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1. Local Weak Convergence – Basic Results

The framework we adopt for the convergence analysis is that of local weak convergence, a
natural mode of convergence for sparse graphs. Essentially, a sequence of (rooted, locally finite)
graphs {Gn}n∈N converges locally to a limiting graph G if for each r > 0 the neighborhood of
radius r around the root Gn is isomorphic to that of G for large enough n; see Section 1.1 for a
precise definition. Notably, as summarized in Section 1.3, local limits are well known for many
common sparse random graph models: Erdős-Rényi graphs converge to Galton-Watson trees
with Poisson offspring distribution, whereas random regular graphs converge to (non-random)
infinite regular trees, and configuration models converge to so-called unimodular Galton-Watson
trees. The key notion that will be used in the dynamical setting considered here is a similar local
convergence notion that can be defined for marked graphs (G, y), in which elements y = (yv)v∈G
of some fixed metric space Y are attached to the vertices of the graph. In our setting, the marks

will represent either initial conditions x = (xv)v∈V or the (random) trajectories (XG,x
v )v∈V of

the interacting process.
This section describes the basic concepts of local convergence for marked and unmarked

graphs. For full details and proofs, see [4, Section 3.2] and Section 2. The notion of local weak
convergence was introduced by Benjamini and Schramm in [2]; other useful references on this
topic include [1, 4, 10].

1.1. Unmarked graphs and the space G∗. A rooted graph G = (V,E, ø) is a graph (V,E)
(assumed as usual to be locally finite with either finite or countable vertex set) with a distin-
guished vertex ø ∈ V . We say two rooted graphs Gi = (Vi, Ei, øi) are isomorphic if there exists
a bijection ϕ : V1 7→ V2 such that ϕ(ø1) = ø2 and (ϕ(u), ϕ(v)) ∈ E2 if and only if (u, v) ∈ E1,
for each u, v ∈ V1. We denote this by G1

∼= G2. We refer to the map ϕ as an isomorphism from
G1 to G2, and denote by I(G1, G2) the collection of all such isomorphisms from G1 to G2.

Let G∗ denote the set of isomorphism classes of connected rooted graphs. Given k ∈ N and
G = (V,E, ø) ∈ G∗, let Bk(G) denote the induced subgraph (rooted at ø) consisting of those
vertices whose graph distance from ø is no more than k. We say that a sequence {Gn} ⊂ G∗
converges locally to G ∈ G∗ if, for every k ∈ N, there exists nk ∈ N such that Bk(Gn) ∼= Bk(G)
for every n ≥ nk. There is a metric compatible with this notion of convergence that renders G∗
a complete and separable space, such as

d∗(G,G
′) =

∞∑
k=1

2−k 1{I(Bk(G),Bk(G′))=∅} (1.1)

where as usual 1{A} = 1 if A holds and 1{A} = 0 otherwise.

Remark 1.1. We will often omit the root from the notation, writing G ∈ G∗ instead of (G, ø) ∈
G∗, when there is no need to make explicit reference to the root. But we understand that a
graph G ∈ G∗ always carries with it a root, which by default will be denoted ø.
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1.2. Marked graphs and the space G∗[Y]. We also need a notion of local convergence for
marked graphs, where each vertex of the graph has a mark (or label) associated to it; as men-
tioned, these marks will later encode initial conditions or trajectories of particles. For a met-
ric space (Y, d), a Y-marked rooted graph is a pair (G, y), where G = (V,E, ø) ∈ G∗, and
y = (yv)v∈V ∈ YV is a vector of marks. For a Y-marked rooted graph (G, y) and k ∈ N, let
Bk(G, y) denote the induced Y-marked rooted subgraph consisting of vertices within the ball of
radius k centered at the root. We say that two Y-marked rooted graphs (G, y) and (G′, y′) are
isomorphic if there exists an isomorphism ϕ from G to G′ such that (yv)v∈V = (y′ϕ(v))v∈V . We

write (G, y) ∼= (G′, y′) to indicate isomorphism.
Let G∗[Y] denote the set of isomorphism classes of Y-marked rooted graphs. We say that a

sequence {(Gn, yn)} ⊂ G∗[Y] converges locally to (G, y) ∈ G∗[Y] if, for every k ∈ N and ε > 0,
there exists nk ∈ N such that for all n ≥ nk there exists an isomorphism ϕ : Bk(Gn) 7→ Bk(G)
with maxv∈Bk(Gn) d(ynv , yϕ(v)) < ε. The space G∗[Y] can be equipped with a metric compatible
with this notion of convergence, and if (Y, d) is complete and separable then so is G∗[Y] (cf.
[4, Lemma 3.4]). An equivalent metric which we will use on occasion is

d∗((G, y), (G′, y′)) =
∞∑
k=1

2−k
(

1 ∧ inf
ϕ∈I(Bk(G),Bk(G′))

max
v∈Bk(G)

d(yv, y
′
ϕ(v))

)
. (1.2)

1.3. Examples of locally convergent graph sequences. Here we catalog some of the most
well known examples of locally converging graphs. For a (finite or countable, locally finite,
possibly disconnected) graph G = (V,E) and a vertex v ∈ V , we write Cv(G) for the connected
component of v, that is, the set of u ∈ V for which there exists a path from v to u. By viewing
v as the root, Cv(G) is then an element of G∗. Note that even if two distinct vertices u and
v belong to the same connected component of G, the rooted graphs Cu(G) and Cv(G) can be
non-isomorphic and thus induce distinct elements of G∗. When the graph is finite, we may choose
a uniformly random vertex U of G, and we write CUnif(G) := CU (G) for the resulting G∗-valued
random variable. That is, we write CUnif(G) for the random connected rooted graph obtained
by assigning a root uniformly at random and then isolating the connected component containing
this root. We define Cv(G, y) := (Cv(G), yCv(G)) and CUnif(G, y) similarly for marked graphs.

