Asymptotics of Interacting Stochastic Processes on Sparse Graphs

Kavita Ramanan Division of Applied Math, Brown University

CRM PIMS Summer School in Probability 2021: MiniCourse 2 June 2021

June 2021

Prelude to the Course

Problem Description Background and Motivation: Classical Results Outline of the (rest of the) Course

Problem Description

Networks of interacting stochastic processes

Given a finite connected graph G = (V, E), write $u \sim v$ if $(u, v) \in E$, $N_v = N_v(G) = \{u \in V : u \sim v\}$ denotes the neighborhood of v, $d_v = d_v(G) = |N_v(G)|$ denotes the degree of vertex v

Each node $v \in V$ has a particle whose stochastic evolution depends only on its own state and (symmetrically) on its neighbors' states

Networks of interacting stochastic processes

Given a finite connected graph G = (V, E), write $u \sim v$ if $(u, v) \in E$, $N_v = N_v(G) = \{u \in V : u \sim v\}$ denotes the neighborhood of v, $d_v = d_v(G) = |N_v(G)|$ denotes the degree of vertex v

Each node $v \in V$ has a particle whose stochastic evolution depends only on its own state and (symmetrically) on its neighbors' states

In this course, we will focus on two types of dynamics:

A. Discrete-time (Markov) processes

B. Diffusions

Such models describe a range of phenonena in statistical physics, epidemiology, neuroscience, math finance, etc.

- A space *E* is said to be Polish if it is a complete, separable metrisable space
- for any Polish space E, let P(E) denote the space of Borel probability measures equipped with the topology of weak convergence: ν_n → ν in P(E) if for every bounded continuous h : E → ℝ,

$$\int_E h(x)\nu_n(dx) \to \int_E h(x)\nu(dx).$$

- Then $\mathcal{P}(E)$ is also a Polish space.
- Also, given a Polish space E and x ∈ E, δ_x ∈ P(E) denotes the Dirac delta measure: for any Borel set A ⊂ E, δ_x(A) = 1 if x ∈ A and 0 otherwise.

A. Networks of interacting Markov chains

• Fix graph G = (V, E) and initial condition $x = (x_v)_{v \in V} \in \mathcal{X}^V$

discrete-time Markov chain: for $v \in V$,

$$\mathsf{X}^{\mathsf{G},\mathsf{x}}_{\mathsf{v}}(\mathsf{t}+1) = \mathsf{F}\left(\mathsf{X}^{\mathsf{G},\mathsf{x}}_{\mathsf{v}}(\mathsf{t}),\mathsf{X}^{\mathsf{G},\mathsf{x}}_{\mathsf{N}_{\mathsf{v}}}(\mathsf{t}),\xi_{\mathsf{v}}(\mathsf{t}+1)\right), \qquad \mathsf{X}^{\mathsf{G},\mathsf{x}}_{\mathsf{v}}(\mathsf{0}) = x_{\mathsf{v}}$$

where $X_A := (X_v)_{v \in A}$, in particular $X_{N_v}(t) = (X_u(t))_{u \sim v}$, and

A. Networks of interacting Markov chains

• Fix graph G = (V, E) and initial condition $x = (x_v)_{v \in V} \in \mathcal{X}^V$

discrete-time Markov chain: for $v \in V$,

$$\mathsf{X}^{\mathsf{G},\mathsf{x}}_{\mathsf{v}}(\mathsf{t}+1) = \mathsf{F}\left(\mathsf{X}^{\mathsf{G},\mathsf{x}}_{\mathsf{v}}(\mathsf{t}),\mathsf{X}^{\mathsf{G},\mathsf{x}}_{\mathsf{N}_{\mathsf{v}}}(\mathsf{t}),\xi_{\mathsf{v}}(\mathsf{t}+1)\right), \qquad \mathsf{X}^{\mathsf{G},\mathsf{x}}_{\mathsf{v}}(\mathsf{0}) = x_{\mathsf{v}}$$

where $X_{\mathcal{A}} := (X_v)_{v \in \mathcal{A}}$, in particular $X_{N_v}(t) = (X_u(t))_{u \sim v}$, and

- the state space ${\mathcal X}$ and noise space Σ are Polish
- $\xi_v(t), v \in V$, $t = 0, 1, \ldots$, are i.i.d. Σ -valued noises
- continuous transition function F : X × S[⊥](X) × Σ → X where S[⊥] = ∐_k S^k(X) is the disjoint union of (unordered) sequences of length k in X: S^k(X) = X^k/Sym_k and Sym_k is the group of permutations on [k].
- continuity in the sense that on inputs of length k, $F(x, \cdot, \xi) = F^k$ for some continuous $F^k : \mathcal{X} \times \mathcal{X}^k / \text{Sym}^k$.

A comment on the transition function F

Probabilistic cellular automata, synchronous Markov chains

$$\mathsf{X}^{\mathsf{G},\mathsf{x}}_{\mathsf{v}}(\mathsf{t}+1) = \mathsf{F}\left(\mathsf{X}_{\mathsf{v}}(\mathsf{t}),\mathsf{X}_{\mathsf{N}_{\mathsf{v}}}(\mathsf{t}),\xi_{\mathsf{v}}(\mathsf{t}+1)\right), \qquad \mathsf{X}^{\mathsf{G},\mathsf{x}}_{\mathsf{v}}(\mathsf{0}) = x_{\mathsf{v}}$$

where $F: \mathcal{X} \times S^{\sqcup}(\mathcal{X}) \times \Sigma \rightarrow \mathcal{X}$ is continuous

• A generic example is when F depends on the local empirical measure of the neighborhood of v: $\mu_v^{G,x}(t) = \frac{1}{d_v} \sum_{u \sim v} \delta_{X_u^{G,x}(t)}, \text{ and}$

 $F(X_{v}(t), (X_{N_{v}}(t)), \xi_{v}(t+1))) = \bar{F}(X_{v}(t), \mu_{v}^{G,x}(t), \xi_{v}(t+1))$

for some continuous $\overline{F} : \mathcal{X} \times \mathcal{P}(\mathcal{X}) \times \Sigma \mapsto \mathcal{X}$.

But (i) \$\bar{F}\$ cannot distinguish between configurations {0,1} and {0,0,1,1} so cannot account for the number of occurences.
(ii) requiring \$\bar{F}\$ to be continuous wrt \$\mathcal{P}(\mathcal{X})\$ may be too restrictive (e.g., may rule out a function of max_{u~v} x_u)

Example: Discrete-time Contact Process

- State space $\mathcal{X} = \{0, 1\} = \{\text{healthy}, \text{infected}\}.$
- Parameters $p, q \in [0, 1]$.
- $X_v(t) \in \mathcal{X}$, state of particle at v at time t

Transition rule: At time t, evolution of state of particle at any (non-isolated) node v depends on state of particle at any v and the neighbors' empirical distribution at that time:

$$\mu_{v}(t) = \frac{1}{d_{v}} \sum_{u \sim v} \delta_{X_{u}(t)}$$

- if state $X_v(t) = 1$, it switches to $X_v(t+1) = 0$ w.p. q,
- if state $X_v(t) = 0$, it switches to $X_v(t+1) = 1$ w.p.

$$\frac{p}{d_v}\sum_{u\sim v}X_u(t)=p\int y\mu_v(t)(dy)$$

where recall $d_v = \text{degree of vertex } v$.

