## Recap of Lecture 1

$$
\begin{aligned}
& X_{v}^{G, \mathrm{x}}(\mathrm{t}+1)=\mathrm{F}_{\mathrm{v}}\left(\mathrm{X}_{\mathrm{v}}^{\mathrm{G}, \mathrm{x}}(\mathrm{t}), \mathrm{X}_{\mathrm{N}_{\mathrm{v}}}^{\mathrm{G}, \mathrm{x}}(\mathrm{t}), \xi_{\mathrm{v}}(\mathrm{t}+1)\right), \\
& d X_{v}^{G, x}(t)=\mathbf{b}_{v}\left(\mathbf{X}_{v}^{G, x}(t), X_{N_{v}(G)}^{G, x}(t)\right) d t+\sigma_{v}\left(X_{v}^{G, x}(t), X_{N_{v}(G)}^{G, x}(t)\right) d W_{v}(t) .
\end{aligned}
$$

Key questions: Given $G_{n}=\left(V_{n}, E_{n}\right), x^{n} \in \mathcal{X}^{V_{n}}$, with $\left|V_{n}\right| \rightarrow \infty$.

## Recap of Lecture 1

$$
\begin{gathered}
\mathbf{X}_{v}^{G, x}(t+1)=F_{v}\left(X_{v}^{G, x}(t), X_{N_{v}}^{G, x}(t), \xi_{v}(t+1)\right) \\
d^{G} X_{v}^{G, x}(t)=b_{v}\left(X_{v}^{G, x}(t), X_{N_{v}(G)}^{G, x}(t)\right) d t+\sigma_{v}\left(X_{v}^{G, x}(t), X_{N_{v}(G)}^{G, x}(t)\right) d W_{v}(t)
\end{gathered}
$$

Key questions: Given $G_{n}=\left(V_{n}, E_{n}\right), x^{n} \in \mathcal{X}^{V_{n}}$, with $\left|V_{n}\right| \rightarrow \infty$.
Q1. Do the processes $X^{G_{n}, x^{n}}$ converge in a suitable sense?
A1: Theorem 1: Lacker-R-Wu; '19/'20
if $\left(G_{n}, x^{n}\right)$ converges locally to ( $G, x$ ) in distribution, then ( $G_{n}, X^{\mathbf{G}_{n}, x^{\mathbf{n}}}$ ) converges locally in distribution to ( $G, X^{\mathbf{G}, \mathrm{x}}$ )

## Recap of Lecture 1

$$
\begin{gathered}
X_{v}^{G, x}(t+1)=F_{v}\left(X_{v}^{G, x}(t), X_{N_{v}}^{G, x}(t), \xi_{v}(t+1)\right) \\
d^{G} X_{v}^{G, x}(t)=\mathbf{b}_{v}\left(X_{v}^{G, x}(t), X_{N_{v}(G)}^{G, x}(t)\right) d t+\sigma_{v}\left(X_{v}^{G, x}(t), X_{N_{v}(G)}^{G, x}(t)\right) d W_{v}(t)
\end{gathered}
$$

Key questions: Given $G_{n}=\left(V_{n}, E_{n}\right), x^{n} \in \mathcal{X}^{V} V_{n}$, with $\left|V_{n}\right| \rightarrow \infty$.
Q1. Do the processes $\mathbf{X}^{\mathrm{G}_{\mathrm{n}}, \mathrm{x}^{\mathrm{n}}}$ converge in a suitable sense?

## A1: Theorem 1: Lacker-R-Wu; '19/'20

if $\left(G_{n}, x^{n}\right)$ converges locally to ( $G, x$ ) in distribution, then
( $G_{n}, X^{\mathbf{G}_{\mathrm{n}}, \mathrm{x}^{\mathrm{n}}}$ ) converges locally in distribution to ( $G, \mathrm{X}^{\mathbf{G}, \mathrm{x}}$ )
Proof: Markov chains. Simple inductive argument.
Diffusions. A more involved coupling argument.
Cont. time Markov chains. More subtle. When maximal degree of $G$ is not uniformly bounded, even well-posedness of $X^{G, x}$ is not immediate (Ganguly-R '21).

## Recap of Lecture 2

$$
\mu^{G, x}:=\frac{1}{|G|} \sum_{v \in G} \delta_{X_{v}^{G, x}} \quad \mu^{G, x}(t):=\frac{1}{|G|} \sum_{v \in G} \delta_{X_{v}{ }^{G, x}(t)}
$$

Q2. Do the global empirical measures $\mu^{G_{n}, x^{n}}$ converge?
Is the limit a deterministic measure? If so, is it $\operatorname{Law}\left(\mathbf{X}_{\rho}^{\mathbf{G}, \mathrm{x}}\right)$ ?

## Theorem 2: Lacker-R-Wu; '19/'20

Suppose $\left(G_{n}, x^{n}\right)$ converges in probability in the local weak sense to ( $G, x$ ). Then $\left(G_{n}, X^{G_{n}, x^{n}}\right)$ converges in probability in the local weak sense to $\left(G, X^{\mathbf{G}, \mathbf{x}}\right)$ and hence, $\mu^{G_{n}, x^{n}} \Rightarrow \operatorname{Law}\left(\mathbf{X}_{\rho}^{\mathbf{G}, \mathbf{x}}\right)$.
Example: $G_{n}=\mathcal{G}\left(n, p_{n}\right)$ with $n p_{n} \rightarrow c$; $x^{n}$ i.i.d. init. cond.

## Theorem 3 Lacker-R-Wu; '19/'20

But the limit of $\mu^{G_{n}, x^{n}}$ could be stochastic when $\left(G_{n}, x^{n}\right)$ converges only in law in the local weak sense to $(G, x)$.

## Recap of Lecture 2

$$
\mu^{G, x}:=\frac{1}{|G|} \sum_{v \in G} \delta_{X_{v}^{G, x}} \quad \mu^{G, x}(t):=\frac{1}{|G|} \sum_{v \in G} \delta_{X_{v}{ }^{G, x}(t)}
$$

Q2. Do the global empirical measures $\mu^{G_{n}, x^{n}}$ converge?
Is the limit a deterministic measure? If so, is it $\operatorname{Law}\left(\mathbf{X}_{\rho}^{\mathbf{G}, \mathrm{x}}\right)$ ?

## Theorem 2: Lacker-R-Wu; '19/'20

Suppose $\left(G_{n}, x^{n}\right)$ converges in probability in the local weak sense to ( $G, x$ ). Then $\left(G_{n}, X^{G_{n}, x^{n}}\right)$ converges in probability in the local weak sense to $\left(G, X^{\mathbf{G}, \mathbf{x}}\right)$ and hence, $\mu^{G_{n}, x^{n}} \Rightarrow \operatorname{Law}\left(\mathbf{X}_{\rho}^{\mathbf{G}, \mathbf{x}}\right)$.
Example: $G_{n}=\mathcal{G}\left(n, p_{n}\right)$ with $n p_{n} \rightarrow c ; x^{n}$ i.i.d. init. cond.

## Theorem 3 Lacker-R-Wu; '19/'20

But the limit of $\mu^{G_{n}, x^{n}}$ could be stochastic when $\left(G_{n}, x^{n}\right)$ converges only in law in the local weak sense to $(G, x)$.

However, in many other cases, the limit could be deterministic but not coincide with $\operatorname{Law}\left(\mathbf{X}_{\rho}^{\mathbf{G}, \mathbf{x}}\right)$ !!

## References related to Lectures 1 and 2

Local Weak Convergence of Stochastic Processes on Sparse Graphs

- Oliveira, Reis, Stolerman, "Interacting diffusions on sparse graphs: hydrodynamics from local weak limits," EJP 25 (2020).

Local Weak Convergence \& Convergence of Empirical
Measures of Stochastic Processes on Sparse Graphs

- Lacker, R., Wu, "Large sparse networks of interacting diffusions," Arxiv Preprint (2019)
- Lacker, R., Wu, "Local weak convergence for sparse networks of interacting processes," Arxiv Preprint (2020)
- Ganguly and R., "Limits of empirical measures of interacting particle systems on large sparse graphs," near completion, (2021)


## Related literature for static models

- Aldous and Steele, Probabilistic Combinatorial Optimization and Local Weak Convergence, Probability on discrete structures, 1-72 382, 2004.
- A. Dembo and A. Montanari, Gibbs Measures and Phase Transitions on Sparse Random Graphs, Braz. J. Probab. Stat. 24 (2):137-211 (2010).
- Numerous other papers by C. Bordenave, M. Lelarge, N. Litvak, M. Olvera-Craviato, J. Salez, R. van der Hofstad, ...