Example 1.2. Consider the Erdős-Rényi graph Gn ∼ G(n, pn), with limn→∞ npn = θ ∈ (0,∞).
Then {CUnif(Gn)} converges in law in G∗ to the Galton-Watson tree with offspring distribu-
tion Poisson(θ), denoted GW(Poisson(θ)). Similarly, suppose Gn ∼ Gn,mn , which means Gn
is selected uniformly at random from all (labeled) graphs on n vertices with mn edges. If
limn→∞ 2mn/n = θ ∈ (0,∞), then again {CUnif(Gn)} converges to GW(Poisson(θ)). See
[5, Proposition 2.6] or [4, Theorem 3.12] for proofs of these facts.

Example 1.3. Given a graphic sequence d(n) = (d1(n), . . . , dn(n)), with each di(n) a positive
integer less than n, let Gn ∼ CM(n, d(n)) be a uniformly random graph on n vertices with degree
sequence d(n). Alternatively, this may be constructed from the configuration model conditioned
to have no multi-edges or self-edges (see [9, Chapter 7]). Suppose the sequence of degree dis-
tributions { 1

n

∑n
i=1 δdi(n)} converges to some distribution ρ ∈ P(N0) with a finite nonzero first

moment, and assume also that the first moments converge, 1
n

∑n
i=1 di(n)→

∑
k∈N0

kρ(k). Then
{CUnif(Gn)} converges in law in G∗ to the augmented or unimodular Galton-Watson tree with
degree distribution ρ, denoted UGW(ρ) and defined as follows: The root has offspring distribu-
tion ρ, and each subsequent generation has an independent number of offspring according to the
distribution ρ̂, where ρ̂ is defined by

ρ̂(k) =
(k + 1)ρ(k + 1)∑

n∈N nρ(n)
, k ∈ N0. (1.3)
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Note that ρ̂ = ρ when ρ is Poisson. See [5, Proposition 2.5], [4, Theorem 3.15], or [10, Theorem
4.1] for a derivation of this limit.

Example 1.4. Let Gn denote the uniform κ-regular graph on n vertices, for κ ≥ 2. Then the
sequence {CUnif(Gn)} converges in law in G∗ to the infinite κ-regular tree; this is a well known
consequence of the results of [3]. Note that the infinite κ-regular tree is nothing but UGW(δκ).

1.4. Convergence notions in the local weak sense. Fix throughout this section a sequence
of finite (possibly disconnected) random graphs {Gn}. Let G be a random element of G∗.
Definition 1.5. We say that {Gn} converges in probability in the local weak sense to G if

lim
n→∞

1

|Gn|
∑
v∈Gn

f(Cv(Gn)) = E[f(G)], in probability, ∀f ∈ Cb(G∗), (1.4)

where we recall that Cv(Gn) denotes the connected component of vertex v of Gn, rooted at v.

Note that this definition is meaningful even if the sequence of graphs is non-random, in
which case of course the phrase “in probability” in (1.4) is redundant.

Remark 1.6. Because G∗ is a Polish space, a standard argument using a countable convergence-
determining set in Cb(G∗) yields the following equivalent definition: {Gn} converges in proba-
bility in the local weak sense to G if and only if

lim
n→∞

1

|Gn|
∑
v∈Gn

δCv(Gn) = L(G), in probability in P(G∗).

Remark 1.7. Throughout the paper, if we say that a sequence of random graphs {Gn} converges
in probability in the local weak sense, it should be understood that we implicitly require that
the vertex set of each graph Gn is finite.

The definition of convergence in probability is borrowed from [10, Definition 2.7], where one
also defines converges in distribution or in law in the local weak sense as follows:

Definition 1.8. We say that {Gn} converges in distribution or law in the local weak sense to
G if

lim
n→∞

E

[
1

|Gn|
∑
v∈Gn

f(Cv(Gn))

]
= E[f(G)], ∀f ∈ Cb(G∗), (1.5)

where, recalling that CUnif(Gn) denotes the connected component of a uniformly randomly
chosen root in Gn, we may write the expectation on the left-hand side of (1.5) as E[f(CUnif(Gn))].

Hence, convergence of {Gn} to G in distribution in the local weak sense is equivalent to
convergence in law of {CUnif(Gn)} to G in G∗, and of course convergence in probability in the
local weak sense is a stronger property.

Remark 1.9. For each of the examples in Section 1.3, it is known that there is in fact conver-
gence in probability in the local weak sense; see [10, Theorems 3.11 and 4.1].

The above discussion is equally valid for marked graphs. Let Y be a Polish space. Let
yn = (ynv )v∈Gn be random Y-valued marks on the vertices of Gn, and let y = (yv)v∈G be random
Y-valued marks on G.

Definition 1.10. We say that the sequence {(Gn, yn)} converges in probability in the local weak
sense to (G, y) if

lim
n→∞

1

|Gn|
∑
v∈Gn

f(Cv(Gn, y
n)) = E[f(G, y)], in probability, ∀f ∈ Cb(G∗[Y]), (1.6)
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Once again, convergence of {(Gn, yn)} to (G, y) in probability in the local weak sense implies
{CUnif(Gn, y

n)} converges in law to (G, y) in G∗[Y]. Remark 1.7 applies also for marked graphs.
Note that the “root mark map” G∗[Y] 3 (G, ø, y) 7→ yø ∈ Y is continuous. Thus, applying

(1.6) with f of the form f(G, ø, y) = g(yø) for g ∈ Cb(Y), we deduce that convergence in
probability in the local weak sense implies convergence in probability of the empirical mark
distributions:

Lemma 1.11. If {(Gn, yn)} converges in probability in the local weak sense to (G, ø, y), then
the empirical measure sequence { 1

|Gn|
∑

v∈Gn δynv } converges in probability to L(yø) in P(Y).