Interacting Processes on Sparse Graphs

Example: Susceptible-Infected-Recovered (SIR) Process

B. Networks of interacting diffusions

• Fix a finite graph G = (V, E)

• initial condition $x = (x_v)_{v \in V} \in \mathbb{R}^{d^V}$ for some $d \in \mathbb{N}$ Evolves as a diffusion:

$$\begin{split} dX^{G,x}_\nu(t) &= b(X^{G,x}_\nu(t),X^{G,x}_{N_\nu(G)}(t))dt + \sigma(X^{G,x}_\nu(t),X^{G,x}_{N_\nu(G)}(t))dW_\nu(t) \\ \text{with } X^{G,x}_\nu(0) &= x_\nu, \text{ where} \end{split}$$

- drift coefficient $b: \mathbb{R}^d \times S^{\sqcup}(\mathbb{R}^d) \mapsto \mathbb{R}^d$ Lip. cont.
- diffusion coefficient $\sigma : \mathbb{R}^d \times S^{\sqcup}(\mathbb{R}^d) \mapsto \mathbb{R}^{d \times d}$ Lip. cont.
- i.i.d. *d*-dimensional Brownian motions $W_v, v \in V$.

B. Networks of interacting diffusions

• Fix a finite graph G = (V, E)

• initial condition $x = (x_v)_{v \in V} \in \mathbb{R}^{d^V}$ for some $d \in \mathbb{N}$ Evolves as a diffusion:

$$\begin{split} dX^{G,x}_\nu(t) &= b(X^{G,x}_\nu(t),X^{G,x}_{N_\nu(G)}(t))dt + \sigma(X^{G,x}_\nu(t),X^{G,x}_{N_\nu(G)}(t))dW_\nu(t) \\ \text{with } X^{G,x}_\nu(0) &= x_\nu, \text{ where} \end{split}$$

- drift coefficient $b: \mathbb{R}^d \times S^{\sqcup}(\mathbb{R}^d) \mapsto \mathbb{R}^d$ Lip. cont.
- diffusion coefficient $\sigma: \mathbb{R}^d \times S^{\sqcup}(\mathbb{R}^d) \mapsto \mathbb{R}^{d \times d}$ Lip. cont.
- i.i.d. *d*-dimensional Brownian motions $W_v, v \in V$.
- Note each $X_v^{G,x}$ takes values in $\mathcal{C}_d := \mathcal{C}([0,\infty) : \mathbb{R}^d)$,

Remark: Can consider more general, non-Markovian SDEs, with time-dependent and progressively measurable coefficients $b(t, X_v^{G,x}, X_{N_v(G)}^{G,x})$, but we will restrict to the above for simplicity

Example: Systemic Risk

Given independent Brownian motions $W_v, v = 1, \ldots, n$,

 $d\mathsf{X}_{\mathsf{v}}(\mathsf{t}) = -\mathsf{h}\mathsf{U}(\mathsf{X}_{\mathsf{v}}(\mathsf{t}))\mathsf{d}\mathsf{t} + \theta(\overline{\mathsf{X}}_{\mathsf{v}}(\mathsf{t}) - \mathsf{X}_{\mathsf{v}}(\mathsf{t}))\mathsf{d}\mathsf{t} + \sigma\mathsf{d}\mathsf{W}_{\mathsf{v}}(\mathsf{t}),$

for some restoring potential $U : \mathbb{R} \mapsto \mathbb{R}$, $\theta, \sigma > 0, h \in \mathbb{R}$, and with some given initial conditions, where $\overline{X}_{v}(t)$ is the local empirical mean:

$$\overline{X}_{\nu}(t) := \frac{1}{d_{\nu}} \sum_{u \sim \nu} X_u(t) = \int y \mu_{\nu}(t) (dy), \quad \mu_{\nu}(t) = \frac{1}{d_{\nu}} \sum_{u \sim \nu} \delta_{X_u(t)}$$

- $X_v(t)$ represents the state of risk of agent/component v
- Systemic risk is the risk that in an interconnected system of agents that can fail individually, a large number of them fails simultaneously, or nearly so.
- The interconnectivity of the agents and the form of evolution, play an essential role in systemic risk assessment.

• Is most well understood when $G = K_n$, the complete graph K. Ramanan (Brown Univ.) Interacting Processes on Sparse Graphs June 2021

Global empirical measures

Fix
$$G = (V, E)$$
. For $v \in V$, with $X_v^{G,x}(0) = x_v$, and
 $X_v^{G,x}(t+1) = F(X_v(t), (X_{N_v}(t)), \xi_v(t+1)),$

or

$$\label{eq:gradient} \begin{split} dX^{G,x}_{\nu}(t) &= b(X^{G,x}_{\nu}(t), X^{G,x}_{N_{\nu}(G)}(t)) dt + \sigma(X^{G,x}_{\nu}(t), X^{G,x}_{N_{\nu}(G)}(t)) dW_{\nu}(t). \\ \text{Quantities of interest include} \end{split}$$

• the (global) empirical measure on path space

$$\mu^{G,\mathsf{x}} := \frac{1}{|G|} \sum_{\mathsf{v} \in G} \delta_{X^{G,\mathsf{x}}_{\mathsf{v}}}$$

Note that $\mu^{G,x}$ is a random element of $\mathcal{P}(\mathcal{X}^{\infty})$ or $\mathcal{P}(\mathcal{C}_d)$;

• and the (global) empirical measure process

$$\mu^{G,x}(t) := \frac{1}{|G|} \sum_{\nu \in G} \delta_{X^{G,x}_{\nu}(t)}$$

Note that each $\mu^{G,x}(t)$ is a random element of $\mathcal{P}(\mathcal{X})$ or $\mathcal{P}(\mathbb{R}_d)$, K. Ramanan (Brown Univ.) Interacting Processes on Sparse Graphs June 2021

$$\mathsf{X}^{\mathsf{G},\mathsf{x}}_{\mathsf{v}}(\mathsf{t}+1) = \mathsf{F}\left(\mathsf{X}_{\mathsf{v}}(\mathsf{t}),(\mathsf{X}_{\mathsf{N}_{\mathsf{v}}}(\mathsf{t})),\xi_{\mathsf{v}}(\mathsf{t}+1)
ight),$$

 $\mathsf{dX}^{\mathsf{G},\mathsf{x}}_{\mathsf{v}}(\mathsf{t}) = \mathsf{b}(\mathsf{X}^{\mathsf{G},\mathsf{x}}_{\mathsf{v}}(\mathsf{t}),\mathsf{X}^{\mathsf{G},\mathsf{x}}_{\mathsf{N}_{\mathsf{v}}(\mathsf{G})}(\mathsf{t}))\mathsf{d}\mathsf{t} + \sigma(\mathsf{X}^{\mathsf{G},\mathsf{x}}_{\mathsf{v}}(\mathsf{t}),\mathsf{X}^{\mathsf{G},\mathsf{x}}_{\mathsf{N}_{\mathsf{v}}(\mathsf{G})}(\mathsf{t}))\mathsf{d}\mathsf{W}_{\mathsf{v}}(\mathsf{t}).$

$$\mu^{G,x} := \frac{1}{|G|} \sum_{v \in G} \delta_{X_v^{G,x}} \qquad \mu^{G,x}(t) := \frac{1}{|G|} \sum_{v \in G} \delta_{X_v^{G,x}(t)}$$

$$\mathsf{X}^{\mathsf{G},\mathsf{x}}_{\mathsf{v}}(\mathsf{t}+1) = \mathsf{F}\left(\mathsf{X}_{\mathsf{v}}(\mathsf{t}),(\mathsf{X}_{\mathsf{N}_{\mathsf{V}}}(\mathsf{t})),\xi_{\mathsf{v}}(\mathsf{t}+1)
ight),$$

