
Recap of Lecture 1

XG,x
v (t + 1) = Fv

⇣
XG,x

v (t),XG,x
NV

(t), ⇠v(t + 1)
⌘
,

dXG,x
v (t) = bv(XG,x

v (t),XG,x
Nv(G)(t))dt + �v(XG,x

v (t),XG,x
Nv(G)(t))dWv(t).

———————————–
Key questions: Given Gn = (Vn,En), xn 2 XVn , with |Vn| ! 1.

Q1. Do the processes XGn,xn converge in a suitable sense?

A1: Theorem 1: Lacker-R-Wu; ’19/’20
if (Gn, xn) converges locally to (G , x) in distribution, then
(Gn,XGn,xn

) converges locally in distribution to (G ,XG,x)

Proof: Markov chains. Simple inductive argument.
Diffusions. A more involved coupling argument.
Cont. time Markov chains. More subtle. When maximal degree of
G is not uniformly bounded, even well-posedness of XG ,x is not
immediate (Ganguly-R ’21).
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Recap of Lecture 2

µG ,x :=
1
|G |

X

v2G
�
XG ,x
v

µG ,x(t) :=
1
|G |

X

v2G
�
XG ,x
v (t)

Q2. Do the global empirical measures µGn,xn converge?
Is the limit a deterministic measure? If so, is it Law(XG,x

⇢ )?

Theorem 2: Lacker-R-Wu; ’19/’20
Suppose (Gn, xn) converges in probability in the local weak sense
to (G , x). Then (Gn,XGn,xn

) converges in probability in the local
weak sense to (G ,XG,x) and hence, µGn,xn ) Law(XG,x

⇢ ).
Example: Gn = G(n, pn) with npn ! c ; xn i.i.d. init. cond.

Theorem 3 Lacker-R-Wu; ’19/’20

But the limit of µGn,xn could be stochastic when (Gn, xn)

converges only in law in the local weak sense to (G , x).

However, in many other cases, the limit could be deterministic but
not coincide with Law(XG,x

⇢ )!!
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References related to Lectures 1 and 2

Local Weak Convergence of Stochastic Processes on Sparse
Graphs
• Oliveira, Reis, Stolerman, “Interacting diffusions on sparse graphs:
hydrodynamics from local weak limits,” EJP 25 (2020).

Local Weak Convergence & Convergence of Empirical
Measures of Stochastic Processes on Sparse Graphs
• Lacker, R., Wu, “Large sparse networks of interacting diffusions,”
Arxiv Preprint (2019)
• Lacker, R., Wu, “Local weak convergence for sparse networks of
interacting processes,” Arxiv Preprint (2020)
• Ganguly and R., “Limits of empirical measures of interacting
particle systems on large sparse graphs,” near completion, (2021)



Related literature for static models

• Aldous and Steele, Probabilistic Combinatorial Optimization and
Local Weak Convergence, Probability on discrete structures, 1-72
382, 2004.
• A. Dembo and A. Montanari, Gibbs Measures and Phase
Transitions on Sparse Random Graphs, Braz. J. Probab. Stat. 24
(2):137-211 (2010).
• Numerous other papers by C. Bordenave, M. Lelarge, N. Litvak,
M. Olvera-Craviato, J. Salez, R. van der Hofstad, ...



Lecture 3



The Main Question: Characterizing Marginal Dynamics

In Lectures 1 and 2 we have shown:

if (Gn, xn) ! (G , x) in probability in the local weak sense, then

XGn,xn
⇢n ) XG,x

⇢ and µGn,xn
⇢n ) Law(XG,x

⇢ )

... which motivates us to ask:

Q3. can one autonomously characterize the marginal dynamics of a
fixed or “typical particle” XG,x

⇢ (t), t 2 [0,T ]?

Recall local limits of (random) graphs are often (random) trees.
so we will focus on this case ...
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Outline of Lecture 3

Conditional Independence Properties of the Infinite System
Derivation of Marginal Dynamics

Implications of the Results



Conditional Independence

Properties of the Infinite System



A Static Analog: Markov Random Fields

State space S; {Yv , v 2 V } canonical variables acting on SV

Defn. A probability measure ⇡ on SV is said to be a Markov
Random Field (MRF) wrt G = (V ,E ) if for ⇡ a.e. ⌘A,

⇡
�
YA = ⌘A|YV \A = ⌘V \A

�
= ⇡

⇣
YA = ⌘A|Y@A = ⌘@A

⌘

where @A is the boundary of A:
@A = {u 2 V \A : 9u 2 A s.t. u ⇠ v},

A

A

δ

Examples: product meas, Ising model, Potts model, hard core
model, Gibbs measures, ...