Lastly, we state a useful equivalent characterization of convergence in probability in the local
weak sense, valid for marked or unmarked graphs. The proof is given in Appendix 2.1.1.

Lemma 1.12. Suppose {Gn} is a sequence of finite (possibly disconnected) random graphs.
Suppose yn = (ynv )v∈Gn are (random) marks with values in a Polish space Y, for each n ∈ N.
Let (G, y) be a random element of G∗[Y]. Assume |Gn| → ∞ in probability. Let Un1 and Un2
denote independent vertices that are uniformly distributed on Gn, given Gn. Then {(Gn, yn)}
converges in probability in the local weak sense to (G, x) if and only if

E[g1(CUn1 (Gn, y
n))g2(CUn2 (Gn, y

n))]→ E[g1(G, y)]E[g2(G, y)], ∀g1, g2 ∈ Cb(G∗[Y]). (1.7)

1.5. Examples where graph convergence implies marked graph convergence. In Sec-
tion 1.3 and Remark 1.9 we provided illustrative examples of many interesting examples of
graphs {Gn} that converge in the local weak sense (both in law and in probability). For many
of our results, we will require that the sequence of randomly marked random graphs {(Gn, Y n)}
converge locally (either in law or in probability), where the random marks Y n = (Y n

v )v∈Gn rep-
resent random initial conditions taking values in some Polish space Y. It is thus natural to ask
if there are important classes of random initial conditions for which the local weak convergence
of {Gn} implies the local weak convergence of the corresponding randomly Y-marked graphs.
It is shown in Corollary 1.17 that this is true when the random initial conditions Y = (Yv)v∈G
are i.i.d. A more general class of initial conditions for which this holds is the class of Gibbs
measures, defined below. Throughout, fix the Polish space Y, a reference measure λ ∈ P(Y) and
a bounded continuous function ψ : Y2 → [0,∞) that serves as a pairwise interaction potential.

Definition 1.13. For each finite graph G = (V,E), the (ψ, λ)-Gibbs measure on G is the
probability measure PG ∈ P(YV ) defined by

PG(d(yv)v∈V ) =
1

ZG

∏
(u,v)∈E

ψ(yv, yu)
∏
v∈V

λ(dyv),

where ZG > 0 is the normalizing constant.

This definition does not make sense for infinite graphs G since ZG is infinite in that case.
Instead, as is standard practice, we use an alternative characterization of PG in terms of a
certain conditional independence or Markov random field property, which then admits a natural
extension to locally finite infinite graphs G = (V,E). Given (ψ, λ) as above and a finite set
A ⊂ V , as usual let ∂A := {u ∈ V \ A : (u, v) ∈ E for some v ∈ A} denote the boundary of A,
and define a map Y∂A 3 y∂A 7→ γGA (· | y∂A) ∈ P(YA) by

γGA (dyA | y∂A) =
1

ZGA (y∂A)

∏
(u,v)∈E:u∈A, v∈A∪∂A

ψ(yv, yu)
∏
w∈A

λ(dyw), (1.8)

where ZGA (y∂A) > 0 is the normalizing constant. Note that for finite G, any random element
Y G = (Y G

v )v∈G taking values in YG whose law is the (ψ, λ)-Gibbs measure PG ∈ P(YV ) satisfies
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for every finite A ⊂ V ,

γGA (· |Y G
∂A) = L(Y G

A |Y G
∂A) = L(Y G

A |Y G
V \A) a.s. (1.9)

It is clear that γGA = γHA whenever A∪∂A is a common subset of the vertex sets of two graphs G
and H that induce the same subgraph on A∪∂A. The observation (1.9) motivates the following
definition.

Definition 1.14. For a general (countable, locally finite) graph G = (V,E), the set Gibbs(G) =
Gibbs(G,ψ, λ) ⊂ P(YV ) of (ψ, λ)-Gibbs measures on G is the set of laws L((Y G

v )v∈V ), where
(Y G
v )v∈V is a random element of YV such that

L(Y G
A |Y G

V \A) = γGA (· |Y G
∂A) a.s.,

for each finite set A ⊂ V , where γGA is as defined in (1.9).

Unlike in the finite case, when the graph is infinite, the Gibbs measure may not be unique.
However, since the reference measure ⊗v∈V λ is invariant under permutations of the vertex set of
the graph and the interaction potential ψ is homogeneous in the sense that it is the same on all
edges of the graph, it is easy to see from Definition 1.14 that |Gibbs(G1, ψ, λ)| = |Gibbs(G2, ψ, λ)|
whenever G1 is isomorphic to G2 (see also [7, Chapter 5] for related assertions). Therefore, we
can define U = Uψ,λ by

U := {G ∈ G∗ : |Gibbs(G)| = 1}. (1.10)

In other words, U consists of (isomorphism classes of) locally finite graphs G for which Gibbs(G)
is a singleton. ForG ∈ U , let PG denote the unique element of U . Note that every finite connected
graph belongs to U , so this is consistent with the notation introduced in Definition 1.13. Note
that if ψ ≡ 1 then we recover the i.i.d. setting, where PG = λG for each G and in particular
U = G∗. For any G ∈ U , let Y G denote a random element of YG with law PG, and write (G, Y G)
for the corresponding random element of G∗[Y].