 $\mathsf{dX}^{\mathsf{G},\mathsf{x}}_{\mathsf{v}}(\mathsf{t}) = \mathsf{b}(\mathsf{X}^{\mathsf{G},\mathsf{x}}_{\mathsf{v}}(\mathsf{t}),\mathsf{X}^{\mathsf{G},\mathsf{x}}_{\mathsf{N}_{\mathsf{v}}(\mathsf{G})}(\mathsf{t}))\mathsf{d}\mathsf{t} + \sigma(\mathsf{X}^{\mathsf{G},\mathsf{x}}_{\mathsf{v}}(\mathsf{t}),\mathsf{X}^{\mathsf{G},\mathsf{x}}_{\mathsf{N}_{\mathsf{v}}(\mathsf{G})}(\mathsf{t}))\mathsf{d}\mathsf{W}_{\mathsf{v}}(\mathsf{t}).$

$$\mu^{G,x} := \frac{1}{|G|} \sum_{v \in G} \delta_{X_v^{G,x}} \qquad \mu^{G,x}(t) := \frac{1}{|G|} \sum_{v \in G} \delta_{X_v^{G,x}(t)}$$

Key questions: Given a sequence of graphs $G_n = (V_n, E_n)$ with $|V_n| \to \infty$, and appropriate initial conditions $x^n \in \mathcal{X}^{V_n}$,

Q1. Do the processes X^{G_n,x^n} converge in a suitable sense?

$$\mathsf{X}^{\mathsf{G},\mathsf{x}}_{\mathsf{v}}(\mathsf{t}+1) = \mathsf{F}\left(\mathsf{X}_{\mathsf{v}}(\mathsf{t}),(\mathsf{X}_{\mathsf{N}_{\mathsf{V}}}(\mathsf{t})),\xi_{\mathsf{v}}(\mathsf{t}+1)
ight),$$

 $\mathsf{dX}^{\mathsf{G},\mathsf{x}}_{\mathsf{v}}(\mathsf{t}) = \mathsf{b}(\mathsf{X}^{\mathsf{G},\mathsf{x}}_{\mathsf{v}}(\mathsf{t}),\mathsf{X}^{\mathsf{G},\mathsf{x}}_{\mathsf{N}_{\mathsf{v}}(\mathsf{G})}(\mathsf{t}))\mathsf{d}\mathsf{t} + \sigma(\mathsf{X}^{\mathsf{G},\mathsf{x}}_{\mathsf{v}}(\mathsf{t}),\mathsf{X}^{\mathsf{G},\mathsf{x}}_{\mathsf{N}_{\mathsf{v}}(\mathsf{G})}(\mathsf{t}))\mathsf{d}\mathsf{W}_{\mathsf{v}}(\mathsf{t}).$

$$\mu^{G,x} := \frac{1}{|G|} \sum_{v \in G} \delta_{X_v^{G,x}} \qquad \mu^{G,x}(t) := \frac{1}{|G|} \sum_{v \in G} \delta_{X_v^{G,x}(t)}$$

Key questions: Given a sequence of graphs $G_n = (V_n, E_n)$ with $|V_n| \to \infty$, and appropriate initial conditions $x^n \in \mathcal{X}^{V_n}$,

Q1. Do the processes X^{G_n,x^n} converge in a suitable sense? **Q2.** Do the global empirical measures μ^{G_n,x^n} converge?

$$\mathsf{X}^{\mathsf{G},\mathsf{x}}_{\mathsf{v}}(\mathsf{t}+1) = \mathsf{F}\left(\mathsf{X}_{\mathsf{v}}(\mathsf{t}),(\mathsf{X}_{\mathsf{N}_{\mathsf{V}}}(\mathsf{t})),\xi_{\mathsf{v}}(\mathsf{t}+1)
ight),$$

 $\mathsf{dX}^{\mathsf{G},\mathsf{x}}_{\mathsf{v}}(\mathsf{t}) = \mathsf{b}(\mathsf{X}^{\mathsf{G},\mathsf{x}}_{\mathsf{v}}(\mathsf{t}),\mathsf{X}^{\mathsf{G},\mathsf{x}}_{\mathsf{N}_{\mathsf{v}}(\mathsf{G})}(\mathsf{t}))\mathsf{d}\mathsf{t} + \sigma(\mathsf{X}^{\mathsf{G},\mathsf{x}}_{\mathsf{v}}(\mathsf{t}),\mathsf{X}^{\mathsf{G},\mathsf{x}}_{\mathsf{N}_{\mathsf{v}}(\mathsf{G})}(\mathsf{t}))\mathsf{d}\mathsf{W}_{\mathsf{v}}(\mathsf{t}).$

$$\mu^{G,x} := \frac{1}{|G|} \sum_{v \in G} \delta_{X_v^{G,x}} \qquad \mu^{G,x}(t) := \frac{1}{|G|} \sum_{v \in G} \delta_{X_v^{G,x}(t)}$$

Key questions: Given a sequence of graphs $G_n = (V_n, E_n)$ with $|V_n| \to \infty$, and appropriate initial conditions $x^n \in \mathcal{X}^{V_n}$,

- Q1. Do the processes X^{G_n,x^n} converge in a suitable sense?
- **Q2.** Do the global empirical measures $\mu^{G_{n,x^{n}}}$ converge?
- Q3. can one autonomously characterize the limiting dynamics of a fixed or "typical particle" $X_v^{G_n,x_n}(t), t \in [0, T]$?

Background and Motivation: Classical Results

Classical Results in a Special Setting

For notational convenience, suppose $\sigma = I_d$ and the drift depends on neighbors only via their local empirical measure:

$$\mathsf{dX}^{\mathsf{G}_n,x^n}_{\mathbf{v}}(t) = \mathsf{B}(\mathsf{X}^{\mathsf{G}_n,x^n}_{\mathbf{v}}(t),\mu^{\mathsf{G}_n,x^n}_{\mathbf{v}}(t))\mathsf{d}t + \mathsf{dW}_{\mathbf{v}}(t),$$

where recall $\mu_v^{G_n,x^n}(t)$ is the local empirical measure at t:

$$\mu_v^{G_{n,x^n}}(t) = \frac{1}{d_v} \sum_{u \in N_v} \delta_{X_u^{G_{n,x^n}}(t)}$$

for some continuous $B: \mathbb{R}^d imes \mathcal{P}(\mathbb{R}^d) o \mathbb{R}^d$, e.g. the linear case:

$$B(x,m) := \int_{\mathbb{R}^d} \overline{b}(x,y)m(dy), \qquad \overline{b} : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}^d$$

this reduces to the following SDE with "pairwise interactions"

$$dX_{\nu}^{G_n,x^n}(t) = \frac{1}{d_{\nu}(G_n)} \sum_{u \in N_{\nu}} \overline{b}(X_{\nu}^{G_n,x^n}(t),X_{u}^{G_n,x^n}(t))dt + dW_{\nu}(t),$$