## Lecture 3

# The Main Question: Characterizing Marginal Dynamics 

In Lectures 1 and 2 we have shown:
if $\left(G_{n}, x^{n}\right) \rightarrow(G, x)$ in probability in the local weak sense, then

$$
\mathbf{X}_{\rho_{\mathrm{n}}}^{\mathbf{G}_{\mathbf{n}}^{\mathbf{n}}} \Rightarrow \mathbf{X}_{\rho}^{\mathbf{G}, \mathbf{x}} \quad \text { and } \quad \mu_{\rho_{n}}^{G_{n}, x^{n}} \Rightarrow \operatorname{Law}\left(\mathbf{X}_{\rho}^{\mathbf{G}, \mathrm{x}}\right)
$$

... which motivates us to ask:
Q3. can one autonomously characterize the marginal dynamics of a fixed or "typical particle" $\mathbf{X}_{\rho}^{\mathrm{G}, \mathrm{x}}(\mathbf{t}), t \in[0, T]$ ?

# The Main Question: Characterizing Marginal Dynamics 

In Lectures 1 and 2 we have shown:
if $\left(G_{n}, x^{n}\right) \rightarrow(G, x)$ in probability in the local weak sense, then

$$
\mathbf{X}_{\rho_{\mathrm{n}}}^{\mathbf{G}_{\mathbf{n}}^{\mathbf{n}}} \Rightarrow \mathbf{X}_{\rho}^{\mathbf{G}, \mathbf{x}} \quad \text { and } \quad \mu_{\rho_{n}}^{G_{n}, x^{n}} \Rightarrow \operatorname{Law}\left(\mathbf{X}_{\rho}^{\mathbf{G}, \mathrm{x}}\right)
$$

... which motivates us to ask:
Q3. can one autonomously characterize the marginal dynamics of a fixed or "typical particle" $\mathbf{X}_{\rho}^{\mathrm{G}, \mathrm{x}}(\mathbf{t}), t \in[0, T]$ ?

Recall local limits of (random) graphs are often (random) trees. so we will focus on this case ...

# The Main Question: Characterizing Marginal Dynamics 

In Lectures 1 and 2 we have shown:
if $\left(G_{n}, x^{n}\right) \rightarrow(G, x)$ in probability in the local weak sense, then

$$
\mathbf{X}_{\rho_{\mathrm{n}}}^{\mathbf{G}_{\mathbf{n}}^{\mathbf{n}}} \Rightarrow \mathbf{X}_{\rho}^{\mathbf{G}, \mathbf{x}} \quad \text { and } \quad \mu_{\rho_{n}}^{G_{n}, x^{n}} \Rightarrow \operatorname{Law}\left(\mathbf{X}_{\rho}^{\mathbf{G}, \mathrm{x}}\right)
$$

... which motivates us to ask:
Q3. can one autonomously characterize the marginal dynamics of a fixed or "typical particle" $\mathbf{X}_{\rho}^{\mathrm{G}, \mathrm{x}}(\mathbf{t}), t \in[0, T]$ ?

Recall local limits of (random) graphs are often (random) trees. so we will focus on this case ...

## Outline of Lecture 3

Conditional Independence Properties of the Infinite System Derivation of Marginal Dynamics Implications of the Results

# Conditional Independence Properties of the Infinite System 

## A Static Analog: Markov Random Fields

State space $\mathbb{S} ;\left\{Y_{v}, v \in V\right\}$ canonical variables acting on $\mathbb{S}^{V}$
Defn. A probability measure $\pi$ on $\mathbb{S}^{V}$ is said to be a Markov Random Field (MRF) wrt $G=(V, E)$ if for $\pi$ a.e. $\eta_{A}$,

$$
\pi\left(Y_{A}=\eta_{A} \mid Y_{V \backslash A}=\eta_{V \backslash A}\right)=\pi\left(Y_{A}=\eta^{A} \mid Y_{\partial A}=\eta_{\partial A}\right)
$$

where $\partial A$ is the boundary of $A$ :

$$
\partial A=\{u \in V \backslash A: \exists u \in A \text { s.t. } u \sim v\},
$$



Examples: product meas, Ising model, Potts model, hard core model, Gibbs measures, ...

Markov Random Fields

An Equivalent Formulation: $\left(Y_{v}\right)_{v \in V}$ is a MRF on $S^{V}$ wrt $G=(V, E)$ if for finite $A \subset V, B \subset V \backslash[A \cup \partial A]$,

$$
\left(Y_{v}\right)_{v \in A} \perp\left(Y_{v}\right)_{v \in B} \mid\left(Y_{v}\right)_{v \in \partial A},
$$

## Markov Random Fields

An Equivalent Formulation: $\left(Y_{v}\right)_{v \in V}$ is a MRF on $S^{V}$ wrt $G=(V, E)$ if for finite $A \subset V, B \subset V \backslash[A \cup \partial A]$,

$$
\left(Y_{v}\right)_{v \in A} \perp\left(Y_{v}\right)_{v \in B} \mid\left(Y_{v}\right)_{v \in \partial A},
$$

When $G$ is a tree


Fact: Tree structure allows one to more easily analyze the marginal distribution at a node of a MRF

## In Search of a Conditional Independence Property

Fix $(G, x)$ infinite. Denote $\mathbf{X}=\mathbf{X}^{\mathbf{G}, \mathbf{x}}$. Set $\sigma=I,\left(\mathbf{X}_{v}(0)\right)_{v \in V}$ iid.

$$
\begin{aligned}
& \mathrm{X}_{\mathrm{v}}(\mathrm{t}+1)=\mathrm{F}\left(\mathrm{X}_{\mathrm{v}}(\mathrm{t}), \mathrm{X}_{\mathrm{N}_{\mathrm{v}}}(\mathrm{t}), \xi_{\mathrm{v}}(\mathrm{t}+1)\right), \\
& \mathrm{d} \mathrm{X}_{\mathrm{v}}(\mathrm{t})=\mathrm{b}\left(\mathrm{X}_{\mathrm{v}}(\mathrm{t}), \mathrm{X}_{\mathrm{N}_{\mathrm{v}}}(\mathrm{t})\right) \mathrm{dt}+\mathrm{dW}_{\mathrm{v}}(\mathrm{t})
\end{aligned}
$$

Question A:
For $t>0$, will $\left(\mathbf{X}_{\mathbf{v}}(\mathbf{t})\right)_{v \in V}$ form a MRF wrt G ?
In other words, for finite $A \subset V$ and $B \subset V \backslash[A \cup \partial A]$, Is $X_{A}(t) \perp X_{B}(t) \mid X_{\partial A}(t)$ ?

## In Search of a Conditional Independence Property

Fix $(G, x)$ infinite. Denote $\mathbf{X}=\mathbf{X}^{\mathbf{G}, \mathrm{x}}$. Set $\sigma=I,\left(\mathbf{X}_{\mathbf{v}}(0)\right)_{v \in V}$ iid.

$$
\begin{aligned}
& \mathrm{X}_{\mathrm{v}}(\mathrm{t}+1)=\mathrm{F}\left(\mathrm{X}_{\mathrm{v}}(\mathrm{t}), \mathrm{X}_{\mathrm{N}_{\mathrm{v}}}(\mathrm{t}), \xi_{\mathrm{v}}(\mathrm{t}+1)\right), \\
& \mathrm{dX}_{\mathrm{v}}(\mathrm{t})=\mathrm{b}\left(\mathrm{X}_{\mathrm{v}}(\mathrm{t}), \mathrm{X}_{\mathrm{N}_{\mathrm{v}}}(\mathrm{t})\right) \mathrm{dt}+\mathrm{dW}_{\mathrm{v}}(\mathrm{t})
\end{aligned}
$$

Question A:
For $t>0$, will $\left(\mathrm{X}_{\mathrm{v}}(\mathrm{t})\right)_{v \in V}$ form a MRF wrt G ?
In other words, for finite $A \subset V$ and $B \subset V \backslash[A \cup \partial A]$, Is $X_{A}(t) \perp X_{B}(t) \mid X_{\partial A}(t)$ ?
$G=\mathbb{Z}, A=\{-1,-2, \ldots,-10\}, A^{\prime}=\{-1\} \subset A, \partial A=\{0,-11\}, B=\{1$,


## In Search of a Conditional Independence Property

Fix $(G, x)$ infinite. Denote $\mathbf{X}=\mathbf{X}^{\mathbf{G}, \mathrm{x}}$. Set $\sigma=I,\left(\mathbf{X}_{\mathbf{v}}(0)\right)_{v \in V}$ iid.

$$
\begin{aligned}
& \mathrm{X}_{\mathrm{v}}(\mathrm{t}+1)=\mathrm{F}\left(\mathrm{X}_{\mathrm{v}}(\mathrm{t}), \mathrm{X}_{\mathrm{N}_{\mathrm{v}}}(\mathrm{t}), \xi_{\mathrm{v}}(\mathrm{t}+1)\right), \\
& \mathrm{d} \mathrm{X}_{\mathrm{v}}(\mathrm{t})=\mathrm{b}\left(\mathrm{X}_{\mathrm{v}}(\mathrm{t}), \mathrm{X}_{\mathrm{N}_{\mathrm{v}}}(\mathrm{t})\right) \mathrm{dt}+\mathrm{dW}_{\mathrm{v}}(\mathrm{t})
\end{aligned}
$$