We now state key convergence results for Gibbs measures, whose proofs are given in Appendix
2.2 for completeness.

Proposition 1.15. Suppose Gn, G ∈ G∗ with Gn → G in G∗. If G ∈ U , then with Y Gn , Y G

being random Gibbs configurations as defined above, L(Gn, Y
Gn)→ L(G, Y G) in P(G∗[Y]).

Now, if G is a random element of U with law M , we may define a random element (G,YG) of
G∗[Y] in the natural way, by first sampling G and then generating Y G according to the measure
PG. More precisely, the law of (G, Y G) is determined by the identity

E[f(G, Y G)] =

∫
U
E[f(H,Y H)]M(dH), f ∈ Cb(G∗[Y]).

Proposition 1.15 ensures that the integrand is continuous in H on U , so that this is well defined.

Proposition 1.16. Suppose G is a random element of G∗, with G ∈ U a.s. Suppose Gn are
finite (possibly disconnected) random graphs such that Gn converges in probability (resp. in law)
in the local weak sense to G. Then, with Y Gn , Y G being random Gibbs configurations as defined
above, (Gn, Y

Gn) converges in probability (resp. in law) in the local weak sense to (G, Y G).

An immediate consequence of Propositions 1.15 and 1.16 is that analogous convergence
results hold when the initial marks are i.i.d. with law λ ∈ P(Y), conditionally on the graphs
{Gn}, as stated below.
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Corollary 1.17. Suppose G is a random element of G∗, and Gn is a sequence of finite (possibly
disconnected) random graphs such that Gn converges in probability (resp. in law) in the local
weak sense to G. Let Y n = (Y n

v )v∈Gn and Y = (Yv)v∈G be i.i.d. with law λ, given the graphs.
Then {(Gn, Y Gn)} converges in probability (resp. in law) in the local weak sense to (G, Y G).

2. Local convergence of marked graphs - Definitions, Results and Proofs

2.1. Essential properties of the metric space of local convergence. This subsection
develops the essential properties of the space G∗[Y] of isomorphism classes of rooted connected
marked graphs, introduced in the previous section. Throughout this section, (Y, d) is a fixed
metric space. Some of these results (albeit with a different choice of metric that induces the
same topology) can be found in [4, Section 3.2].

Let I(G,G′) denote the set of isomorphisms between two graphs G,G′ ∈ G∗. Recall from
Section 1.1 that a sequence {(Gn, yn)} ⊂ G∗[Y] converges locally to (G, y) ∈ G∗[Y] if, for every
k ∈ N and ε > 0, there exist N ∈ N such that for all n ≥ N there exists ϕ ∈ I(Bk(Gn), Bk(G))
with d(ynv , yϕ(v)) < ε for all v ∈ Bk(Gn), where recall that Bk(Gn) represents the induced
subgraph of Gn on vertices of Gn that are no greater than distance k from the root. We may
endow G∗[Y] with either of the following two metrics:

d∗((G, y), (G′, y′)) =
∞∑
k=1

2−k
(

1 ∧ inf
ϕ∈I(Bk(G),Bk(G′))

max
v∈Bk(G)

d(yv, y
′
ϕ(v))

)
,

d∗,1((G, y), (G′, y′)) =
∞∑
k=1

2−k

1 ∧ inf
ϕ∈I(Bk(G),Bk(G′))

1

|Bk(G)|
∑

v∈Bk(G)

d(yv, y
′
ϕ(v))

 ,

where the infimum of the empty set is understood to be infinite. We will show in Lemma 2.2
that these are genuine metrics on G∗[Y]. The following proposition confirms first that they are
indeed compatible with the aforementioned notion of local convergence.

Proposition 2.1. Let (G, y), (Gn, y
n) ∈ G∗[Y], for n ∈ N. The following are equivalent:

(1) (Gn, y
n) converges locally to (G, y).

(2) d∗((Gn, y
n), (G, y))→ 0.

(3) d∗,1((Gn, y
n), (G, y))→ 0.

Proof. Clearly d∗,1 ≤ d∗, so (2) ⇒ (3). To prove (1) ⇒ (2), suppose (Gn, y
n) converges locally

to (G, y). Fix ε > 0 and k ∈ N such that 21−k ≤ ε. Find nk such that for all n ≥ nk there exists
ϕn ∈ I(Bk(Gn), Bk(G)) with d(ynv , yϕn(v)) < 2−k for all v ∈ Bk(Gn). Note that for j < k the
restriction ϕn|Bj(Gn) belongs to I(Bj(Gn), Bj(G)). We deduce that, for n ≥ nk,

d∗((Gn, y
n), (G, x)) <

k∑
j=1

2−j2−k +
∞∑

j=k+1

2−j
(

1 ∧ inf
ϕ∈I(Bj(G),Bj(G′))

max
v∈Bj(G)

d(yv, y
′
ϕ(v))

)
≤ 2−k + 2−k ≤ ε.

Finally, to prove (3) ⇒ (1), fix k ∈ N and ε > 0. Choose M ∈ N such that 2−M < ε/|Bk(G)|
and M ≥ k. Find N such that d∗,1((Gn, y

n), (G, y)) < 2−2M for all n ≥ N . Then

inf
ϕ∈I(Bj(G),Bj(Gn))

1

|Bj(G)|
∑

v∈Bj(G)

d(yv, y
n
ϕ(v)) < 2j−2M ≤ 2−M , n ≥ N, j ≤M.
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In particular, choosing j = k, we may thus find for each n some ϕn ∈ I(Bk(G), Bk(Gn)) such
that

1

|Bk(G)|
∑

v∈Bk(G)

d(yv, y
n
ϕ(v)) < 2−M .