A well-studied case: when $G_n = K_n$ the complete graph

In this case, $V_n = [n]$, by setting $X^n = X^{K_n, x_n}$ and slightly modifying B, we can write $dX_v^n(t) = B(X_v^n(t), \mu^n(t))dt + dW_v(t), \quad v \in [n],$

where $\mu^{n}(t) = \frac{1}{n} \sum_{\nu=1}^{n} \delta_{X_{\nu}^{n}(t)}$ is the global empirical measure. Gaining intuition about the structure of the limit

If B = 0, and (Xⁿ_ν(0)), n ∈ N, are i.i.d. with law λ, independent of (W_ν), (Xⁿ_ν) are i.i.d. Brownian motions. So the SLLN implies that a.s. μⁿ converges weakly to the deterministic measure μ equal to Law(X_ρ(0) + W), X_ρ(0) ~ λ

A well-studied case: when $G_n = K_n$ the complete graph

In this case, $V_n = [n]$, by setting $X^n = X^{K_n, x_n}$ and slightly modifying B, we can write $dX_u^n(t) = B(X_u^n(t), \mu^n(t))dt + dW_v(t), v \in [n],$

where $\mu^{n}(t) = \frac{1}{n} \sum_{\nu=1}^{n} \delta_{X_{\nu}^{n}(t)}$ is the global empirical measure. Gaining intuition about the structure of the limit

- If B = 0, and (Xⁿ_ν(0)), n ∈ N, are i.i.d. with law λ, independent of (W_ν), (Xⁿ_ν) are i.i.d. Brownian motions. So the SLLN implies that a.s. μⁿ converges weakly to the deterministic measure μ equal to Law(X_ρ(0) + W), X_ρ(0) ~ λ
- In general if μⁿ converges to a deterministic measure-valued process μ then since B is continuous, one might expect each Xⁿ_ν ⇒ X_ρ, where X_ρ(0) ~ λ (ρ denotes a typical vertex) and

$$\mathsf{dX}_{\rho}(\mathsf{t}) = \mathsf{B}(\mathsf{X}_{\rho}(\mathsf{t}), \mu(\mathsf{t}))\mathsf{dt} + \mathsf{dW}_{\mathsf{v}}(\mathsf{t}),$$

A well-studied case: when $G_n = K_n$ the complete graph

In this case, $V_n = [n]$, by setting $X^n = X^{K_n, x_n}$ and slightly modifying B, we can write $dX_u^n(t) = B(X_u^n(t), \mu^n(t))dt + dW_v(t), v \in [n],$

where $\mu^{n}(t) = \frac{1}{n} \sum_{\nu=1}^{n} \delta_{X_{\nu}^{n}(t)}$ is the global empirical measure. Gaining intuition about the structure of the limit

- If B = 0, and (Xⁿ_ν(0)), n ∈ N, are i.i.d. with law λ, independent of (W_ν), (Xⁿ_ν) are i.i.d. Brownian motions. So the SLLN implies that a.s. μⁿ converges weakly to the deterministic measure μ equal to Law(X_ρ(0) + W), X_ρ(0) ~ λ
- In general if μⁿ converges to a deterministic measure-valued process μ then since B is continuous, one might expect each Xⁿ_ν ⇒ X_ρ, where X_ρ(0) ~ λ (ρ denotes a typical vertex) and

$$\mathsf{dX}_{\rho}(\mathsf{t}) = \mathsf{B}(\mathsf{X}_{\rho}(\mathsf{t}), \mu(\mathsf{t}))\mathsf{dt} + \mathsf{dW}_{\mathsf{v}}(\mathsf{t}),$$

with
$$\mu(t) = \operatorname{Law}(\mathsf{X}_{
ho}(\mathsf{t}))$$
 or in fact, $\mu = \operatorname{Law}(\mathsf{X}_{
ho})$

Interacting Processes on Sparse Graphs

Mean-field limits and nonlinear processes: $G_n = K_n$

Theorem, McKean '67; Oelschläger '84; 'Sznitman '91, etc. If $(X_v^n(0)), n \in \mathbb{N}$, are i.i.d. with common law λ and B is Lipschitz continuous, then $(\mu^n(t))_{t\in[0,T]}$ converges in probability to the unique solution $(\mu(t))_{t\in[0,T]}$ of the McKean-Vlasov equation

 $d\mathsf{X}(\mathsf{t}) = \mathsf{B}(\mathsf{X}(\mathsf{t}), \mu(\mathsf{t}))\mathsf{d}\mathsf{t} + \mathsf{d}\mathsf{W}(\mathsf{t}), \qquad \mu(\mathsf{t}) = \mathrm{Law}(\mathsf{X}(\mathsf{t})).$

with $X(0) \sim \lambda$, independent of the driving Brownian motion W. Moreover, the particles become asymptotically independent. Precisely, for fixed k,

$$(X_1^n,\ldots,X_k^n) \Rightarrow \mu^{\otimes k}, \quad \text{as } n \to \infty.$$

Mean-field limits and nonlinear processes: $G_n = K_n$

Theorem, McKean '67; Oelschläger '84; 'Sznitman '91, etc. If $(X_v^n(0))$, $n \in \mathbb{N}$, are i.i.d. with common law λ and B is Lipschitz continuous, then $(\mu^n(t))_{t\in[0,T]}$ converges in probability to the unique solution $(\mu(t))_{t\in[0,T]}$ of the McKean-Vlasov equation

 $d\mathsf{X}(\mathsf{t}) = \mathsf{B}(\mathsf{X}(\mathsf{t}), \mu(\mathsf{t}))\mathsf{d}\mathsf{t} + \mathsf{d}\mathsf{W}(\mathsf{t}), \qquad \mu(\mathsf{t}) = \mathrm{Law}(\mathsf{X}(\mathsf{t})).$

with $X(0) \sim \lambda$, independent of the driving Brownian motion W. Moreover, the particles become asymptotically independent. Precisely, for fixed k,

$$(X_1^n,\ldots,X_k^n) \Rightarrow \mu^{\otimes k}, \quad \text{as } n \to \infty.$$

More generally the above results hold when $\mu^n(0) \Rightarrow \lambda$ The phenomenon is referred to as propagation of chaos.

Note: X is a Markov process K. Ramanan (Brown Univ.) Interacting Processes on Sparse Graphs

June 2021

Mean-field limits and nonlinear processes: $G_n = K_n$

Theorem, McKean '67; Oelschläger '84; 'Sznitman '91, etc. If $(X_v^n(0))$, $n \in \mathbb{N}$, are i.i.d. with common law λ and B is Lipschitz continuous, then $(\mu^n(t))_{t\in[0,T]}$ converges in probability to the unique solution $(\mu(t))_{t\in[0,T]}$ of the McKean-Vlasov equation

 $\mathsf{dX}(\mathsf{t}) = \mathsf{B}(\mathsf{X}(\mathsf{t}), \mu(\mathsf{t}))\mathsf{d}\mathsf{t} + \mathsf{dW}(\mathsf{t}), \qquad \mu(\mathsf{t}) = \mathrm{Law}(\mathsf{X}(\mathsf{t})).$

with $X(0) \sim \lambda$, independent of the driving Brownian motion W. Moreover, the particles become asymptotically independent. Precisely, for fixed k,

$$(X_1^n,\ldots,X_k^n) \Rightarrow \mu^{\otimes k}, \quad \text{as } n \to \infty.$$

More generally the above results hold when $\mu^n(0) \Rightarrow \lambda$ The phenomenon is referred to as propagation of chaos.