Markov Random Fields

An Equivalent Formulation: (Yv )v2V is a MRF on S
V wrt

G = (V ,E ) if for finite A ⇢ V , B ⇢ V \ [A [ @A],
(Yv )v2A ? (Yv )v2B | (Yv )v2@A,

When G is a tree

Fact: Tree structure allows one to more easily analyze the marginal
distribution at a node of a MRF
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In Search of a Conditional Independence Property

Fix (G , x) infinite. Denote X = XG,x. Set � = I , (Xv(0))v2V iid.

Xv(t + 1) = F (Xv(t),XNV(t), ⇠v(t + 1)),

dXv(t) = b(Xv(t),XNv(t))dt + dWv(t).

Question A:
For t > 0, will (Xv(t))v2V form a MRF wrt G?

In other words, for finite A ⇢ V and B ⇢ V \ [A [ @A],
Is XA(t) ? XB(t)|X@A(t)?

G = Z,A = {�1,�2, . . . ,�10},A0 = {�1} ⇢ A, @A = {0,�11},B = {1}.

. . .
�3 �2�3 �2�3 �2�3 �2 �1 0 1 2 3

. . . t = 4

. . .
�3 �2 �1�3 �2 �1�3 �2 �1�3 �2 �1 0 1 2 3

. . . t = 3

Answer A:
No!
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In Search of a Conditional Independence Property

Xv(t + 1) = F (Xv(t),XNV(t), ⇠v(t + 1)),

dXv(t) = b(Xv(t),XNv(t))dt + dWv(t).

Question B:
For t > 0, do the particle histories (X v [t])v2V form a MRF wrt G?

Henceforth, x [t] := (x(s), s 2 [0, t]).



In Search of a Conditional Independence Property
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Second-order Markov Random Fields

Double Boundary
@2

A = @A [ [@(@A) \ A]

A

�A

�(�A)\A

Definition: A family of random variables (Y v )v2V is a 2nd-order
Markov random field if

YA ? YB | Y@2A,

for all finite sets A,B ⇢ V with B \ (A [ @2
A) = ;.



Trying again ...

Xv(t + 1) = F (Xv(t),XNV(t), ⇠v(t + 1)),

Question C:
Given t > 0, for any finite A ⇢ V and B ⇢ V \ [A [ @2

A], is

XA[t] ? XB[t]|X@2A[t]?

· · ·
�3 �2�3 �2�3 �2�3 �2 �1 0 1 2 3

· · · t = 4

· · ·
�3 �2 �1�3 �2 �1�3 �2 �1�3 �2 �1 0 1 2 3

· · · t = 3
...

· · ·
�3 �2 �1�3 �2 �1�3 �2 �1�3 �2 �1 0 1 2 3

· · · t = 0
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Trying again ...
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Theorem 4: (Lacker, R, Wu ’18, Ganguly-R ’21) YES!

XA[t] ? XB[t]|X@2A[t]

for all A ⇢ V finite and B ⇢ V with B \ (A [ @2
A) = ;.

Generalizations: In fact,
• this result holds even when (Xv(0))v2V is just a second-order
MRF – do not require (Xv (0))v2V i.i.d.
• Further, can allow A to be infinite (non-trivial for diffusions)
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Comments on the Conditional Independence Property

Some related Work: mostly for G = Zd

• For gradient diffusions on Zd : Deuschel (’87) and
Cattiaux, Roelly, Zessin (’96)

• For non-gradient processes on Zd with shift-invariant initial
conditions: Dereudre and Roelly (2017)

Our proof is valid for general graphs and uses a different approach
from the above.

Of relevance to the study of Gibbs-non-Gibbs transitions

• (den Hollander, Külske, Opoku, Redig, Roelly, Ruszel,
van Enter, ... )
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Ideas behind the Proof

Markov Chain Setting

Xv(t + 1) = F (Xv(t),XNV(t), ⇠v(t + 1)),

XA[t] ? XB[t]|X@2A[t]?