Question A:
For $t>0$, will $\left(\mathbf{X}_{\mathrm{v}}(\mathrm{t})\right)_{v \in V}$ form a MRF wrt G ?
In other words, for finite $A \subset V$ and $B \subset V \backslash[A \cup \partial A]$, Is $X_{A}(t) \perp X_{B}(t) \mid X_{\partial A}(t)$ ?
$G=\mathbb{Z}, A=\{-1,-2, \ldots,-10\}, A^{\prime}=\{-1\} \subset A, \partial A=\{0,-11\}, B=\{1$,


## In Search of a Conditional Independence Property

Fix $(G, x)$ infinite. Denote $\mathbf{X}=\mathbf{X}^{\mathbf{G}, \mathrm{x}}$. Set $\sigma=I,\left(\mathbf{X}_{\mathbf{v}}(0)\right)_{v \in V}$ iid.

$$
\begin{aligned}
& \mathrm{X}_{\mathrm{v}}(\mathrm{t}+1)=\mathrm{F}\left(\mathrm{X}_{\mathrm{v}}(\mathrm{t}), \mathrm{X}_{\mathrm{N}_{\mathrm{v}}}(\mathrm{t}), \xi_{\mathrm{v}}(\mathrm{t}+1)\right), \\
& \mathrm{d} \mathrm{X}_{\mathrm{v}}(\mathrm{t})=\mathrm{b}\left(\mathrm{X}_{\mathrm{v}}(\mathrm{t}), \mathrm{X}_{\mathrm{N}_{\mathrm{v}}}(\mathrm{t})\right) \mathrm{dt}+\mathrm{dW}_{\mathrm{v}}(\mathrm{t})
\end{aligned}
$$

Question A:
For $t>0$, will $\left(\mathbf{X}_{\mathrm{v}}(\mathrm{t})\right)_{v \in V}$ form a MRF wrt G ?
In other words, for finite $A \subset V$ and $B \subset V \backslash[A \cup \partial A]$, Is $X_{A}(t) \perp X_{B}(t) \mid X_{\partial A}(t)$ ?
$G=\mathbb{Z}, A=\{-1,-2, \ldots,-10\}, A^{\prime}=\{-1\} \subset A, \partial A=\{0,-11\}, B=\{1$,


Answer A:
No!

In Search of a Conditional Independence Property

$$
\begin{aligned}
& \mathrm{X}_{\mathrm{v}}(\mathrm{t}+1)=\mathrm{F}\left(\mathrm{X}_{\mathrm{v}}(\mathrm{t}), \mathrm{X}_{\mathrm{N}_{\mathrm{v}}}(\mathrm{t}), \xi_{\mathrm{v}}(\mathrm{t}+1)\right) \\
& \mathrm{dX}_{\mathrm{v}}(\mathrm{t})=\mathrm{b}\left(\mathrm{X}_{\mathrm{v}}(\mathrm{t}), \mathrm{X}_{\mathrm{N}_{\mathrm{v}}}(\mathrm{t})\right) \mathrm{dt}+\mathrm{dW}_{\mathrm{v}}(\mathrm{t})
\end{aligned}
$$

Question B:
For $t>0$, do the particle histories $\left(X^{v}[t]\right)_{v \in V}$ form a MRF wrt G ? Henceforth, $x[t]:=(x(s), s \in[0, t])$.

## In Search of a Conditional Independence Property

$$
\mathbf{X}_{\mathbf{v}}(\mathrm{t}+\mathbf{1})=\mathrm{F}\left(\mathbf{X}_{\mathrm{v}}(\mathrm{t}), \mathrm{X}_{\mathbf{N}_{\mathrm{v}}}(\mathrm{t}), \xi_{\mathrm{v}}(\mathrm{t}+\mathbf{1})\right)
$$

Reformulation of Question B:
Given $t>0$, for any finite $A \subset V$ and $B \subset V \backslash[A \cup \partial A]$, Is $X_{A}[t] \perp X_{B}[t] \mid X_{\partial A}[t]$ ?

## In Search of a Conditional Independence Property

$$
\mathbf{X}_{\mathbf{v}}(\mathrm{t}+\mathbf{1})=\mathrm{F}\left(\mathbf{X}_{\mathrm{v}}(\mathrm{t}), \mathbf{X}_{\mathbf{N}_{\mathrm{v}}}(\mathrm{t}), \xi_{\mathrm{v}}(\mathrm{t}+\mathbf{1})\right),
$$

Reformulation of Question B:
Given $t>0$, for any finite $A \subset V$ and $B \subset V \backslash[A \cup \partial A]$, Is $X_{A}[t] \perp X_{B}[t] \mid X_{\partial A}[t]$ ?

$$
G=\mathbb{Z}, A=\{-1,-2,-3, \ldots,\}, A^{\prime}=\{-1\} \subset A, \partial A=\{0\}, B=\{1\} .
$$



## In Search of a Conditional Independence Property

$$
\mathbf{X}_{\mathbf{v}}(\mathrm{t}+\mathbf{1})=\mathrm{F}\left(\mathbf{X}_{\mathrm{v}}(\mathrm{t}), \mathbf{X}_{\mathbf{N}_{\mathrm{v}}}(\mathrm{t}), \xi_{\mathrm{v}}(\mathrm{t}+\mathbf{1})\right),
$$

Reformulation of Question B:
Given $t>0$, for any finite $A \subset V$ and $B \subset V \backslash[A \cup \partial A]$, Is $X_{A}[t] \perp X_{B}[t] \mid X_{\partial A}[t]$ ?

$$
G=\mathbb{Z}, A=\{-1,-2,-3, \ldots,\}, A^{\prime}=\{-1\} \subset A, \partial A=\{0\}, B=\{1\} .
$$



Answer B: No!

Second-order Markov Random Fields

$$
\begin{gathered}
\text { Double Boundary } \\
\partial^{2} A=\partial A \cup[\partial(\partial A) \backslash A]
\end{gathered}
$$



Definition: A family of random variables $\left(Y^{v}\right)_{v \in V}$ is a 2nd-order Markov random field if

$$
Y_{A} \perp Y_{B} \mid Y_{\partial^{2} A},
$$

for all finite sets $A, B \subset V$ with $B \cap\left(A \cup \partial^{2} A\right)=\emptyset$.

Trying again ...

$$
\mathbf{X}_{\mathbf{v}}(\mathrm{t}+\mathbf{1})=\mathrm{F}\left(\mathbf{X}_{\mathrm{v}}(\mathrm{t}), \mathbf{X}_{\mathbf{N}_{\mathrm{v}}}(\mathrm{t}), \xi_{\mathrm{v}}(\mathrm{t}+\mathbf{1})\right)
$$

Question C:
Given $t>0$, for any finite $A \subset V$ and $B \subset V \backslash\left[A \cup \partial^{2} A\right]$, is

$$
\mathrm{X}_{\mathrm{A}}[\mathrm{t}] \perp \mathrm{X}_{\mathrm{B}}[\mathrm{t}] \mid \mathrm{X}_{\partial^{2} \mathrm{~A}}[\mathrm{t}] ?
$$

## Trying again ...

$$
\mathbf{X}_{\mathbf{v}}(\mathrm{t}+\mathbf{1})=\mathrm{F}\left(\mathbf{X}_{\mathbf{v}}(\mathrm{t}), \mathbf{X}_{\mathbf{N}_{\mathbf{v}}}(\mathrm{t}), \xi_{\mathbf{v}}(\mathrm{t}+\mathbf{1})\right)
$$

Question C:
Given $t>0$, for any finite $A \subset V$ and $B \subset V \backslash\left[A \cup \partial^{2} A\right]$, is


Trying again


Theorem 4: (Lacker, R, Wu '18, Ganguly-R '21) YES!

$$
X_{A}[t] \perp X_{B}[t] \mid X_{\partial^{2} A}[t]
$$

for all $A \subset V$ finite and $B \subset V$ with $B \cap\left(A \cup \partial^{2} A\right)=\emptyset$.

## Trying again



Theorem 4: (Lacker, R, Wu '18, Ganguly-R '21) YES!

$$
X_{A}[t] \perp X_{B}[t] \mid X_{\partial^{2} A}[t]
$$

for all $A \subset V$ finite and $B \subset V$ with $B \cap\left(A \cup \partial^{2} A\right)=\emptyset$.
Generalizations: In fact,

- this result holds even when $\left(X_{\mathbf{v}}(0)\right)_{\mathbf{v} \in \mathrm{V}}$ is just a second-order MRF - do not require $\left(X_{v}(0)\right)_{v \in V}$ i.i.d.