Bounding the maximum by the sum,

max
v∈Bk(G)

d(yv, y
n
ϕ(v)) < 2−M |Bk(G)| ≤ ε.

In summary, we have shown that for each k ∈ N and ε > 0 there exists N ∈ N such that for all
n ≥ N there exists ϕn ∈ I(Bk(G), Bk(Gn)) such that maxv∈Bk(G) d(yv, y

n
ϕ(v)) < ε. This shows

that (Gn, y
n)→ (G, y) locally, and the proof is complete. �

Lemma 2.2. (G∗[Y], d∗) and (G∗[Y], d∗,1) are metric spaces.

Proof. We first check that d∗ is a metric. Symmetry is clear, as is the fact that (G, y) ∼= (G′, y′)
implies d∗((G, y), (G′, y′)) = 0. Conversely, if d∗((G, y), (G′, y′)) = 0, we show that (G, y) and
(G′, y′) are isomorphic as follows: Find a sequence ϕk ∈ I(Bk(G), Bk(G

′)) such that yv = y′ϕk(v)

for all v ∈ Bk(G). Extend each ϕk arbitrarily to a function from G to G′, and view each ϕk as
an element of the space (V ′)V . Endowing V ′ and V with the discrete topology, we may equip
(V ′)V with the topology of pointwise convergence. The sequence (ϕn) is pre-compact in this
topology since ϕn|Bk(G) ⊂ Bk(G

′)V for each n ≥ k, so we may find a subsequential limit point
ϕ : V → V ′. The restriction ϕ|Bk(G) belongs to I(Bk(G), Bk(G

′)) for each k, and it follows that
ϕ must be an isomorphism from G to G′. Moreover, we must have yv = y′ϕ(v) for all v ∈ Bk(G),

for all k, and we conclude that ϕ is an isomorphism from (G, y) to (G′, y′).
Next, note that d∗,1((G, y), (G′, y′)) = 0 if and only if d∗((G, y), (G′, y′)) = 0. Therefore d∗,1

is also a metric. �

The following lemma is taken from [4, Lemma 3.4].

Lemma 2.3. If Y is a Polish space, then so is G∗[Y].

2.1.1. Auxiliary results. With the essential properties of the metric space (G∗[Y], d∗) now estab-
lished, we now establish two auxiliary results. The first addresses the question of convergence
of empirical measures.

Proposition 2.4. Suppose (Y, d) is a complete, separable metric space. Let (G, y), (Gn, y
n) ∈

G∗[Y], and assume G and Gn are finite graphs. Define the empirical measures

µG =
1

|G|
∑
v∈G

δyv , µn =
1

|Gn|
∑
v∈Gn

δynv .

If (Gn, y
n)→ (G, y) in G∗[Y], then µn → µG in P(Y).

Proof. Fix finite graphs G, Gn in G∗. Consider the 1-Wasserstein (Kantorovich) metric,

W1(m,m′) = sup

{∫
X
f d(m−m′) : f : X → R, |f(x)− f(y)| ≤ d(x, y)∀x, y ∈ X

}
.

It is well known that convergence in this metric implies weak convergence. For any (rooted
connected) graph G′ = (V ′, E′, ø′) ∈ G∗ let R(G′) = inf{n ≥ 0 : G′ = Bn(G′)}, and note that
R(G′) is simply the distance from the root to the furthest vertex. A graph G′ ∈ G∗ is finite if
and only if R(G′) < ∞. Moreover, G′ = BR(G′)(G

′) = Br(G
′) for any r ≥ R(G′). Because the

graph is connected, it is also clear that if Br(G
′) = Bs(G

′) for some s > r, then there are no
vertices that are at a distance greater than r from the root, and so G′ = Br(G

′) and R(G′) ≤ r.
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Now, let r = 2R(G). Let ε > 0. The assumed convergence (Gn, y
n) → (G, y) implies the

existence of N ∈ N such that for all n ≥ N there exists ϕn ∈ I(Br(G), Br(Gn)) such that
maxv∈Br(G) d(yv, y

n
ϕn(v)) < ε. Now, since G = Br(G) = BR(G)(G), by isomorphism we must

have Br(Gn) = BR(G)(Gn). From the argument of the previous paragraph we deduce that
Gn = Br(Gn) and R(Gn) = R(G). Thus ϕn is an isomorphism from G to Gn, and

W1(µn, µ) = sup
f

1

|G|
∑
v∈G

(
f(yv)− f(ynϕn(v))

)
≤ 1

|G|
∑
v∈G

d(yv, y
n
ϕn(v)) < ε. �

We now present the proof of Lemma 1.12 stated in Section 1.4, which provides equivalent
characterizations of convergence in probability in the local weak sense.

