof. By the triangle inequality and Lemma 2,

P(|G(x)− g(x)| > s) ≤ P(|G(x)−EG(x)| > s− |EG(x)− g(x)|)
≤ P(|G(x)−EG(x)| > s− C1

√

|x| log |x|)

Taking |x| sufficiently large and assuming s > |x|1/2+ǫ, so that |x|ǫ −C1

√

|x| ≈
|x|ǫ and s > C1

√

|x| log |x|; we obtain the result by applying (4).

Finally, putting everything together, we can show that P(0 → y → x) has
stretched exponential decay.

Suppose y = (αx1, βx2) satisfies

√

αβ +
√

(1− α)(1− β) < 1− |x|ǫ+2/3

2
√
x1x2

(this corresponds to (y1, y2) < x outside a small region around the line from 0
to x) so that

g(x)− (g(y) + g(x− y)) > |x|ǫ+2/3 ≫ |x|ǫ+1/2.
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By Corollary 4, the probability that any one of |G(x) − g(x)|, |G(y) − g(y)|
or |G(y, x) − g(x − y)| is larger than |x|ǫ+1/2 is less than exp(−c|x|2ǫ). Hence
recalling that 0 → y → x occurs if and only if G(x) = G(y) +G(x, y), we have

P(0 → y → x) . exp(−c|x|β) (7)

for some β > 0.

2.2 An infinite last passage path is asymptotically straight

Using the results of the previous subsection, we can show that any geodesic in
the LPP tree has an asymptotic direction.

In what follows let Lα denote the straight line passing through the origin
with slope α ∈ (0, π/2). We will show that a.s. only finitely many x ∈ Lα have
some yx ∈ Lγ (γ 6= α) such that 0 → x → yx.

Suppose |x| ≤ |y| ≤ 2|x| and θ = | arg(y)− arg(x)| & |x|−δ. (See Figure 4.)
Then by (7), P(0 → x → y) . exp(−|x|β), for some β > 0. Thus, for such y,
w.h.p. the event 0 → x → y does not occur. So taking the union bound, and
applying Borel-Cantelli, we see that a.s. for all but finitely many y outside the
θ-cone corresponding to x (see Figure 4) the event 0 → x → y does not occur.

x
y

2|x|

θ

Figure 4: θ-cone corresponding to x.

Iterating the above argument, we conclude

Lemma 5. For sufficiently large |x|, a.s. all z such that 0 → x → z satisfy

| arg(z)− arg(x)| . |x|−δ.

Proof. Using translation invariance, the above argument can be generalised: we
see that a.s. for all but finitely many z with |x| ≤ |z| ≤ 2k|x|, if 0 → x → z,
then

| arg(x)− arg(z)| .
k−1
∑

i=0

|2ix|−δ . |x|−δ.

Since the above holds for all k, we obtain the result.

6



Finally, we see that infinite paths in the LPP tree are asymptotically straight.

Corollary 6. Every geodesic in the LPP tree has an asymptotic direction.

Proof. Suppose {xn} are connected by an infinite LPP path. Then, by Lemma 5,
{xn/|xn|} is a Cauchy sequence, and so converges to some limit.

In fact, more is true:

Theorem 7. The last passage percolation tree a.s. satisfies the following:

1. There exists an infinite geodesic in every direction in [0, π/2].

2. There is a dense, countable set of directions with two infinite geodesics.
(These correspond to infinite geodesics in the dual tree.)

3. There is no direction with three distinct infinite geodesics.

Proof. (Property 1.) Consider geodesic paths from 0 to ⌊nx⌋ for n ∈ N. By ar-
guments from this subsection we know that a.s. the geodesic visits only finitely
many points outside a small wedge containing ⌊nx⌋. Taking the pointwise topol-
ogy on geodesics, we obtain a compact space. Hence, there is some infinite
collection {nk} ⊂ N, for which the sequence of geodesics to ⌊nkx⌋ converges
in the direction of x. (Note that this does not rule out the possibility of two
subsequences with geodesics converging along Lx; one from above and one from
below. This leads us to property 2.)

(Property 2.) By Property 1 there are infinite geodesics in the LPP tree
converging in all directions. Between every two such geodesics there is at least
one infinite geodesic in the dual tree. Hence there is a dense set of directions to
which dual geodesics converge. Each such direction corresponds to an interface
between two geodesics in the LPP tree, i.e. a direction to which two geodesics
in the tree converge; one from above and one from below. This set of directions
is countable since every infinite geodesic is the dual tree begins at a point in the
plane with rational coordinates.

Note: We do not prove Property 3 in Theorem 7 as its proof requires ideas
not presented in these lectures.

2.3 Generalising to other domains

In the next lecture we will consider LPP paths in other domains than Z
2
+.

Let S0 ⊂ Z
2, and let G(S0, x) be the maximum weight of a path from S0 to

x /∈ S0. It turns out that in this more general context, the union of paths is a
forest, i.e. a union of trees. To analyse this setting we will come back to TASEP
dynamics and second class particles.
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