## Trying again



Theorem 4: (Lacker, R, Wu '18, Ganguly-R '21) YES!

$$
X_{A}[t] \perp X_{B}[t] \mid X_{\partial^{2} A}[t]
$$

for all $A \subset V$ finite and $B \subset V$ with $B \cap\left(A \cup \partial^{2} A\right)=\emptyset$.
Generalizations: In fact,

- this result holds even when $\left(X_{\mathbf{v}}(0)\right)_{\mathbf{v} \in \mathbf{V}}$ is just a second-order MRF - do not require $\left(X_{v}(0)\right)_{v \in V}$ i.i.d.
- Further, can allow $A$ to be infinite (non-trivial for diffusions)


## Comments on the Conditional Independence Property

Some related Work: mostly for $G=\mathbb{Z}^{d}$

- For gradient diffusions on $\mathbb{Z}^{d}$ : Deuschel ('87) and Cattiaux, Roelly, Zessin ('96)
- For non-gradient processes on $\mathbb{Z}^{d}$ with shift-invariant initial conditions: Dereudre and Roelly (2017)

Our proof is valid for general graphs and uses a different approach from the above.

## Comments on the Conditional Independence Property

Some related Work: mostly for $G=\mathbb{Z}^{d}$

- For gradient diffusions on $\mathbb{Z}^{d}$ : Deuschel ('87) and Cattiaux, Roelly, Zessin ('96)
- For non-gradient processes on $\mathbb{Z}^{d}$ with shift-invariant initial conditions: Dereudre and Roelly (2017)

Our proof is valid for general graphs and uses a different approach from the above.

Of relevance to the study of Gibbs-non-Gibbs transitions

- (den Hollander, Külske, Opoku, Redig, Roelly, Ruszel, van Enter, ... )


## Ideas behind the Proof

$$
\begin{gathered}
\text { Markov Chain Setting } \\
\mathbf{X}_{\mathrm{v}}(\mathrm{t}+\mathbf{1})=\mathrm{F}\left(\mathrm{X}_{\mathrm{v}}(\mathrm{t}), \mathrm{X}_{\mathrm{N}_{\mathrm{v}}}(\mathrm{t}), \xi_{\mathrm{v}}(\mathrm{t}+\mathbf{1})\right) \\
\mathrm{X}_{\mathrm{A}}[\mathrm{t}] \perp \mathrm{X}_{\mathrm{B}}[\mathrm{t}] \mid \mathrm{X}_{\text {d }^{2} \mathrm{~A}}[\mathrm{t}] ?
\end{gathered}
$$

## Proof "by hand"

1. Establish some general conditional independence relations (see Problem Set 2)
2. Use the dynamics to extract appropriate functional relations
3. Combine to get the proof

## Ideas behind the Proof

$$
\begin{gathered}
\text { Diffusion Setting } \\
d X_{v}(t)=b\left(X_{v}(t), X_{N_{v}(G)}(t)\right) d t+\mathrm{dW}_{v}(t)
\end{gathered}
$$

Invokes the Gibbs-Markov/Hammersley-Clifford Theorem

## Ideas behind the Proof

$$
\begin{gathered}
\text { Diffusion Setting } \\
\mathrm{dX}_{\mathrm{v}}(\mathrm{t})=\mathrm{b}\left(\mathrm{X}_{\mathrm{v}}(\mathrm{t}), \mathrm{X}_{\mathrm{N}_{\mathrm{v}}(\mathrm{G})}(\mathrm{t})\right) \mathrm{dt}+\mathrm{dW}_{\mathrm{v}}(\mathrm{t})
\end{gathered}
$$

Invokes the Gibbs-Markov/Hammersley-Clifford Theorem

- Recall that a clique of a graph $G=(V, E)$ is a subset of $V$ for which the induced subgraph on $V$ is complete.
- Let $\operatorname{cl}(G)$ denote the set of cliques of a graph.


## Ideas behind the Proof

$$
\begin{gathered}
\text { Diffusion Setting } \\
d X_{v}(t)=\mathrm{b}\left(\mathrm{X}_{\mathrm{v}}(\mathrm{t}), \mathrm{X}_{\mathrm{N}_{\mathrm{v}}(\mathrm{G})}(\mathrm{t})\right) \mathrm{dt}+\mathrm{dW}_{\mathrm{v}}(\mathrm{t})
\end{gathered}
$$

Invokes the Gibbs-Markov/Hammersley-Clifford Theorem

- Recall that a clique of a graph $G=(V, E)$ is a subset of $V$ for which the induced subgraph on $V$ is complete.
- Let $\mathrm{cl}(G)$ denote the set of cliques of a graph.


## Definition

$\mathbb{S}$ measurable space. A nonnegative function $f: \mathbb{S}^{V} \mapsto \mathbb{R}_{+}$is said to factor on a finite graph $G$ if there exist functions $f_{K}: \mathbb{S}^{K} \rightarrow \mathbb{R}_{+}, K \in \operatorname{cl}(G)$, such that

$$
\begin{equation*}
f(x)=\prod_{K \in \mathrm{cl}(G)} f_{K}\left(x^{K}\right), \quad x \in \mathbb{S}^{V} . \tag{1}
\end{equation*}
$$

## Gibbs-Markov/Hammersley-Clifford Theorem

Version when $\mathbb{S}$ is a Discrete State Space Gibbs-Markov/Hammersley-Clifford theorem ('70's)
Given a finite graph $G=(V, E)$, if a probability mass function $f$ on the discrete set $\mathbb{S}^{V}$ factors on $G$, or equivalently, admits the representation

$$
f(x)=\frac{1}{Z} \prod_{K \in \operatorname{cl}(G)} f_{K}\left(x^{K}\right)
$$

with $Z$ the normalization constant:

$$
Z=\sum_{x \in \mathbb{S} \vee} \prod_{K \in \mathrm{cl}(G)} f_{K}\left(x^{K}\right)
$$

for suitable functions $f_{K}: \mathbb{S}^{K} \mapsto \mathbb{R}_{+}, K \in \operatorname{cl}(G)$,

## Gibbs-Markov/Hammersley-Clifford Theorem

Version when $\mathbb{S}$ is a Discrete State Space Gibbs-Markov/Hammersley-Clifford theorem ('70's)
Given a finite graph $G=(V, E)$, if a probability mass function $f$ on the discrete set $\mathbb{S}^{V}$ factors on $G$, or equivalently, admits the representation

$$
f(x)=\frac{1}{Z} \prod_{K \in \operatorname{cl}(G)} f_{K}\left(x^{K}\right)
$$

with $Z$ the normalization constant:

$$
Z=\sum_{x \in \mathbb{S}^{\vee}} \prod_{K \in \mathrm{cl}(G)} f_{K}\left(x^{K}\right)
$$

for suitable functions $f_{K}: \mathbb{S}^{K} \mapsto \mathbb{R}_{+}, K \in \operatorname{cl}(G)$, then $f$ defines a MRF with respect to $G$.

## Gibbs-Markov/Hammersley-Clifford Theorem

Version when $\mathbb{S}$ is a Discrete State Space Gibbs-Markov/Hammersley-Clifford theorem ('70's)
Given a finite graph $G=(V, E)$, if a probability mass function $f$ on the discrete set $\mathbb{S}^{V}$ factors on $G$, or equivalently, admits the representation

$$
f(x)=\frac{1}{Z} \prod_{K \in \operatorname{cl}(G)} f_{K}\left(x^{K}\right)
$$

with $Z$ the normalization constant:

$$
Z=\sum_{x \in \mathbb{S}^{\vee}} \prod_{K \in \mathrm{cl}(G)} f_{K}\left(x^{K}\right)
$$

for suitable functions $f_{K}: \mathbb{S}^{K} \mapsto \mathbb{R}_{+}, K \in \operatorname{cl}(G)$, then $f$ defines a MRF with respect to $G$. Further, the converse is also true if $f$ is positive, that is, $f(x)>0$ for every $x \in \mathbb{S}^{V}$.

## An Immediate Extension

- Let $\mathrm{cl}_{2}(G)$ denote the 2 -cliques of $G$, which are subsets of $V$ for which the induced subgraph has diameter less than or equal to 2
Gibbs-Markov/Hammersley-Clifford theorem for 2nd order Given a finite graph $G=(V, E)$, if a probability mass function $f$ on the discrete set $\mathbb{S}^{V}$ factors on a finite graph $G$, or equivalently admits the representation

$$
f(x)=\frac{1}{Z} \prod_{K \in \mathrm{cl}_{2}(G)} f_{K}\left(x^{K}\right)
$$

with $Z$ the normalization constant

$$
Z=\sum_{x \in \mathbb{S}^{V}} \prod_{K \in \mathrm{cl}_{2}(G)} f_{K}\left(x^{K}\right),
$$

for functions $f_{K}: \mathbb{S}^{K} \mapsto \mathbb{R}_{+}, K \in \operatorname{cl}_{2}(G)$,

## An Immediate Extension

- Let $\mathrm{cl}_{2}(G)$ denote the 2 -cliques of $G$, which are subsets of $V$ for which the induced subgraph has diameter less than or equal to 2
Gibbs-Markov/Hammersley-Clifford theorem for 2nd order Given a finite graph $G=(V, E)$, if a probability mass function $f$ on the discrete set $\mathbb{S}^{V}$ factors on a finite graph $G$, or equivalently admits the representation

$$
f(x)=\frac{1}{Z} \prod_{K \in \mathrm{cl}_{2}(G)} f_{K}\left(x^{K}\right)
$$

with $Z$ the normalization constant

$$
Z=\sum_{x \in \mathbb{S}^{V}} \prod_{K \in \mathrm{cl}_{2}(G)} f_{K}\left(x^{K}\right)
$$

for functions $f_{K}: \mathbb{S}^{K} \mapsto \mathbb{R}_{+}, K \in \operatorname{cl}_{2}(G)$, then $f$ defines a 2 nd order MRF with respect to $G$.