Proof “by hand”

1. Establish some general conditional independence relations
(see Problem Set 2)

2. Use the dynamics to extract appropriate functional relations
3. Combine to get the proof



Ideas behind the Proof

Diffusion Setting

dXv(t) = b(Xv(t),XNv(G)(t))dt + dWv(t)

Invokes the Gibbs-Markov/Hammersley-Clifford Theorem

• Recall that a clique of a graph G = (V ,E ) is a subset of V for
which the induced subgraph on V is complete.

• Let cl(G ) denote the set of cliques of a graph.

Definition

S measurable space. A nonnegative function f : SV 7! R+ is said
to factor on a finite graph G if there exist functions
fK : SK ! R+, K 2 cl(G ), such that

f (x) =
Y

K2cl(G)

fK (x
K ), x 2 SV . (1)
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Gibbs-Markov/Hammersley-Clifford Theorem

Version when S is a Discrete State Space
Gibbs-Markov/Hammersley-Clifford theorem (’70’s)
Given a finite graph G = (V ,E ), if a probability mass function f

on the discrete set SV factors on G , or equivalently, admits the
representation

f (x) =
1
Z

Y

K2cl(G)

fK (x
K ),

with Z the normalization constant:

Z =
X

x2SV

Y

K2cl(G)

fK (x
K ),

for suitable functions fK : SK 7! R+, K 2 cl(G ),

then f defines a
MRF with respect to G . Further, the converse is also true if f is
positive, that is, f (x) > 0 for every x 2 SV .
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positive, that is, f (x) > 0 for every x 2 SV .



Gibbs-Markov/Hammersley-Clifford Theorem

Version when S is a Discrete State Space
Gibbs-Markov/Hammersley-Clifford theorem (’70’s)
Given a finite graph G = (V ,E ), if a probability mass function f

on the discrete set SV factors on G , or equivalently, admits the
representation

f (x) =
1
Z

Y

K2cl(G)

fK (x
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with Z the normalization constant:

Z =
X

x2SV

Y
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fK (x
K ),

for suitable functions fK : SK 7! R+, K 2 cl(G ), then f defines a
MRF with respect to G . Further, the converse is also true if f is
positive, that is, f (x) > 0 for every x 2 SV .



An Immediate Extension

• Let cl2(G ) denote the 2-cliques of G , which are subsets of V for
which the induced subgraph has diameter less than or equal to 2

Gibbs-Markov/Hammersley-Clifford theorem for 2nd order
Given a finite graph G = (V ,E ), if a probability mass function f

on the discrete set SV factors on a finite graph G , or equivalently
admits the representation

f (x) =
1
Z

Y

K2cl2(G)

fK (x
K ),

with Z the normalization constant

Z =
X

x2SV

Y

K2cl2(G)

fK (x
K ),

for functions fK : SK 7! R+, K 2 cl2(G ),

then f defines a 2nd
order MRF with respect to G .
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Proof of the Conditional Independence Property

dXv(t) = b(Xv(t),XNv(G)(t))dt + dWv(t)

XA[t] ? XB[t]|X@2A[t]

Main Steps of the Proof in the Diffusion Case

• On any finite graph G , use Girsanov’s theorem to identify the
density of the law of the SDE with respect to a certain
product measure (product Wiener measure when � = I )

• On any finite graph G , show that the density has a certain
clique representation and use the 2nd-order Gibbs-Markov
(Hammersley-Clifford) theorem to conclude the 2nd-order
MRF property.

• Use a subtle approximation argument for infinite graphs G

(for an idea of some subtleties, see exercise in Prob. Set 2)

Analogous result more complicated for jump processes (Ganguly-R
’21)
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Derivation of Marginal Dynamics



Marginal Dynamics

Xv(t + 1) = F (Xv(t),XNV(t), ⇠v(t + 1)),

Recall the conditional independence property

For any (not necessarrily finite) A ⇢ V , B ⇢ V \ A [ @2
A,

XA[t] ? XB[t]|X@2A[t]

Is this conditional independence property of any use?



Marginal Dynamics

Xv(t + 1) = F (Xv(t),XNV(t), ⇠v(t + 1)),

Recall the conditional independence property

For any (not necessarrily finite) A ⇢ V , B ⇢ V \ A [ @2
A,

XA[t] ? XB[t]|X@2A[t]

Is this conditional independence property of any use?