Proof of Lemma 1.12. The proof is similar to that of the Sznitman-Tanaka theorem [8, Proposi-
tion 2.2(i)]. A simple and well known argument shows that the total variation distance between
L((Un1 , U

n
2 ) |Gn) and L((πn(1), πn(2)) |Gn) is no more than 2/|Gn| on the set |Gn| ≥ 2, where

πn is a uniformly random permutation of the vertex set of Gn (given Gn, and assuming without
loss of generality that the vertex set of Gn is {1, . . . , |Gn|}). Since |Gn| → ∞ in probability, we
deduce that the total variation distance between L(Un1 , U

n
2 ) and L(πn(1), πn(2)) vanishes. Thus,

(1.7) is equivalent to

E[g1(Cπn(1)(Gn, y
n))g2(Cπn(2)(Gn, y

n))]→ E[g1(G, y)]E[g2(G, y)], ∀g1, g2 ∈ Cb(G∗[Y]). (2.1)

Let µn := 1
|Gn|

∑
v∈Gn δCπn(v)(Gn,y

n). Since the (conditional) joint law L
(
(Cπn(v)(Gn, y

n))v∈Gn |Gn
)

is exchangeable, for g1, g2 ∈ Cb(G∗[Y]) we have

E [〈µn, g1〉〈µn, g2〉] = E

 1

|Gn|2
∑

u,v∈Gn

g1(Cπn(u)(Gn, y
n))g2(Cπn(v)(Gn, y

n))


= E

[
|Gn| − 1

|Gn|
g1(Cπn(1)(Gn, y

n))g2(Cπn(2)(Gn, y
n)) (2.2)

+
1

|Gn|
g1(Cπn(1)(Gn, y

n))g2(Cπn(1)(Gn, y
n))

]
.

Now suppose that (1.7), or equivalently (2.1), holds. Let f ∈ Cb(G∗[Y]), and take gi(·) :=
f(·)−E[f(G, y)] for wi = 1, 2. Then the right-hand side of (2.2) converges to E[g1(G, y)]E[g2(G, y)]
= 0, and we deduce that

E
[
(〈µn, f〉 − E[f(G, y)])2

]
= E[〈µn, g1〉〈µn, g2〉]→ 0.

As this holds for arbitrary f , we deduce that

lim
n→∞

1

|Gn|
∑
v∈Gn

δCv(Gn,yn) = lim
n→∞

µn = L(G, y), in P(G∗[Y]), in probability. (2.3)

Note that the first identity is just the definition of µn, upon removing the permutation. Thus,
(2.3) is precisely the convergence in probability in the local weak sense of (Gn, y) to (G, y), which
completes the proof of the “if” part of the claim.

To prove the converse, we assume (2.3) holds and deduce (2.1) as follows. Note that (2.3)
implies E [〈µn, g1〉〈µn, g2〉] converges to E[g1(G, y)]E[g2(G, y)], whereas the right-hand side of
(2.2) clearly has the same n→∞ limit as the left-hand side of (2.1) since |Gn| → ∞. �
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2.2. Proofs of local weak convergence of Gibbs measures. The goal of this section is to
prove the results in Section 1.5. A number of prior works, such as [5, 6], have studied Gibbs
measures on locally converging (sparse) graph sequences and Lemma 2.5 on the convergence of
the whole particle configuration is well known in a more general context (see [7]), but we include
it here for completeness.

Although we have focused our attention on factor models with pairwise interactions, the
same arguments extend easily to bounded-range interactions. Recall the definitions given in
Section 1.5, and fix the pair (ψ, λ) as defined therein. Also, recall that given a Polish space Y
and a graph G = (V,E), P ∈ P(YV ) is said to be a Markov random field with respect to G if
for every finite A ⊂ V ,

P (yA | yV \A) = P (yA | y∂A) for P -a.e. yV \A ∈ YV \A. (2.4)

The first step toward the proofs of Propositions 1.15 and 1.16 is the following lemma, which
is inspired by [7, Proposition 7.11].

Lemma 2.5. Suppose G = (V,E) ∈ U . Let PG be the unique (ψ, λ)-Gibbs measure, and let An be
any increasing sequence of finite sets with ∪nAn = V . Then, for any m ∈ N and f ∈ Cb(YAm),
we have

lim
n→∞

sup
y∂An∈Y∂An

∣∣∣∣∫
YAn

f(yAm) γGAn(dyAn | y∂An)−
∫
YV

f(ȳAm)PG(dȳV )

∣∣∣∣ = 0.

Recall that the definition of the kernel γGA (dyA | y∂A) is given pointwise in (1.8), in terms of
the continuous interaction function ψ. Because we work with this particular version of the con-
ditional probability measures, it makes sense that Lemma 2.5 is stated in terms of a supremum
rather than an essential supremum.

Proof of Lemma 2.5. We first note that y∂A 7→ γGA (· | y∂A) is continuous with respect to weak
convergence, for any finite graph G and nonempty finite set of vertices A, because ψ is bounded
and continuous. Moreover, because ψ is bounded, we have

sup
y∈YV

dγGA (· | y∂A)

dλA
(yA) <∞,

In particular, this readily implies that

{γGA (· | y∂A) : y∂A ∈ Y∂A} ⊂ P(YA) is tight for each G and A. (2.5)

Now suppose that, in contradiction to the assertion of the lemma, there exist an increasing
sequence of finite sets An with ∪nAn = V , m ∈ N, f ∈ Cb(YAm), ε > 0, and yn∂An ∈ Y

∂An such
that ∣∣∣∣∫

YAn
f(yAm) γGAn(dyAn | yn∂An)−

∫
YV

f(yAm)PG(dyV )

∣∣∣∣ ≥ ε, ∀n ≥ m. (2.6)

Define Pn ∈ P(YV ) by setting

Pn(dyV ) = γGAn(dyAn | yn∂An)
∏

v∈V \An

λ(dyv).