## Proof of the Conditional Independence Property

$$
\begin{aligned}
\mathrm{d} \mathrm{X}_{\mathrm{v}}(\mathrm{t})= & \mathrm{b}\left(\mathrm{X}_{\mathrm{v}}(\mathrm{t}), \mathrm{X}_{\mathrm{Nv}_{\mathrm{v}}(\mathrm{G})}(\mathrm{t})\right) \mathrm{dt}+\mathrm{dW}_{\mathrm{v}}(\mathrm{t}) \\
& \mathrm{X}_{\mathrm{A}}[\mathrm{t}] \perp \mathrm{X}_{\mathrm{B}}[\mathrm{t}] \mid \mathrm{X}_{\partial^{2} \mathrm{~A}}[\mathrm{t}]
\end{aligned}
$$

Main Steps of the Proof in the Diffusion Case

- On any finite graph $G$, use Girsanov's theorem to identify the density of the law of the SDE with respect to a certain product measure (product Wiener measure when $\sigma=I$ )
- On any finite graph $G$, show that the density has a certain clique representation and use the 2nd-order Gibbs-Markov (Hammersley-Clifford) theorem to conclude the 2nd-order MRF property.
- Use a subtle approximation argument for infinite graphs $G$ (for an idea of some subtleties, see exercise in Prob. Set 2)


## Proof of the Conditional Independence Property

$$
\begin{aligned}
d X_{v}(t)= & b\left(X_{v}(t), X_{N_{v}(G)}(t)\right) d t+d W_{v}(t) \\
& X_{A}[t] \perp X_{B}[t] \mid X_{\partial^{2} A}[t]
\end{aligned}
$$

Main Steps of the Proof in the Diffusion Case

- On any finite graph $G$, use Girsanov's theorem to identify the density of the law of the SDE with respect to a certain product measure (product Wiener measure when $\sigma=I$ )
- On any finite graph $G$, show that the density has a certain clique representation and use the 2nd-order Gibbs-Markov (Hammersley-Clifford) theorem to conclude the 2nd-order MRF property.
- Use a subtle approximation argument for infinite graphs $G$ (for an idea of some subtleties, see exercise in Prob. Set 2)

Analogous result more complicated for jump processes (Ganguly-R

## Derivation of Marginal Dynamics

# Marginal Dynamics 

$$
\mathbf{X}_{\mathbf{v}}(\mathrm{t}+\mathbf{1})=\mathrm{F}\left(\mathbf{X}_{\mathrm{v}}(\mathrm{t}), \mathbf{X}_{\mathbf{N}_{\mathrm{v}}}(\mathrm{t}), \xi_{\mathrm{v}}(\mathrm{t}+\mathbf{1})\right)
$$

Recall the conditional independence property

For any (not necessarrily finite) $A \subset V, B \subset V \backslash A \cup \partial^{2} A$,

$$
X_{A}[t] \perp X_{B}[t] \mid X_{\partial^{2} A}[t]
$$

# Marginal Dynamics 

$$
\mathbf{X}_{\mathbf{v}}(\mathrm{t}+\mathbf{1})=\mathrm{F}\left(\mathbf{X}_{\mathrm{v}}(\mathrm{t}), \mathbf{X}_{\mathbf{N}_{\mathrm{v}}}(\mathrm{t}), \xi_{\mathrm{v}}(\mathrm{t}+\mathbf{1})\right)
$$

Recall the conditional independence property

For any (not necessarrily finite) $A \subset V, B \subset V \backslash A \cup \partial^{2} A$,

$$
X_{A}[t] \perp X_{B}[t] \mid X_{\partial^{2} A}[t]
$$

Is this conditional independence property of any use?

## Marginal Dynamics on Trees

Suppose the limiting graph $G$ is an infinite $d$-regular tree.


$$
d=3
$$



$$
d=4
$$

## Marginal Dynamics on Trees

- Let $\mathcal{T}_{\kappa}$ denote the infinite $\kappa$-regular tree.
- For simplicity consider the case $\kappa=2$.
- Note that Theorem 1 implies that for a typical vertex $\rho$, $\left\{X_{\rho},\left(X_{v}\right)_{v \sim \rho}\right\}$ can be obtained as the marginal of the infinite coupled system of Markov chains:

$$
\mathbf{X}_{\mathrm{v}}(\mathrm{t}+\mathbf{1})=\mathbf{F}\left(\mathbf{X}_{\mathrm{v}}(\mathrm{t}), \mathbf{X}_{\mathbf{N}_{\mathrm{v}}}(\mathrm{t}), \xi_{\mathrm{v}}(\mathrm{t}+1)\right), v \in \mathcal{T}_{2}
$$

- Identify $\mathcal{T}_{2}$ with $\mathbb{Z}$, set $\rho=0$.
- Then we are interested in an autonomous characterization of the marginal law of

$$
X_{-1,0,1}=\left(X_{-1}, X_{0}, X_{1}\right) .
$$



## Marginal Dynamics on Trees

- Let $\mathcal{T}_{\kappa}$ denote the infinite $\kappa$-regular tree.
- For simplicity consider the case $\kappa=\mathbf{2}$.
- Note that Theorem 1 implies that for a typical vertex $\rho$, $\left\{X_{\rho},\left(X_{v}\right)_{v \sim \rho}\right\}$ can be obtained as the marginal of the infinite coupled system of Markov chains:

$$
\mathbf{X}_{\mathrm{v}}(\mathrm{t}+\mathbf{1})=\mathbf{F}\left(\mathbf{X}_{\mathrm{v}}(\mathrm{t}), \mathbf{X}_{\mathbf{N}_{\mathrm{v}}}(\mathrm{t}), \xi_{\mathrm{v}}(\mathrm{t}+1)\right), v \in \mathcal{T}_{2}
$$

- Identify $\mathcal{T}_{2}$ with $\mathbb{Z}$, set $\rho=0$.
- Then we are interested in an autonomous characterization of the marginal law of


How can we exploit the conditional independence structure?

## Marginal dynamics for the infinite 2-regular tree



$$
X_{i}(t+1)=F\left(X_{i}(t),\left(X_{i-1}(t), X_{i+1}(t)\right), \xi_{i}(t+1)\right), \quad i \in \mathbb{Z},
$$

## Goal: Autonomous characterization of the law of $X_{-1,0,1}$

- We will describe how to generate another stochastic process $Y=Y_{-1,0,1}$ that has the same law as the marginal process $X_{-1,0,1}$.
- but whose evolution only depends on the history of its state, and the law of the history of the state, or equivalently, the law of the marginal process $X_{-1,0,1}$, equivalently the law of $Y_{-1,0,1}$
- In other words, the dynamics of $Y_{-1,0,1}$ (is not defined for and) should make no reference to particles outside $\{-1,0,1\}$


## Marginal dynamics for the infinite 2-regular tree



$$
X_{0}(t+1)=F\left(X_{0}(t),\left(X_{-1}(t), X_{1}(t)\right), \xi_{0}(t+1)\right), \quad i \in \mathbb{Z}
$$

- First, note that the evolution of the (law of the) middle particle 0 only depends on the (law of) states of the neighboring particles -1 and 1 , so its evolution should exactly mimic that of $X$ :

$$
Y_{0}(t+1)=F\left(Y_{0}(t),\left(Y_{-1}(t), Y_{1}(t)\right), \xi_{0}(t+1)\right)
$$

## Evolution of neighboring particles



- We saw that the 0 particle evolution is simple:

$$
Y_{0}(t+1)=F\left(Y_{0}(t),\left(Y_{-1}(t), Y_{1}(t)\right), \xi_{0}(t+1)\right)
$$

- The evolution of the states of neighboring particles -1 and 1 should satisfy $\left(Y_{-1}, Y_{1}\right)(t+1) \stackrel{(d)}{=}\left(X_{-1}, X_{1}\right)(t+1)$. Recall

$$
\begin{gathered}
X_{-1}(t+1)=F\left(X_{-1}(t),\left(X_{-2}(t), X_{0}(t)\right), \xi_{-1}(t+1)\right), \\
X_{1}(t+1)=F\left(X_{1}(t),\left(X_{0}(t), X_{2}(t), \xi_{1}(t+1)\right)\right.
\end{gathered}
$$