Marginal Dynamics on Trees

Suppose the limiting graph G is an infinite d-regular tree.

d = 3

d = 4



Marginal Dynamics on Trees

• Let T denote the infinite -regular tree.
• For simplicity consider the case  = 2.
• Note that Theorem 1 implies that for a typical vertex ⇢,
{X⇢, (Xv )v⇠⇢} can be obtained as the marginal of the infinite
coupled system of Markov chains:

Xv(t + 1) = F (Xv(t),XNV(t), ⇠v(t + 1)), v 2 T2.

• Identify T2 with Z, set ⇢ = 0.
• Then we are interested in an autonomous characterization of

the marginal law of

X�1,0,1 = (X�1,X0,X1).

. . .
�3 �2�3 �2�3 �2�3 �2 �1 0 1 2 3

. . .

How can we exploit the conditional independence structure?
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Marginal dynamics for the infinite 2-regular tree

. . .
�3 �2�3 �2�3 �2�3 �2 �1 0 1 2 3

. . .

Xi (t + 1) = F (Xi (t), (Xi�1(t),Xi+1(t)), ⇠i (t + 1)) , i 2 Z,

Goal: Autonomous characterization of the law of X�1,0,1

• We will describe how to generate another stochastic process
Y = Y�1,0,1 that has the same law as the marginal process
X�1,0,1.

• but whose evolution only depends on the history of its state,
and the law of the history of the state, or equivalently, the law
of the marginal process X�1,0,1, equivalently the law of Y�1,0,1

• In other words, the dynamics of Y�1,0,1 (is not defined for
and) should make no reference to particles outside {�1, 0, 1}



Marginal dynamics for the infinite 2-regular tree

. . .
�3 �2�3 �2�3 �2�3 �2 �1 0 1 2 3

. . .

X0(t + 1) = F (X0(t), (X�1(t),X1(t)), ⇠0(t + 1)) , i 2 Z,

• First, note that the evolution of the (law of the) middle
particle 0 only depends on the (law of) states of the
neighboring particles �1 and 1, so its evolution should exactly
mimic that of X :

Y0(t + 1) = F (Y0(t), (Y�1(t),Y1(t)), ⇠0(t + 1)) .



Evolution of neighboring particles

. . .
�3�3�3�3 �2 �1 0 1 2 3

. . .

• We saw that the 0 particle evolution is simple:

Y0(t + 1) = F (Y0(t), (Y�1(t),Y1(t)), ⇠0(t + 1)) .

• The evolution of the states of neighboring particles �1 and 1
should satisfy (Y�1,Y1)(t + 1)

(d)
= (X�1,X1)(t + 1). Recall

X�1(t + 1) = F (X�1(t), (X�2(t),X0(t)), ⇠�1(t + 1)) ,

X1(t + 1) = F (X1(t), (X0(t),X2(t), ⇠1(t + 1))

• However, the law of (X�1,X1)(t + 1) depends on

Law (X�2(t),X�1(t),X0(t),X1(t),X2(t))

• ... which seems not obtainable from Y�1,0,1(t)
(d)
= X�1,0,1(t)

... as it involves extraneous particles (X�2,X2)
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Evolution of neighboring particles

. . .
�3�3�3�3 �2 �1 0 1 2 3

. . .

X�1(t + 1) = F (X�1(t), (X�2(t),X0(t)), ⇠�1(t + 1)) ,

X1(t + 1) = F (X1(t), (X0(t),X2(t), ⇠1(t + 1))

• Key observation 1: We have access to the law (and values)
of Y�1,0,1[t] (or X�1,0,1[t]), and so it suffices to know the
conditional law of (X�2(t),X2(t)), given the past X�1,0,1[t].

• But can we relate this to Law(Y�1,0,1[t]) = Law(X�1,0,1[t])?



X�1(t + 1) = F (X�1(t), (X�2(t),X0(t)), ⇠�1(t + 1)) ,

X1(t + 1) = F (X1(t), (X0(t),X2(t), ⇠1(t + 1)) .

• Recall observation 1: It suffices to know the conditional law
of (X�2(t),X2(t)), given the past X�1,0,1[t].

· · ·
�3�3�3�3 �2 �1 0 1 2 3

· · · t = 4

· · ·
�3 �2�3 �2�3 �2�3 �2 �1 0 1 2 3

· · · t = 3
...