Then it is easy to verify that Pn is a Markov random field with respect to G, in the sense that
(2.4) holds when P is replaced with Pn. Moreover, as a consequence of (2.5), the sequence (Pn)
is tight and thus has a weak limit point, say P ∈ P(YV ). By (2.6), we have∣∣∣∣∫

YV
f(yAm) (P − PG)(dyV )

∣∣∣∣ ≥ ε. (2.7)
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Now, let (Pnk) denote a subsequence of (Pn) that converges weakly to P . Also, let Y k =
(Y k
v )v∈V and Y = (Yv)v∈V be random YV -valued elements with laws Pnk and P , respectively.

Consider disjoint finite sets B,C ⊂ V and g ∈ Cb(YB), h ∈ Cb(YC). Then, first using the weak
convergence of (Pnk) to P , then the Markov random field property of Pn, the definition of Pnk ,
and finally the continuity of γGB , we have

E[g(YB)h(YC)] = lim
k→∞

E[g(Y k
B)h(Y k

C )]

= lim
k→∞

E[E[g(Y k
B) |Y k

V \B]h(Y k
C )]

= lim
k→∞

E[〈γGB (· |Y k
∂B), g〉h(Y k

C )]

= E[〈γGB (· |Y∂B), g〉h(YC)].

Because B and C are arbitrary finite subsets of V , this is enough to conclude that P belongs to
Gibbs(G) = Gibbs(G,ψ, λ). Since G ∈ U , this implies P = PG, which contradicts (2.7). �

The following Lemma includes Proposition 1.15 as a special case (by taking G2
n to be an

independent copy of G1
n and Gn to be the disjoint union of G1

n and G2
n), and it will also be

useful in proving Proposition 1.16:

Lemma 2.6. For n ∈ N, let Gn be a finite (possibly disconnected) random graph, and for
i = 1, 2, let oin be a (random) vertex in Gn, and let Gin be an induced (random) subgraph of
Gn rooted at oin. Assume L(G1

n, G
2
n) → L(G1, G2) in P(G∗ × G∗) for some random elements

G1, G2 of U , and assume also that dGn(o1
n, o

2
n)→∞ as n→∞ in probability. Then, for random

elements Y Gn, Y G1
, and Y G2

with laws PGn, PG1, and PG2, respectively, we have

L
(
(G1

n, Y
Gn
G1
n

), (G2
n, Y

Gn
G2
n

)
)
→ L(G1, Y G1

)× L(G2, Y G2
), in G∗[Y]× G∗[Y].

Proof. By the Skorohod representation theorem, we may assume that Gn, (G1
n, o

1
n), and (G2

n, o
2
n)

are non-random. Fix r ∈ N and f1, f2 ∈ Cb(G∗[Y]) with |f1|, |f2| ≤ 1. Recall that Br(G) denotes
the ball of radius r around the root in G, and we similarly write Br(G, y) for a marked graph.
It suffices to show that

lim
n→∞

E
[
f1(Br(G

1
n, Y

Gn
G1
n

))f2(Br(G
2
n, Y

Gn
G2
n

))
]

= E
[
f1(Br(G

1, Y G1
))
]
E
[
f2(Br(G

2, Y G2
))
]
. (2.8)

Let ε > 0. We may define a function f̂i ∈ Cb(YBr(G
i)) by f̂i(y) := fi(Br(G

i, y)), for i = 1, 2. By
Lemma 2.5 we may find ` > r such that, for each i = 1, 2,

sup
y∈Y∂B`(Gi)

∣∣∣∣∫
YB`(Gi)

f̂i(yBr(Gi)) γ
Gi

B`(Gi)
(dyB`(Gi) | y∂B`(Gi))−

∫
YGi

f̂(yBr(Gi))PGi(dy)

∣∣∣∣ ≤ ε. (2.9)

For each i = 1, 2, since Gin → G, we may find N < ∞ such that for all n ≥ N there exists an
isomorphism ϕin : B`+1(Gi)→ B`+1(Gin). For any positive integer m ≤ `+ 1 we may also view

ϕin as a dual map YBm(Gin) → YBm(Gi) by setting

ϕiny = (yϕin(v))v∈Bm(Gi), for y = (yv)v∈Bm(Gin).

For ȳ ∈ Y∂B`(Gin), we have

E
[
f̂i(ϕ

i
nY

Gn
Br(Gin)

) |Y Gn
∂B`(Gin)

= ȳ
]

=

∫
YB`(Gin)

f̂i(ϕ
i
nyBr(Gin)) γ

Gin
B`(Gin)

(dyB`(Gin) | ȳ)

=

∫
YB`(Gi)

f̂i(yBr(Gi)) γ
Gi

B`(Gi)
(dyB`(Gi) |ϕ

i
nȳ),
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and thus (2.9) implies

sup
ȳ∈Y∂B`(Gin)

∣∣∣E[f̂i(ϕ
i
nY

Gn
Br(Gin)

) |Y Gn
∂B`(Gin)

= ȳ]− E[f̂i(Y
Gi

Br(Gi)
)]
∣∣∣ ≤ ε. (2.10)

By assumption we may choose n large enough so that dGn(o1
n, o

2
n) ≥ 2`. Then, use the fact that

Y Gn is a Markov random field over the graph Gn and the fact that Br(G
1
n) and Br(G

2
n) are

disjoint, to get

E[f̂1(ϕ1
nY

Gn
Br(G1

n)
)f̂2(ϕ2

nY
Gn
Br(G2

n)
)]

= E
[
E[f̂1(ϕ1

nY
Gn
Br(G1

n)
) |Y Gn

∂B`(G1
n)

]E[f̂2(ϕ2
nY

Gn
Br(G2

n)
) |Y Gn

∂B`(G2
n)

]
]
.