- However, the law of $\left(X_{-1}, X_{1}\right)(t+1)$ depends on

$$
\operatorname{Law}\left(X_{-2}(t), X_{-1}(t), X_{0}(t), X_{1}(t), X_{2}(t)\right)
$$

## Evolution of neighboring particles



- We saw that the 0 particle evolution is simple:

$$
Y_{0}(t+1)=F\left(Y_{0}(t),\left(Y_{-1}(t), Y_{1}(t)\right), \xi_{0}(t+1)\right) .
$$

- The evolution of the states of neighboring particles -1 and 1 should satisfy $\left(Y_{-1}, Y_{1}\right)(t+1) \stackrel{(d)}{=}\left(X_{-1}, X_{1}\right)(t+1)$. Recall

$$
\begin{gathered}
X_{-1}(t+1)=F\left(X_{-1}(t),\left(X_{-2}(t), X_{0}(t)\right), \xi_{-1}(t+1)\right), \\
X_{1}(t+1)=F\left(X_{1}(t),\left(X_{0}(t), X_{2}(t), \xi_{1}(t+1)\right)\right.
\end{gathered}
$$

- However, the law of $\left(X_{-1}, X_{1}\right)(t+1)$ depends on

$$
\operatorname{Law}\left(X_{-2}(t), X_{-1}(t), X_{0}(t), X_{1}(t), X_{2}(t)\right)
$$

- ... which seems not obtainable from $Y_{-1,0,1}(t) \stackrel{(d)}{=} X_{-1,0,1}(t)$
... as it involves extraneous particles $\left(X_{-2}, X_{2}\right)$


## Evolution of neighboring particles



$$
\begin{gathered}
X_{-1}(t+1)=F\left(X_{-1}(t),\left(X_{-2}(t), X_{0}(t)\right), \xi_{-1}(t+1)\right), \\
X_{1}(t+1)=F\left(X_{1}(t),\left(X_{0}(t), X_{2}(t), \xi_{1}(t+1)\right)\right.
\end{gathered}
$$

- Key observation 1: We have access to the law (and values) of $Y_{-1,0,1}[t]$ (or $X_{-1,0,1}[t]$ ), and so it suffices to know the conditional law of $\left(X_{-2}(t), X_{2}(t)\right)$, given the past $X_{-1,0,1}[t]$.
- But can we relate this to $\operatorname{Law}\left(Y_{-1,0,1}[t]\right)=\operatorname{Law}\left(X_{-1,0,1}[t]\right)$ ?

$$
\begin{aligned}
X_{-1}(t+1) & =F\left(X_{-1}(t),\left(X_{-2}(t), X_{0}(t)\right), \xi_{-1}(t+1)\right), \\
X_{1}(t+1) & =F\left(X_{1}(t),\left(X_{0}(t), X_{2}(t), \xi_{1}(t+1)\right) .\right.
\end{aligned}
$$

- Recall observation 1: It suffices to know the conditional law of $\left(X_{-2}(t), X_{2}(t)\right)$, given the past $X_{-1,0,1}[t]$.



$$
\begin{gathered}
X_{-1}(t+1)=F\left(X_{-1}(t),\left(X_{-2}(t), X_{0}(t)\right), \xi_{-1}(t+1)\right), \\
X_{1}(t+1)=F\left(X_{1}(t),\left(X_{0}(t), X_{2}(t), \xi_{1}(t+1)\right)\right.
\end{gathered}
$$

- Recall observation 1: It suffices to know the conditional law of $\left(X_{-2}(t), X_{2}(t)\right)$, given the past $X_{-1,0,1}[t]$.

- Key observation 2: By the 2-MRF property of Thm 4,

$$
X_{-2}(t) \perp X_{2}(t) \mid X_{-1,0,1}[t]
$$

- So it suffices to know the conditional law of $X_{-2}(t)$, given $X_{-1,0,1}[t]$
- the conditional law of $X_{2}(t)$, given $X_{-1,0,1}[t]$ can then be recovered by symmetry

$$
X_{-1}(t+1)=F\left(X_{-1}(t),\left(X_{-2}(t), X_{0}(t)\right), \xi_{-1}(t+1)\right),
$$

- By Observations 1 \& 2 it suffices to know the conditional law of $X_{-2}(t)$, given $X_{-1,0,1}[t]$


$$
X_{-1}(t+1)=F\left(X_{-1}(t),\left(X_{-2}(t), X_{0}(t)\right), \xi_{-1}(t+1)\right),
$$

- By Observations 1 \& 2 it suffices to know the conditional law of $X_{-2}(t)$, given $X_{-1,0,1}[t]$

- Key Observation 3: By the 2-MRF property of Thm 4, this coincides with the conditional law of $X_{-2}(t)$, given $X_{-1,0}[t]$

- Recall observations 1-3 imply: It suffices to know the conditional law of $X_{-2}(t)$ given $X_{-1,0}[t]$.

- But can you derive that knowing only $\operatorname{Law}\left(X_{-1,0,1}[t]\right)$ ?
- Recall observations 1-3 imply: It suffices to know the conditional law of $X_{-2}(t)$ given $X_{-1,0}[t]$.

- But can you derive that knowing only $\operatorname{Law}\left(X_{-1,0,1}[t]\right)$ ?
- Key observation 4: By translation symmetry, this is the same as the conditional law of $X_{-1}(t)$ given $X_{0,1}[t]$

- Recall observations 1-3 imply: It suffices to know the conditional law of $X_{-2}(t)$ given $X_{-1,0}[t]$.

- But can you derive that knowing only $\operatorname{Law}\left(X_{-1,0,1}[t]\right)$ ?
- Key observation 4: By translation symmetry, this is the same as the conditional law of $X_{-1}(t)$ given $X_{0,1}[t]$

- But this only requires the knowledge of the law of $X_{-1,0,1}[t]$, (hence, of $Y_{-1,0,1}[t]$ ), so the evolution is autonomous!


## Autonomous evolution of the root neighborhood

- Start with $Y_{-1,0,1}(0)=X_{-1,0,1}(0)$


## Autonomous evolution of the root neighborhood

- Start with $Y_{-1,0,1}(0)=X_{-1,0,1}(0)$
- At each time $t \in \mathbb{N}_{0}$, define for $y_{0}, y_{1} \in \mathcal{X}^{\infty}$,

$$
\gamma_{t}\left(\cdot \mid y_{0}, y_{1}\right)=\operatorname{Law}\left(Y_{-1}(t) \mid Y_{0}[t]=y_{0}[t], Y_{1}[t]=y_{1}[t]\right)
$$



- Sample ghost particles $Y_{-2}(t)$ andd $\left.Y_{2}(t)\right)$ so that $\mathbb{P}\left(Y_{-2,2}(t)=y_{-2,2} \mid Y_{-1,0,1}[t]\right)=\gamma_{t}\left(y_{-2} \mid Y_{-1,0}[t]\right) \gamma_{t}\left(y_{2} \mid Y_{1,0}[t]\right)$


## Autonomous evolution of the root neighborhood

- Start with $Y_{-1,0,1}(0)=X_{-1,0,1}(0)$
- At each time $t \in \mathbb{N}_{0}$, define for $y_{0}, y_{1} \in \mathcal{X}^{\infty}$,

$$
\gamma_{t}\left(\cdot \mid y_{0}, y_{1}\right)=\operatorname{Law}\left(Y_{-1}(t) \mid Y_{0}[t]=y_{0}[t], Y_{1}[t]=y_{1}[t]\right)
$$



- Sample ghost particles $Y_{-2}(t)$ andd $\left.Y_{2}(t)\right)$ so that $\mathbb{P}\left(Y_{-2,2}(t)=y_{-2,2} \mid Y_{-1,0,1}[t]\right)=\gamma_{t}\left(y_{-2} \mid Y_{-1,0}[t]\right) \gamma_{t}\left(y_{2} \mid Y_{1,0}[t]\right)$
- Sample iid noises $\xi_{-1,0,1}(t+1)$, and update:

$$
Y_{i}(t+1)=F\left(Y_{i}(t), Y_{i-1, i+1}(t), \xi_{i}(t+1)\right), \quad i=-1,0,1
$$

Structure of evolution of the root neighborhood

$$
\begin{aligned}
Y_{-1}(t+1) & =F\left(Y_{-1}(t),\left(Y_{-2}(t), Y_{0}(t)\right), \xi_{-1}(t+1)\right), \\
Y_{0}(t+1) & =F\left(Y_{0}(t), Y_{i-1, i+1}(t), \xi_{0}(t+1)\right), \\
Y_{1}(t+1) & =F\left(Y_{1}(t),\left(Y_{0}(t), Y_{2}(t)\right), \xi_{1}(t+1)\right),
\end{aligned}
$$