· · ·
�3 �2�3 �2�3 �2�3 �2 �1 0 1 2 3

· · · t = 0

• Key observation 2: By the 2-MRF property of Thm 4,

X�2(t) ? X2(t)|X�1,0,1[t]

– So it suffices to know the conditional law of X�2(t), given
X�1,0,1[t]

– the conditional law of X2(t), given X�1,0,1[t] can then be
recovered by symmetry
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• By Observations 1 & 2 it suffices to know the conditional
law of X�2(t), given X�1,0,1[t]
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• Key Observation 3: By the 2-MRF property of Thm 4, this
coincides with the conditional law of X�2(t), given X�1,0[t]
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• Recall observations 1-3 imply: It suffices to know the
conditional law of X�2(t) given X�1,0[t].

· · ·
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· · · t = 4
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· · · t = 0
• But can you derive that knowing only Law(X�1,0,1[t])?

• Key observation 4: By translation symmetry, this is the
same as the conditional law of X�1(t) given X0,1[t]

· · ·
�3 �2�3 �2�3 �2�3 �2 �1 0 1 2 3

· · · t = 4

· · ·
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· · · t = 3
...

· · ·
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· · · t = 0

• But this only requires the knowledge of the law of X�1,0,1[t],
(hence, of Y�1,0,1[t]), so the evolution is autonomous!
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Autonomous evolution of the root neighborhood

• Start with Y�1,0,1(0) = X�1,0,1(0)

• At each time t 2 N0, define for y0, y1 2 X1,

�t(· | y0, y1) = Law
⇣
Y�1(t) |Y0[t] = y0[t],Y1[t] = y1[t]

⌘
.

· · ·
�3�3�3�3 �2 �1 0 1 2 3

· · · t = 4

· · ·
�3 �2 �1�3 �2 �1�3 �2 �1�3 �2 �1 0 1 2 3

· · · t = 3
...

· · ·
�3 �2 �1�3 �2 �1�3 �2 �1�3 �2 �1 0 1 2 3

· · · t = 0

• Sample ghost particles Y�2(t) andd Y2(t)) so that

P
⇣
Y�2,2(t) = y�2,2 |Y�1,0,1[t]

⌘
= �t(y�2|Y�1,0[t])�t(y2|Y1,0[t])

• Sample iid noises ⇠�1,0,1(t + 1), and update:

Yi (t + 1) = F

⇣
Yi (t),Yi�1,i+1(t), ⇠i (t + 1)

⌘
, i = �1, 0, 1
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Structure of evolution of the root neighborhood

Y�1(t + 1) = F

⇣
Y�1(t), (Y�2(t),Y0(t)), ⇠�1(t + 1)

⌘
,

Y0(t + 1) = F

⇣
Y0(t),Yi�1,i+1(t), ⇠0(t + 1)

⌘
,

Y1(t + 1) = F

⇣
Y1(t), (Y0(t),Y2(t)), ⇠1(t + 1)

⌘
,

where
P
⇣
Y�2,2(t) = y�2,2 |Y�1,0,1[t]

⌘
= �t(y�2|Y�1,0[t])�t(y2|Y1,0[t])

with
�t(· | y0, y1) = Law

⇣
Y�1(t) |Y0[t] = y0[t],Y1[t] = y1[t]

⌘
.

Rephrasing, without reference to “ghost particles”, the evolution of
the law of Y�1,0,1 is autonomous, non-Markov and nonlinear:

Y�1,0,1(t + 1) = H

⇣
t,Y�1,0,1[t],Law(Y�1,0,1[t]), ⇠�1,0,1(t + 1)

⌘
.

for some measurable mapping

H : N⇥ X1 ⇥ P(X1)⇥ U 7! X 3
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Marginal Dynamics on the 2-regular tree: Diffusion

• As before, identify T2 = Z, ⇢ = 0.

• Once again interested in an autonomous characterization of
the marginal X�1,0,1 of the infinite system of SDEs:

dXi (t) =
1
2

X

j=i+1,i�1

b(Xi (t),Xj(t))dt + dWi (t), i 2 Z,

where (for simplicity) we choose the special “linear” form of
the drift

• A similar result as in the M. chain case holds, except that the
derivation is much more complicated.
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From Conditional Independence to Local Equations

. . .
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. . .
Particle system on infinite line graph, i 2 Z:

dXi (t) =
1
2
�
b(Xi (t),Xi�1(t)) + b(Xi (t),Xi+1(t))

�
dt + dWi (t)

For x1, x0 2 C, and t > 0,

�t(x1, x0) := Law
�
X�1(t) |X0[t] = x0[t], X1[t] = x1[t]

�
.