Note: X is a Markov process with a nonlinear fwd Kolmogorov eqn.K. Ramanan (Brown Univ.)Interacting Processes on Sparse GraphsJune 2021

A Slightly Different Perspective

When $G_n = K_n$, the existence of a limit for $X_v^n = X_v^{K_n,x^n}$ follows from general results on exchangeable processes:

Kurtz and Kotelenez ('10)

As $n \to \infty$, $X_v^n \Rightarrow X_v^\infty$, where

 $dX_{v}^{\infty}(t) = b(X_{i}^{\infty}(t), \mu(t))dt + dW_{i}(t), \qquad v = 1, 2, \dots,$

with the following limit existing:

$$\mu(t) = \lim_{n\to\infty} \frac{1}{n} \sum_{i=1}^n \delta_{X_i^n(t)}.$$

A Slightly Different Perspective

When $G_n = K_n$, the existence of a limit for $X_v^n = X_v^{K_n, x^n}$ follows from general results on exchangeable processes:

Kurtz and Kotelenez ('10)

As $n \to \infty$, $X_v^n \Rightarrow X_v^\infty$, where

 $dX_{v}^{\infty}(t) = b(X_{i}^{\infty}(t), \mu(t))dt + dW_{i}(t), \qquad v = 1, 2, \dots,$

with the following limit existing:

$$\mu(t) = \lim_{n\to\infty} \frac{1}{n} \sum_{i=1}^n \delta_{X_i^n(t)}.$$

The McKean-Vlasov limit

K. Ramanan (Brown Univ.)

ginatudy namies of pane infinite particle system une 2021

 If G_n ≠ K_n but the sequence (G_n) is dense, in the sense that the degrees in the graph G_n are diverging to infinity as n→∞, then X_v^{G_n,xⁿ}, v ∈ G_n, are still weakly interacting: e.g.,

$$\mathsf{dX}^{\mathsf{G}_n,\mathsf{x}^n}_{\mathsf{v}}(\mathsf{t}) = \frac{1}{\mathsf{d}_{\mathsf{v}}(\mathsf{G}_n)} \sum_{\mathsf{u}\in\mathsf{N}_{\mathsf{v}}} \overline{\mathsf{b}}(\mathsf{X}^{\mathsf{G}_n,\mathsf{x}^n}_{\mathsf{v}},\mathsf{X}^{\mathsf{G}_n,\mathsf{x}^n}_{\mathsf{u}})\mathsf{d}\mathsf{t} + \mathsf{dW}_{\mathsf{t}}$$

 If G_n ≠ K_n but the sequence (G_n) is dense, in the sense that the degrees in the graph G_n are diverging to infinity as n→∞, then X_v^{G_n,xⁿ}, v ∈ G_n, are still weakly interacting: e.g.,

$$\mathsf{dX}^{\mathsf{G}_n,\mathsf{x}^n}_{\mathsf{v}}(\mathsf{t}) = \frac{1}{\mathsf{d}_{\mathsf{v}}(\mathsf{G}_n)} \sum_{\mathsf{u}\in\mathsf{N}_{\mathsf{v}}} \overline{\mathsf{b}}(\mathsf{X}^{\mathsf{G}_n,\mathsf{x}^n}_{\mathsf{v}},\mathsf{X}^{\mathsf{G}_n,\mathsf{x}^n}_{\mathsf{u}})\mathsf{d}\mathsf{t} + \mathsf{dW}_{\mathsf{t}}$$

• So still expect propagation of chaos and asymptotic independence, so that once again, the global empirical measure μ^{G_n, x^n} converges to a deterministic limit μ and so the typical particle dynamics converges again to the mean-field limit $dX(t) = \int_{\mathbb{R}^d} \overline{b}(X(t), y)\mu(t)(dy) + dW(t), \quad \mu(t) = Law(X(t)).$

 If G_n ≠ K_n but the sequence (G_n) is dense, in the sense that the degrees in the graph G_n are diverging to infinity as n→∞, then X_v^{G_n,xⁿ}, v ∈ G_n, are still weakly interacting: e.g.,

$$\mathsf{dX}^{G_n,x^n}_{v}(t) = \frac{1}{\mathsf{d}_v(G_n)} \sum_{u \in \mathsf{N}_v} \overline{\mathsf{b}}(\mathsf{X}^{G_n,x^n}_v,\mathsf{X}^{G_n,x^n}_u)\mathsf{d}t + \mathsf{dW}_t$$

- So still expect propagation of chaos and asymptotic independence, so that once again, the global empirical measure μ^{G_n, x^n} converges to a deterministic limit μ and so the typical particle dynamics converges again to the mean-field limit $dX(t) = \int_{\mathbb{R}^d} \overline{b}(X(t), y)\mu(t)(dy) + dW(t), \quad \mu(t) = Law(X(t)).$
- Topology does not matter!

 If G_n ≠ K_n but the sequence (G_n) is dense, in the sense that the degrees in the graph G_n are diverging to infinity as n→∞, then X_v^{G_n,xⁿ}, v ∈ G_n, are still weakly interacting: e.g.,

$$\mathsf{dX}^{G_n,x^n}_{v}(t) = \frac{1}{\mathsf{d}_v(G_n)} \sum_{u \in \mathsf{N}_v} \overline{\mathsf{b}}(\mathsf{X}^{G_n,x^n}_v,\mathsf{X}^{G_n,x^n}_u)\mathsf{d}t + \mathsf{dW}_t$$

- So still expect propagation of chaos and asymptotic independence, so that once again, the global empirical measure μ^{G_n, x^n} converges to a deterministic limit μ and so the typical particle dynamics converges again to the mean-field limit $dX(t) = \int_{\mathbb{R}^d} \overline{b}(X(t), y)\mu(t)(dy) + dW(t), \quad \mu(t) = Law(X(t)).$
- Topology does not matter!
- Many recent results of this nature: Delattre-Giacomin-Luçon '16; Delarue '17, Coppini-Dietert-Giacomin '18, Reis-Oliveira '18, Bhamidi-Budhiraja-Wu '19, etc.