Combine this with (2.10), and recall that |fi| ≤ 1, to obtain∣∣∣E[f̂1(ϕ1
nY

Gn
Br(G1

n)
)f̂2(ϕ2

nY
Gn
Br(G2

n)
)]− E[f̂1(Y G1

Br(G1))]E[f̂2(Y G2

Br(G2))]
∣∣∣ ≤ 2ε,

for sufficiently large n. Plugging in the definitions of f̂i and ϕin, this becomes∣∣∣E[f1(Br(G
1
n, Y

Gn
G1
n

))f2(Br(G
2
n, Y

Gn
G2
n

))]− E[f2(Br(G
1, Y G1

))]E[f2(Br(G
2, Y G2

))]
∣∣∣ ≤ 2ε,

for n large. Since ε was arbitrary, this implies (2.8). �

Proof of Proposition 1.16. We first prove the “in law” case. Note that the convergence of Gn →
G (resp. (Gn, Y

Gn) → (G, Y G)) in distribution in the local weak sense is equivalent to the
convergence in law of CUn(Gn)→ G in G∗ (resp. CUn(Gn, Y

Gn)→ (G, Y G) in G∗[Y]), where Un

is a uniform random vertex in Gn. The “in law” case then follows immediately from Proposition
1.15 via continuous mapping or marginalization.

Next we prove the “in probability” case. By Lemma 1.12, we know that

L(CUn1 (Gn),CUn2 (Gn))→ L(G)× L(G), in P(G∗ × G∗),

where Un1 , U
n
2 are independent uniform random vertices in Gn. Because Gn → G in probability

in the local weak sense, it is known from [10, Corollary 2.13] that dGn(Un1 , U
n
2 )→∞. By passing

to a Skorohod representation, we may assume the limits are all almost sure, and then invoke
Lemma 2.6 to deduce that

L(CUn1 (Gn, Y
Gn),CUn2 (Gn, Y

Gn))→ L(G, Y G)× L(G, Y G), in P(G∗[Y]× G∗[Y]).

By Lemma 1.12, this is equivalent to the claim. �

Corollary 2.7. Suppose G is a random element of U . Suppose {Gn} is a sequence of finite
(possibly disconnected) random graphs. Let Hn ⊂ Gn be random induced subgraphs, and let
A ⊂ G∗ be a Borel set with P(G ∈ A) > 0. Suppose Hn converges in probability in the local

weak sense to a random element H̃ of G∗ with L(H̃) = L(G |G ∈ A). Then, given random
elements Y Gn and Y G with laws PGn and PG, respectively, the sequence of marked random

graphs (Hn, Y
Gn
Hn

) converges in probability in the local weak sense to the marked random graph

with law L((G, Y G) |G ∈ A).

Proof. By Proposition 1.16, (Hn, Y
Gn
Hn

) converges in probability in the local weak sense to

(H̃, Y H̃). So we must only argue that L(H̃, Y H̃) = L((G, Y G) |G ∈ A). But this is easy
to see: recalling that U is the collection of graphs on which the Gibbs measure is unique,
there exists a map Φ : U → G∗[Y], which is in fact continuous by Proposition 1.15, such that



12 KAVITA RAMANAN, BROWN UNIVERSITY

L(H,Y H) = L(Φ(H)) for each H ∈ U . Together with the assumption L(H̃) = L(G |G ∈ A),
this implies the desired result:

L(H̃, Y H̃) = L(Φ(H̃)) = L(Φ(G) |G ∈ A) = L((G, Y G) |G ∈ A).

�

References

[1] D. Aldous and J.M. Steele, The objective method: probabilistic combinatorial optimization and local weak
convergence, Probability on discrete structures, 2004, pp. 1–72.

[2] I. Benjamini and O. Schramm, Recurrence of distributional limits of finite planar graphs, Electronic Journal
of Probability 6 (2001).

[3] B. Bollobás, A probabilistic proof of an asymptotic formula for the number of labelled regular graphs, European
Journal of Combinatorics 1 (1980), no. 4, 311–316.

[4] C. Bordenave, Lecture notes on random graphs and probabilistic combinatorial optimization, 2016.
[5] A. Dembo and A. Montanari, Gibbs measures and phase transitions on sparse random graphs, Brazilian

Journal of Probability and Statistics 24 (2010), no. 2, 137–211.
[6] A. Dembo, A. Montanari, and N. Sun, Factor models on locally tree-like graphs, The Annals of Probability

41 (2013), no. 6, 4162–4213.
[7] H.-O. Georgii, Gibbs measures and phase transitions, Vol. 9, Walter de Gruyter, 2011.
[8] A.-S. Sznitman, Topics in propagation of chaos, Ecole d’Eté de Probabilités de Saint-Flour XIX—1989 (1991),

165–251.
[9] R. van der Hofstad, Random graphs and complex networks, Vol. 1, Cambridge University Press. Available at

https://www.win.tue.nl/ rhofstad/NotesRGCN.pdf, 2016.
[10] , Random graphs and complex networks, volume 2, Available at https://www.win.tue.nl/ rhofs-

tad/NotesRGCNII 11 07 2020.pdf, 2020.


	1. Local Weak Convergence – Basic Results
	1.1. Unmarked graphs and the space G*
	1.2. Marked graphs and the space G*[Y]
	1.3. Examples of locally convergent graph sequences
	1.4. Convergence notions in the local weak sense
	1.5. Examples where graph convergence implies marked graph convergence

	2. Local convergence of marked graphs - Definitions, Results and Proofs
	2.1. Essential properties of the metric space of local convergence
	2.2. Proofs of local weak convergence of Gibbs measures

	References