Theorem 5 (Lacker-R-W ’19): X�1,0,1
d
= Y = (Y�1,0,1, where Y

is the unique weak solution to

dY�1(t) =
1
2
�
b(Y�1,0(t)) + h�t(Y�1,Y0), b(Y�1(t), ·)i

�
dt + dW̃1(t)

dY0(t) =
1
2
�
b(Y0,1(t)) + b(Y0,1(t))

�
dt + dW̃0(t)

dY1(t) =
1
2
�
h�t(Y1,Y0), b(Y1(t), ·)i+ b(Y1,0(t))

�
dt + dW̃�1(t)

�t(x1, x0) := Law
�
Y�1(t) |Y0[t] = x0[t], Y1[t] = x1[t]

�
.

Again, autonomous description as a nonlinear, non-Markov proc.
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Summary: Beyond Mean-Field Limits

Mean-Field Dynamics (Dense Sequences Gn = Kn)

dX (t) = B(X (t), µ(t))dt + dW (t), µ(t) = Law(X (t)).

where B(x ,m) =
R
Rd b(x , y)m(dy).

Beyond Mean-Field Dynamics (The Sparse Case of G = T2)
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Generalizations: Infinite -regular trees T

Can derive an autonomous SDE
system for root particle and its
neighbors,

X⇢(t), (X⇢(t))v⇠⇢,

involving the conditional law of
� 1 children given root and one
other child u:

Law((Xv )v⇠⇢, v 6=u |X⇢, Xu)

⇢

u

 = 3



Infinite -regular trees

Autonomous SDE system for root
particle and its neighbors,

X⇢(t), (Xv (t))v⇠⇢,

involving conditional law of  � 1
children given root and one other
child u:

Law((Xv )v⇠⇢, v 6=u |X⇢, Xu)

⇢

u

 = 4



Infinite d-regular trees

Autonomous SDE system for root
particle and its neighbors,

X⇢(t), (Xv (t))v⇠⇢,

involving conditional law of  � 1
children given root and one other
child u:

Law((Xv )v⇠⇢, v 6=u |X⇢, Xu)

⇢

u

 = 5



But what about random graph limits?

For example, can we find the marginal dynamics on a unimodular
Galton-Watson tree?

Yes ... although the derivation is more complicated and now
involves also averaging over the random structure of the tree s



Implications of the Results



Summary of Results

Recall that evolution of the law of Y�1,0,1 is autonomous,
non-Markov and nonlinear
Markov chain:

Y�1,0,1(t + 1) = H

⇣
t,Y�1,0,1[t],Law(Y�1,0,1[t]), ⇠�1,0,1(t + 1)

⌘
.

for some measurable mapping

H : N⇥ X1 ⇥ P(X1)⇥ U 7! X 3

Diffusion:

dY�1(t) =
1
2
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�
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How well do these approximations perform?

Discrete-time SIR process on the cycle graph
Comparing mean-field and full simulation

Plot of probability of being healthy vs. time
simulations due to Mitchell Wortsman

Mean-field approximation fails!



How well does the local eqn. approximation perform?

Discrete-time SIR process on the cycle graph
Comparing mean-field, full simulation and local equation

Plot of probability of being healthy vs. time
simulations due to Mitchell Wortsman

Local equation approximation works well!!



Similar observation for other processes

The Discrete-Time Contact Process

Xv (t + 1) = F (Xv (t), (Xu(t))u⇠v , ⇠v (t + 1)) ,

State space S = {0, 1} = {healthy, infected}. Parameters
p, q 2 [0, 1].

Transition rule F: At time t, if particle v is at...

• state Xv (t) = 1, it switches to Xv (t + 1) = 0 w.p. q,
• state Xv (t) = 0, it switches to Xv (t + 1) = 1 w.p.

p

dv

X

u⇠v

Xu(t),

where dv = degree of vertex v .



Numerical Results for the Discrete-time Contact Process



Summary of the Course

• Novel characterization of asymptotic limits of marginal
dynamics for locally interacting processes on large sparse
networks
– provides an alternative to mean-field approximations

• Many interesting theoretical questions: to gain a better
understanding of the local equations and looking at more
general settings

• Interesting computational questions

• Variety of applications ...



Thank you !!