K. Ramanan (Brown Univ.) Interacting Processes on Sparse Graphs

Analogous Mean-Field Limits hold in Discrete-time

discrete-time Markov chain: if for $v \in V$,

$$\mathsf{X}^{\mathsf{G},\mathsf{x}}_{\mathsf{v}}(\mathsf{t}+1) = \overline{\mathsf{F}}\left(\mathsf{X}^{\mathsf{G},\mathsf{x}}_{\mathsf{v}}(\mathsf{t}), \mu^{\mathsf{G},\mathsf{x}}_{\mathsf{V}}(\mathsf{t}), \xi_{\mathsf{v}}(\mathsf{t}+1)\right), \qquad \mathsf{X}^{\mathsf{G},\mathsf{x}}_{\mathsf{v}}(\mathsf{0}) = x_{\mathsf{v}}$$

for continuous $\bar{F}: \mathcal{X} \times \mathcal{P}(\mathcal{X}) \times \Sigma \to \mathcal{X}$

Mean-field limit for discrete-time chains

If $G_n = K_n$ and initial conditions are such that $\mu^{K_n,x^n}(0) \Rightarrow \mu(0)$, then the (random) global empirical measure sequence μ^{K_n,x^n} converges weakly to a deterministic measure sequence μ and for any v, $X_v^{K_n,x^n}$ converges to the nonlinear discrete-time Markov chain X_ρ :

$$\mathsf{X}_{\rho}(\mathsf{t}+1) = \bar{F}(\mathsf{X}_{\rho}(\mathsf{t}), \mu_{\mathsf{v}}(t), \xi_{\mathsf{v}}), \quad \mu_{\mathsf{v}}(t) = \mathrm{Law}(\mathsf{X}_{\mathsf{v}}(\mathsf{t})),$$

where $(\xi_v)_{v \in V}$ are i.i.d. noises with the same law as $\xi_v(1)$.

How well do mean-field approximations work?

Numerical results for the discrete-time SIR process on the complete graph

Plot of probability of being healthy vs. time simulations due to Mitchell Wortsman

Mean-field approximation works well!!

K. Ramanan (Brown Univ.)

Interacting Processes on Sparse Graphs

June 2021

How well do mean-field approximations work?

Numerical results for the discrete-time SIR Process on the cycle graph

Plot of probability of being healthy vs. time simulations due to Mitchell Wortsman

Mean-field approximation fails ...

Beyond Mean-Field Limits

1

$$\begin{aligned} \mathsf{X}^{\mathsf{G},\mathsf{x}}_{\mathsf{v}}(\mathsf{t}+1) &= \mathsf{F}\left(\mathsf{X}_{\mathsf{v}}(\mathsf{t}),\mathsf{X}_{\mathsf{N}_{\mathsf{v}}}(\mathsf{t}),\xi_{\mathsf{v}}(\mathsf{t}+1)\right), \\ \mathsf{d}\mathsf{X}^{\mathsf{G},\mathsf{x}}_{\mathsf{v}}(\mathsf{t}) &= \mathsf{b}(\mathsf{X}^{\mathsf{G},\mathsf{x}}_{\mathsf{v}},\mathsf{X}^{\mathsf{G},\mathsf{x}}_{\mathsf{N}_{\mathsf{v}}(\mathsf{G})})\mathsf{d}\mathsf{t} + \sigma(\mathsf{X}^{\mathsf{G},\mathsf{x}}_{\mathsf{v}},\mathsf{X}^{\mathsf{G},\mathsf{x}}_{\mathsf{N}_{\mathsf{v}}(\mathsf{G})})\mathsf{d}\mathsf{W}_{\mathsf{v}}(\mathsf{t}), \\ \mu^{\mathsf{G},\mathsf{x}} &:= \frac{1}{|\mathsf{G}|}\sum_{\mathsf{v}\in\mathsf{G}}\delta_{X^{\mathsf{G},\mathsf{x}}_{\mathsf{v}}} \quad \mu^{\mathsf{G},\mathsf{x}}(\mathsf{t}) := \frac{1}{|\mathsf{G}|}\sum_{\mathsf{v}\in\mathsf{G}}\delta_{X^{\mathsf{G},\mathsf{x}}_{\mathsf{v}}(\mathsf{t})} \end{aligned}$$

Beyond Mean-Field Limits

$$\begin{aligned} \mathsf{X}^{\mathsf{G},\mathsf{x}}_{\mathsf{v}}(\mathsf{t}+1) &= \mathsf{F}\left(\mathsf{X}_{\mathsf{v}}(\mathsf{t}),\mathsf{X}_{\mathsf{N}_{\mathsf{v}}}(\mathsf{t}),\xi_{\mathsf{v}}(\mathsf{t}+1)\right), \\ \mathsf{d}\mathsf{X}^{\mathsf{G},\mathsf{x}}_{\mathsf{v}}(\mathsf{t}) &= \mathsf{b}(\mathsf{X}^{\mathsf{G},\mathsf{x}}_{\mathsf{v}},\mathsf{X}^{\mathsf{G},\mathsf{x}}_{\mathsf{N}_{\mathsf{v}}(\mathsf{G})})\mathsf{d}\mathsf{t} + \sigma(\mathsf{X}^{\mathsf{G},\mathsf{x}}_{\mathsf{v}},\mathsf{X}^{\mathsf{G},\mathsf{x}}_{\mathsf{N}_{\mathsf{v}}(\mathsf{G})})\mathsf{d}\mathsf{W}_{\mathsf{v}}(\mathsf{t}), \\ \mu^{\mathsf{G},\mathsf{x}} &:= \frac{1}{|\mathsf{G}|}\sum_{\mathsf{v}\in\mathsf{G}}\delta_{X^{\mathsf{G},\mathsf{x}}_{\mathsf{v}}} \quad \mu^{\mathsf{G},\mathsf{x}}(\mathsf{t}) := \frac{1}{|\mathsf{G}|}\sum_{\mathsf{v}\in\mathsf{G}}\delta_{X^{\mathsf{G},\mathsf{x}}_{\mathsf{v}}(\mathsf{t})} \end{aligned}$$

Our Focus is on Asymptotics for Sparse Graph Sequences

Example: $G_n = \text{Erdős-Rényi } \mathcal{G}(n, p_n)$ with $np_n \rightarrow p \in (0, \infty)$. Open Question: Delattre-Giacomin-Luçon – to characterize typical dynamics

Outline of the Mini-Course

Q1. Do the processes X^{G_n,x^n} converge in a suitable sense?

Q1. Do the processes X^{G_n,x^n} converge in a suitable sense? Q2. Do the global empirical measures μ^{G_n,x^n} converge?

- Q1. Do the processes X^{G_n,x^n} converge in a suitable sense?
- Q2. Do the global empirical measures $\mu^{G_{n,x^{n}}}$ converge?
- Q3. can one autonomously characterize the limiting dynamics of a fixed or "typical particle" $P(X_v^{G_n,x_n}(t), t \in [0, T]?)$

- Q1. Do the processes X^{G_n,x^n} converge in a suitable sense?
- Q2. Do the global empirical measures $\mu^{G_{n,x^{n}}}$ converge?
- Q3. can one autonomously characterize the limiting dynamics of a fixed or "typical particle" $P(X_v^{G_n,x_n}(t), t \in [0, T])$?
 - The rest of Lecture 1 will address Q1 (and p'haps part of Q2)
 - Lecture 2 will address Q2 and discuss additional properties useful for Q3
 - Lecture 3 will focus on Q3

Collaborators

Daniel Lacker Ruoyu Wu Columbia University Iowa State University I

Ankan Ganguly Brown University

Mitchell Wortsman

Timothy-Sudijono

Mira Gordin

Most Directly Relevant References

- Oliveira, Reis, Stolerman, "Interacting diffusions on sparse graphs: hydrodynamics from local weak limits," *EJP* **25** (2020).
- Lacker, R., Wu, "Large sparse networks of interacting diffusions," Arxiv Preprint (2019)
- Lacker, R., Wu, "Local weak convergence for sparse networks of interacting processes," Arxiv Preprint (2020)
- Lacker, R., Wu, "Locally interacting diffusions as space-time Markov random fields," Arxiv Preprint (2019)
- Lacker, R., Wu, "Marginal dynamics of interacting diffusions on unimodular Galton-Watson trees," Arxiv Preprint (2020)
- Lacker, R., Wu, "Marginal Dynamics of probabilistic cellular automata on trees," Preprint (2021).
- Ganguly and R., "Limits of empirical measures of interacting particle systems on large sparse graphs," *near completion*, (2021)
- MacLaurin, "Large Deviations of a Network of Neurons with Dynamic Sparse Random Connections", Arxiv Preprint, 2016.