$\begin{aligned} & \text { where } \\ & \mathbb{P}\end{aligned}\left(Y_{-2,2}(t)=y_{-2,2} \mid Y_{-1,0,1}[t]\right)=\gamma_{t}\left(y_{-2} \mid Y_{-1,0}[t]\right) \gamma_{t}\left(y_{2} \mid Y_{1,0}[t]\right)$
with

$$
\gamma_{t}\left(\cdot \mid y_{0}, y_{1}\right)=\operatorname{Law}\left(Y_{-1}(t) \mid Y_{0}[t]=y_{0}[t], Y_{1}[t]=y_{1}[t]\right) .
$$

## Structure of evolution of the root neighborhood

$$
\begin{aligned}
Y_{-1}(t+1) & =F\left(Y_{-1}(t),\left(Y_{-2}(t), Y_{0}(t)\right), \xi_{-1}(t+1)\right), \\
Y_{0}(t+1) & =F\left(Y_{0}(t), Y_{i-1, i+1}(t), \xi_{0}(t+1)\right), \\
Y_{1}(t+1) & =F\left(Y_{1}(t),\left(Y_{0}(t), Y_{2}(t)\right), \xi_{1}(t+1)\right),
\end{aligned}
$$

where
$\left.\mathbb{P}\left(Y_{-2,2}(t)=y_{-2,2} \mid Y_{-1,0,1}[t]\right)=\gamma_{t}\left(y_{-2} \mid Y_{-1,0}[t]\right) \gamma_{t}\left(y_{2} \mid Y_{1,0}[t]\right), ~\right) ~$
with

$$
\gamma_{t}\left(\cdot \mid y_{0}, y_{1}\right)=\operatorname{Law}\left(Y_{-1}(t) \mid Y_{0}[t]=y_{0}[t], Y_{1}[t]=y_{1}[t]\right) .
$$

Rephrasing, without reference to "ghost particles", the evolution of the law of $Y_{-1,0,1}$ is autonomous, non-Markov and nonlinear:

$$
Y_{-1,0,1}(t+1)=H\left(t, Y_{-1,0,1}[t], \operatorname{Law}\left(Y_{-1,0,1}[t]\right), \xi_{-1,0,1}(t+1)\right)
$$

for some measurable mapping

$$
H: \mathbb{N} \times \mathcal{X}^{\infty} \times \mathcal{P}\left(\mathcal{X}^{\infty}\right) \times U \mapsto \mathcal{X}^{3}
$$

## Marginal Dynamics on the 2-regular tree: Diffusion

- As before, identify $\mathcal{T}_{2}=\mathbb{Z}, \rho=0$.
- Once again interested in an autonomous characterization of the marginal $X_{-1,0,1}$ of the infinite system of SDEs:

$$
d X_{i}(t)=\frac{1}{2} \sum_{j=i+1, i-1} \bar{b}\left(X_{i}(t), X_{j}(t)\right) d t+d W_{i}(t), \quad i \in \mathbb{Z},
$$

where (for simplicity) we choose the special "linear" form of the drift

## Marginal Dynamics on the 2-regular tree: Diffusion

- As before, identify $\mathcal{T}_{2}=\mathbb{Z}, \rho=0$.
- Once again interested in an autonomous characterization of the marginal $X_{-1,0,1}$ of the infinite system of SDEs:

$$
d X_{i}(t)=\frac{1}{2} \sum_{j=i+1, i-1} \bar{b}\left(X_{i}(t), X_{j}(t)\right) d t+d W_{i}(t), \quad i \in \mathbb{Z},
$$

where (for simplicity) we choose the special "linear" form of the drift

- A similar result as in the M . chain case holds, except that the derivation is much more complicated.

From Conditional Independence to Local Equations


Particle system on infinite line graph, $i \in \mathbb{Z}$ :

$$
d X_{i}(t)=\frac{1}{2}\left(\bar{b}\left(X_{i}(t), X_{i-1}(t)\right)+\bar{b}\left(X_{i}(t), X_{i+1}(t)\right)\right) d t+d W_{i}(t)
$$

For $x_{1}, x_{0} \in \mathcal{C}$, and $t>0$,

$$
\gamma_{t}\left(x_{1}, x_{0}\right):=\operatorname{Law}\left(X_{-1}(t) \mid X_{0}[t]=x_{0}[t], \quad X_{1}[t]=x_{1}[t]\right)
$$

Theorem 5 (Lacker-R-W '19): $X_{-1,0,1} \stackrel{d}{=} Y=\left(Y_{-1,0,1}\right.$, where $Y$ is the unique weak solution to

$$
\begin{aligned}
d Y_{-1}(t) & =\frac{1}{2}\left(\bar{b}\left(Y_{-1,0}(t)\right)+\left\langle\gamma_{t}\left(Y_{-1}, Y_{0}\right), \bar{b}\left(Y_{-1}(t), \cdot\right)\right\rangle\right) d t+d \tilde{W}_{1}(t) \\
d Y_{0}(t) & =\frac{1}{2}\left(\bar{b}\left(Y_{0,1}(t)\right)+\bar{b}\left(Y_{0,1}(t)\right)\right) d t+d \tilde{W}_{0}(t) \\
d Y_{1}(t) & =\frac{1}{2}\left(\left\langle\gamma_{t}\left(Y_{1}, Y_{0}\right), \bar{b}\left(Y_{1}(t), \cdot\right)\right\rangle+\bar{b}\left(Y_{1,0}(t)\right)\right) d t+d \tilde{W}_{-1}(t)
\end{aligned}
$$

From Conditional Independence to Local Equations

Particle system on infinite line graph, $i \in \mathbb{Z}$ :

$$
d X_{i}(t)=\frac{1}{2}\left(\bar{b}\left(X_{i}(t), X_{i-1}(t)\right)+\bar{b}\left(X_{i}(t), X_{i+1}(t)\right)\right) d t+d W_{i}(t)
$$

For $x_{1}, x_{0} \in \mathcal{C}$, and $t>0$,

$$
\gamma_{t}\left(x_{1}, x_{0}\right):=\operatorname{Law}\left(X_{-1}(t) \mid X_{0}[t]=x_{0}[t], \quad X_{1}[t]=x_{1}[t]\right)
$$

Theorem 5 (Lacker-R-W '19): $X_{-1,0,1} \stackrel{d}{=} Y=\left(Y_{-1,0,1}\right.$, where $Y$ is the unique weak solution to

$$
\begin{aligned}
d Y_{-1}(t) & =\frac{1}{2}\left(\bar{b}\left(Y_{-1,0}(t)\right)+\left\langle\gamma_{t}\left(Y_{-1}, Y_{0}\right), \bar{b}\left(Y_{-1}(t), \cdot\right)\right\rangle\right) d t+d \tilde{W}_{1}(t) \\
d Y_{0}(t) & =\frac{1}{2}\left(\bar{b}\left(Y_{0,1}(t)\right)+\bar{b}\left(Y_{0,1}(t)\right)\right) d t+d \tilde{W}_{0}(t) \\
d Y_{1}(t) & =\frac{1}{2}\left(\left\langle\gamma_{t}\left(Y_{1}, Y_{0}\right), \bar{b}\left(Y_{1}(t), \cdot\right)\right\rangle+\bar{b}\left(Y_{1,0}(t)\right)\right) d t+d \tilde{W}_{-1}(t) \\
& \gamma_{t}\left(x_{1}, x_{0}\right):=\operatorname{Law}\left(Y_{-1}(t) \mid Y_{0}[t]=x_{0}[t], Y_{1}[t]=x_{1}[t]\right) .
\end{aligned}
$$

Again, autonomous description as a nonlinear, non-Markov proc.

## Summary: Beyond Mean-Field Limits

Mean-Field Dynamics (Dense Sequences $G_{n}=K_{n}$ )

$$
d X(t)=B(X(t), \mu(t)) d t+d W(t), \quad \mu(t)=\operatorname{Law}(X(t))
$$

where $B(x, m)=\int_{\mathbb{R}^{d}} b(x, y) m(d y)$.

## Summary: Beyond Mean-Field Limits

Mean-Field Dynamics (Dense Sequences $G_{n}=K_{n}$ )

$$
d X(t)=B(X(t), \mu(t)) d t+d W(t), \quad \mu(t)=\operatorname{Law}(X(t))
$$

where $B(x, m)=\int_{\mathbb{R}^{d}} b(x, y) m(d y)$.