Rest of Lecture 1

Notion of local convergence Process Convergence Result Preliminaries on empirical measure convergence

$$\mathsf{X}^{\mathsf{G},\mathsf{x}}_{\mathsf{v}}(\mathsf{t}+1) = \mathsf{F}\left(\mathsf{X}_{\mathsf{v}}(\mathsf{t}),(\mathsf{X}_{\mathsf{N}_{\mathsf{v}}}(\mathsf{t})),\xi_{\mathsf{v}}(\mathsf{t}+1)\right),$$

$$\mathsf{dX}^{\mathsf{G},\mathsf{x}}_{\mathsf{v}}(\mathsf{t}) = \mathsf{b}(\mathsf{X}^{\mathsf{G},\mathsf{x}}_{\mathsf{v}},\mathsf{X}^{\mathsf{G},\mathsf{x}}_{\mathsf{N}_{\mathsf{v}}(\mathsf{G})})\mathsf{d}\mathsf{t} + \sigma(\mathsf{X}^{\mathsf{G},\mathsf{x}}_{\mathsf{v}},\mathsf{X}^{\mathsf{G},\mathsf{x}}_{\mathsf{N}_{\mathsf{v}}(\mathsf{G})})\mathsf{d}\mathsf{W}_{\mathsf{v}}(\mathsf{t}),$$

Q1. Do the processes $X^{{\sf G}_n,x^n}$ converge in a suitable sense?

$$\mathsf{X}^{\mathsf{G},\mathsf{x}}_{\mathsf{v}}(\mathsf{t}+1) = \mathsf{F}\left(\mathsf{X}_{\mathsf{v}}(\mathsf{t}),(\mathsf{X}_{\mathsf{N}_{\mathsf{v}}}(\mathsf{t})),\xi_{\mathsf{v}}(\mathsf{t}+1)
ight),$$

$$\mathrm{dX}^{\mathsf{G},\mathsf{x}}_{\mathsf{v}}(\mathsf{t}) = \mathsf{b}(\mathsf{X}^{\mathsf{G},\mathsf{x}}_{\mathsf{v}},\mathsf{X}^{\mathsf{G},\mathsf{x}}_{\mathsf{N}_{\mathsf{v}}(\mathsf{G})})\mathrm{d}\mathsf{t} + \sigma(\mathsf{X}^{\mathsf{G},\mathsf{x}}_{\mathsf{v}},\mathsf{X}^{\mathsf{G},\mathsf{x}}_{\mathsf{N}_{\mathsf{v}}(\mathsf{G})})\mathrm{d}\mathsf{W}_{\mathsf{v}}(\mathsf{t}),$$

Q1. Do the processes X^{G_n,x^n} converge in a suitable sense?

- First step: for what sequences G_n can we expect this to hold?
- Taking inspiration form static models (Dembo-Montanari '10), when G_n converges locally to a limit graph G

Notion of local convergence

Idea: Encode sparsity via local weak convergence of graphs. (a.k.a. Benjamini-Schramm convergence, see Aldous-Steele '03) **Idea:** Encode sparsity via local weak convergence of graphs. (a.k.a. Benjamini-Schramm convergence, see Aldous-Steele '03)

Definition: A graph $G = (V, E, \rho)$ is assumed to be rooted, finite or countable, locally finite, and connected.

Idea: Encode sparsity via local weak convergence of graphs. (a.k.a. Benjamini-Schramm convergence, see Aldous-Steele '03)

Definition: A graph $G = (V, E, \rho)$ is assumed to be rooted, finite or countable, locally finite, and connected.

Definition: Rooted graphs G_n converge locally to G if:

 $\forall k \exists N \text{ s.t. } B_k(G) \cong B_k(G_n) \text{ for all } n \geq N$,

where $B_k(\cdot)$ is ball of radius k at root, and \cong means isomorphism.

1. Cycle graph converges to infinite line

2. Line graph converges to infinite line

3. Line graph rooted at end converges to semi-infinite line

4. Finite to infinite *d*-regular trees (A graph is *d*-regular if ever vertex has degree *d*.)

5. Uniformly random regular graph to infinite regular tree Fix d. Among all d-regular graphs on *n* vertices, select one uniformly at random. Place the root at a (uniformly) random vertex. When $n \to \infty$, this converges (in law) to the infinite *d*-regular tree. (McKay '81)

6. Erdős-Rényi to Galton-Watson

If $G_n = G(n, p_n)$ with $np_n \to p \in (0, \infty)$, then G_n converges in law to the Galton-Watson tree with offspring distribution Poisson(p).

7. **Preferential Attachment Graphs to a Random Tree** A result by Berger-Borgs-Chayes-Saberi ('14) shows convergence of preferential attachment graphs to a random tree

Key Point

Local limits of many classes of random graphs are often trees

7. Preferential Attachment Graphs to a Random Tree A result by Berger-Borgs-Chayes-Saberi ('14) shows convergence of preferential attachment graphs to a random tree

Key Point

Local limits of many classes of random graphs are often trees

8. Convergence of Finite Lattices $\mathbb{Z}^{\kappa} \cap [-n, n]^{\kappa}$ converges to \mathbb{Z}^{κ}

Recall: $G_n = (V_n, E_n, \rho_n)$ converges locally to $G = (V, E, \rho)$ if

 $\forall k \exists N \text{ s.t. } B_k(G) \cong B_k(G_n) \text{ for all } n \geq N.$

Recall: $G_n = (V_n, E_n, \rho_n)$ converges locally to $G = (V, E, \rho)$ if

 $\forall k \exists N \text{ s.t. } B_k(G) \cong B_k(G_n) \text{ for all } n \geq N.$

Definition: With G_n , G as above: Given a metric space (E, d_E) and a sequence $\mathbf{x}^n = (x_v^n)_{v \in G_n} \in E^{G_n}$, say that (G_n, \mathbf{x}^n) converges locally to (G, \mathbf{x}) if

 $\forall k, \epsilon > 0 \exists N \text{ s.t. } \forall n \geq N \exists \varphi : B_k(G_n) \rightarrow B_k(G) \text{ isomorphism}$ s.t. $\max_{v \in B_k(G_n)} d_E(x_v^n, x_{\varphi(v)}) < \epsilon.$

Lemma

The set $\mathcal{G}_*[E]$ of (isomorphism classes of) (G, \mathbf{x}) admits a Polish topology compatible with the above convergence.

Process Convergence Result

Beyond Mean-Field Limits ...

$$\mathsf{X}^{\mathsf{G},\mathsf{x}}_{\mathsf{v}}(\mathsf{t}+1) = \mathsf{F}\left(\mathsf{X}_{\mathsf{v}}(\mathsf{t}),(\mathsf{X}_{\mathsf{N}_{\mathsf{v}}}(\mathsf{t})),\xi_{\mathsf{v}}(\mathsf{t}+1)
ight),$$

with $(\xi_v(k))_{k \in \mathbb{N}, v \in G}$ i.i.d. with the same law for all graphs G;

 $\mathsf{dX}^{\mathsf{G},\mathsf{x}}_{\mathsf{v}}(\mathsf{t}) = \mathsf{b}(\mathsf{X}^{\mathsf{G},\mathsf{x}}_{\mathsf{v}}(\mathsf{t}),\mathsf{X}^{\mathsf{G},\mathsf{x}}_{\mathsf{N}_{\mathsf{v}}(\mathsf{G})}(\mathsf{t}))\mathsf{d}\mathsf{t} + \sigma(\mathsf{X}^{\mathsf{G},\mathsf{x}}_{\mathsf{v}}(\mathsf{t}),\mathsf{X}^{\mathsf{G},\mathsf{x}}_{\mathsf{N}_{\mathsf{v}}(\mathsf{G})}(\mathsf{t}))\mathsf{d}\mathsf{W}_{\mathsf{v}}(\mathsf{t}),$

with $X_{\mathbf{v}}^{\mathbf{G},\mathbf{x}}(\mathbf{0}) = \mathbf{x}_{\mathbf{v}}$, F continuous, b, σ Lipschitz continuous. Let P^{G_n,x^n} be the law of marked graph (G_n, \mathbf{X}^n)

Theorem 1: Lacker-Ramanan-Wu; '19/'20

1. For Markov chains, if $(G_n, x^n) \to (G, x)$ in $\mathcal{G}_*[\mathcal{X}]$ then $\mathcal{P}^{G_n, x^n} \to \mathcal{P}^{G, x}$ in $\mathcal{P}(\mathcal{G}_*[\mathcal{X}^\infty])$

Beyond Mean-Field Limits ...

$$\mathsf{X}^{\mathsf{G},\mathsf{x}}_{\mathsf{v}}(\mathsf{t}+1) = \mathsf{F}\left(\mathsf{X}_{\mathsf{v}}(\mathsf{t}),(\mathsf{X}_{\mathsf{N}_{\mathsf{v}}}(\mathsf{t})),\xi_{\mathsf{v}}(\mathsf{t}+1)\right),$$

with $(\xi_v(k))_{k \in \mathbb{N}, v \in G}$ i.i.d. with the same law for all graphs G;

 $\mathsf{dX}^{\mathsf{G},\mathsf{x}}_{\mathsf{v}}(\mathsf{t}) = \mathsf{b}(\mathsf{X}^{\mathsf{G},\mathsf{x}}_{\mathsf{v}}(\mathsf{t}),\mathsf{X}^{\mathsf{G},\mathsf{x}}_{\mathsf{N}_{\mathsf{v}}(\mathsf{G})}(\mathsf{t}))\mathsf{d}\mathsf{t} + \sigma(\mathsf{X}^{\mathsf{G},\mathsf{x}}_{\mathsf{v}}(\mathsf{t}),\mathsf{X}^{\mathsf{G},\mathsf{x}}_{\mathsf{N}_{\mathsf{v}}(\mathsf{G})}(\mathsf{t}))\mathsf{d}\mathsf{W}_{\mathsf{v}}(\mathsf{t}),$

with $X_{\mathbf{v}}^{\mathbf{G},\mathbf{x}}(\mathbf{0}) = \mathbf{x}_{\mathbf{v}}$, F continuous, b, σ Lipschitz continuous. Let P^{G_n,x^n} be the law of marked graph (G_n, \mathbf{X}^n)

Theorem 1: Lacker-Ramanan-Wu; '19/'20

- 1. For Markov chains, if $(G_n, x^n) \to (G, x)$ in $\mathcal{G}_*[\mathcal{X}]$ then $\mathcal{P}^{G_n, x^n} \to \mathcal{P}^{G, x}$ in $\mathcal{P}(\mathcal{G}_*[\mathcal{X}^\infty])$
- 2. For diffusions, if $\sup_{n \in \mathbb{N}} \sup_{v \in G_n} |x_v^n| \leq r$ and $(G_n, x^n) \to (G, x)$ in $\mathcal{G}_*[\mathcal{B}_r(\mathbb{R}^d)]$, then $\mathcal{P}^{G_n, x_n} \to \mathcal{P}^{G, x}$ in $\mathcal{P}(\mathcal{G}_*[\mathcal{C}_d])$
- 3. Immediate extensions to the case of random graphs hold.

Beyond Mean-Field Limits ...

$$\mathsf{X}^{\mathsf{G},\mathsf{x}}_{\mathsf{v}}(\mathsf{t}+1) = \mathsf{F}\left(\mathsf{X}_{\mathsf{v}}(\mathsf{t}),(\mathsf{X}_{\mathsf{N}_{\mathsf{v}}}(\mathsf{t})),\xi_{\mathsf{v}}(\mathsf{t}+1)\right),$$

with $(\xi_v(k))_{k \in \mathbb{N}, v \in G}$ i.i.d. with the same law for all graphs G;

 $\mathsf{dX}^{\mathsf{G},\mathsf{x}}_{\mathsf{v}}(\mathsf{t}) = \mathsf{b}(\mathsf{X}^{\mathsf{G},\mathsf{x}}_{\mathsf{v}}(\mathsf{t}),\mathsf{X}^{\mathsf{G},\mathsf{x}}_{\mathsf{N}_{\mathsf{v}}(\mathsf{G})}(\mathsf{t}))\mathsf{d}\mathsf{t} + \sigma(\mathsf{X}^{\mathsf{G},\mathsf{x}}_{\mathsf{v}}(\mathsf{t}),\mathsf{X}^{\mathsf{G},\mathsf{x}}_{\mathsf{N}_{\mathsf{v}}(\mathsf{G})}(\mathsf{t}))\mathsf{d}\mathsf{W}_{\mathsf{v}}(\mathsf{t}),$

with $X_{\mathbf{v}}^{\mathbf{G},\mathbf{x}}(\mathbf{0}) = \mathbf{x}_{\mathbf{v}}$, F continuous, b, σ Lipschitz continuous. Let P^{G_n,x^n} be the law of marked graph (G_n, \mathbf{X}^n)

Theorem 1: Lacker-Ramanan-Wu; '19/'20

- 1. For Markov chains, if $(G_n, x^n) \to (G, x)$ in $\mathcal{G}_*[\mathcal{X}]$ then $\mathcal{P}^{G_n, x^n} \to \mathcal{P}^{G, x}$ in $\mathcal{P}(\mathcal{G}_*[\mathcal{X}^\infty])$
- 2. For diffusions, if $\sup_{n \in \mathbb{N}} \sup_{v \in G_n} |x_v^n| \leq r$ and $(G_n, x^n) \to (G, x)$ in $\mathcal{G}_*[\mathcal{B}_r(\mathbb{R}^d)]$, then $\mathcal{P}^{G_n, x_n} \to \mathcal{P}^{G, x}$ in $\mathcal{P}(\mathcal{G}_*[\mathcal{C}_d])$
- 3. Immediate extensions to the case of random graphs hold.

Will discuss the proof of Theorem 1 and then move to study empirical measures