Beyond Mean-Field Dynamics (The Sparse Case of $G=\mathbb{T}_{2}$ )


$$
\begin{aligned}
d Y_{-1}(t) & =\frac{1}{2}\left(\bar{b}\left(Y_{-1,0}(t)\right)+\left\langle\gamma_{t}\left(Y_{-1}, Y_{0}\right), \bar{b}\left(Y_{-1}(t), \cdot\right)\right\rangle\right) d t+d \tilde{W}_{1}(t) \\
d Y_{0}(t) & =\frac{1}{2}\left(\bar{b}\left(Y_{0,1}(t)\right)+\bar{b}\left(Y_{0,1}(t)\right)\right) d t+d \tilde{W}_{0}(t) \\
d Y_{1}(t) & =\frac{1}{2}\left(\left\langle\gamma_{t}\left(Y_{1}, Y_{0}\right), \bar{b}\left(Y_{1}(t), \cdot\right)\right\rangle+\bar{b}\left(Y_{1,0}(t)\right)\right) d t+d \tilde{W}_{-1}(t)
\end{aligned}
$$

## Summary: Beyond Mean-Field Limits

Mean-Field Dynamics (Dense Sequences $G_{n}=K_{n}$ )

$$
d X(t)=B(X(t), \mu(t)) d t+d W(t), \quad \mu(t)=\operatorname{Law}(X(t))
$$

where $B(x, m)=\int_{\mathbb{R}^{d}} b(x, y) m(d y)$.

Beyond Mean-Field Dynamics (The Sparse Case of $G=\mathbb{T}_{2}$ )


$$
\begin{aligned}
d Y_{-1}(t) & =\frac{1}{2}\left(\bar{b}\left(Y_{-1,0}(t)\right)+\left\langle\gamma_{t}\left(Y_{-1}, Y_{0}\right), \bar{b}\left(Y_{-1}(t), \cdot\right)\right\rangle\right) d t+d \tilde{W}_{1}(t) \\
d Y_{0}(t) & =\frac{1}{2}\left(\bar{b}\left(Y_{0,1}(t)\right)+\bar{b}\left(Y_{0,1}(t)\right)\right) d t+d \tilde{W}_{0}(t) \\
d Y_{1}(t) & =\frac{1}{2}\left(\left\langle\gamma_{t}\left(Y_{1}, Y_{0}\right), \bar{b}\left(Y_{1}(t), \cdot\right)\right\rangle+\bar{b}\left(Y_{1,0}(t)\right)\right) d t+d \tilde{W}_{-1}(t) \\
& \gamma_{t}\left(x_{1}, x_{0}\right):=\operatorname{Law}\left(Y_{-1}(t) \mid Y_{0}[t]=x_{0}[t], Y_{1}[t]=x_{1}[t]\right) .
\end{aligned}
$$

## Generalizations: Infinite $\kappa$-regular trees $\mathbb{T}_{\kappa}$

Can derive an autonomous SDE system for root particle and its neighbors,

$$
X_{\rho}(t),\left(X_{\rho}(t)\right)_{v \sim \rho},
$$

involving the conditional law of $\kappa-1$ children given root and one other child $u$ :


$$
\operatorname{Law}\left(\left(X_{v}\right)_{v \sim \rho, v \neq u} \mid X_{\rho}, X_{u}\right)
$$

$$
\kappa=3
$$

## Infinite $\kappa$-regular trees

Autonomous SDE system for root particle and its neighbors,

$$
X_{\rho}(t),\left(X_{v}(t)\right)_{v \sim \rho},
$$

involving conditional law of $\kappa-1$ children given root and one other child $u$ :


$$
\operatorname{Law}\left(\left(X_{v}\right)_{v \sim \rho, v \neq u} \mid X_{\rho}, X_{u}\right)
$$

$$
\kappa=4
$$

## Infinite d-regular trees

Autonomous SDE system for root particle and its neighbors,

$$
X_{\rho}(t),\left(X_{v}(t)\right)_{v \sim \rho}
$$

involving conditional law of $\kappa-1$ children given root and one other child $u$ :

$$
\operatorname{Law}\left(\left(X_{v}\right)_{v \sim \rho, v \neq u} \mid X_{\rho}, X_{u}\right)
$$



$$
\kappa=5
$$

## But what about random graph limits?

For example, can we find the marginal dynamics on a unimodular Galton-Watson tree?
Yes ... although the derivation is more complicated and now involves also averaging over the random structure of the tree s

## Implications of the Results

## Summary of Results

Recall that evolution of the law of $Y_{-1,0,1}$ is autonomous, non-Markov and nonlinear
Markov chain:

$$
Y_{-1,0,1}(t+1)=H\left(t, Y_{-1,0,1}[t], \operatorname{Law}\left(Y_{-1,0,1}[t]\right), \xi_{-1,0,1}(t+1)\right)
$$

for some measurable mapping

$$
H: \mathbb{N} \times \mathcal{X}^{\infty} \times \mathcal{P}\left(\mathcal{X}^{\infty}\right) \times U \mapsto \mathcal{X}^{3}
$$

Diffusion:

$$
\begin{aligned}
d Y_{-1}(t) & =\frac{1}{2}\left(\bar{b}\left(Y_{-1,0}(t)\right)+\left\langle\gamma_{t}\left(Y_{-1}, Y_{0}\right), \bar{b}\left(Y_{-1}(t), \cdot\right)\right\rangle\right) d t+d \tilde{W}_{1}(t) \\
d Y_{0}(t) & =\frac{1}{2}\left(\bar{b}\left(Y_{0,1}(t)\right)+\bar{b}\left(Y_{0,1}(t)\right)\right) d t+d \tilde{W}_{0}(t) \\
d Y_{1}(t) & =\frac{1}{2}\left(\left\langle\gamma_{t}\left(Y_{1}, Y_{0}\right), \bar{b}\left(Y_{1}(t), \cdot\right)\right\rangle+\bar{b}\left(Y_{1,0}(t)\right)\right) d t+d \tilde{W}_{-1}(t)
\end{aligned}
$$

## Summary of Results

Recall that evolution of the law of $Y_{-1,0,1}$ is autonomous, non-Markov and nonlinear
Markov chain:

$$
Y_{-1,0,1}(t+1)=H\left(t, Y_{-1,0,1}[t], \operatorname{Law}\left(Y_{-1,0,1}[t]\right), \xi_{-1,0,1}(t+1)\right)
$$

for some measurable mapping

$$
H: \mathbb{N} \times \mathcal{X}^{\infty} \times \mathcal{P}\left(\mathcal{X}^{\infty}\right) \times U \mapsto \mathcal{X}^{3}
$$

Diffusion:

$$
\begin{aligned}
d Y_{-1}(t) & =\frac{1}{2}\left(\bar{b}\left(Y_{-1,0}(t)\right)+\left\langle\gamma_{t}\left(Y_{-1}, Y_{0}\right), \bar{b}\left(Y_{-1}(t), \cdot\right)\right\rangle\right) d t+d \tilde{W}_{1}(t) \\
d Y_{0}(t) & =\frac{1}{2}\left(\bar{b}\left(Y_{0,1}(t)\right)+\bar{b}\left(Y_{0,1}(t)\right)\right) d t+d \tilde{W}_{0}(t) \\
d Y_{1}(t) & =\frac{1}{2}\left(\left\langle\gamma_{t}\left(Y_{1}, Y_{0}\right), \bar{b}\left(Y_{1}(t), \cdot\right)\right\rangle+\bar{b}\left(Y_{1,0}(t)\right)\right) d t+d \tilde{W}_{-1}(t) \\
& \gamma_{t}\left(x_{1}, x_{0}\right):=\operatorname{Law}\left(Y_{-1}(t) \mid Y_{0}[t]=x_{0}[t], Y_{1}[t]=x_{1}[t]\right) .
\end{aligned}
$$

## How well do these approximations perform?

Discrete-time SIR process on the cycle graph
Comparing mean-field and full simulation


Plot of probability of being healthy vs. time simulations due to Mitchell Wortsman

Mean-field approximation fails!

## How well does the local eqn. approximation perform?

Discrete-time SIR process on the cycle graph
Comparing mean-field, full simulation and local equation


Plot of probability of being healthy vs. time simulations due to Mitchell Wortsman
Local equation approximation works well!!

## Similar observation for other processes

## The Discrete-Time Contact Process

$$
X_{v}(t+1)=F\left(X_{v}(t),\left(X_{u}(t)\right)_{u \sim v}, \xi_{v}(t+1)\right),
$$

State space $S=\{0,1\}=\{$ healthy, infected $\}$. Parameters
$p, q \in[0,1]$.

Transition rule F: At time $t$, if particle $v$ is at...

- state $X_{v}(t)=1$, it switches to $X_{v}(t+1)=0$ w.p. $q$,
- state $X_{v}(t)=0$, it switches to $X_{v}(t+1)=1$ w.p.

$$
\frac{p}{d_{v}} \sum_{u \sim v} X_{u}(t),
$$

where $d_{v}=$ degree of vertex $v$.

Numerical Results for the Discrete-time Contact Process


## Summary of the Course

- Novel characterization of asymptotic limits of marginal dynamics for locally interacting processes on large sparse networks
- provides an alternative to mean-field approximations
- Many interesting theoretical questions: to gain a better understanding of the local equations and looking at more general settings
- Interesting computational questions
- Variety of applications ...


## Thank you !!

